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Abstract

In order to improve the accuracy of bearing fault recognition, a novel bearing fault diagnosis(PAVMD-EE-PNN) method based on parametric 

adaptive Variational Mode Decomposition (VMD) energy entropy and Probabilistic Neural Network (PNN) is proposed in this paper. In 

view of the effect of VMD on signal decomposition effect affected by the number of preset modes decomposition, a central frequency 

screening method is proposed to determine the number of decomposition modes of the VMD method. The parametric adaptive VMD method 

is used to decompose the bearing fault signal into a series of IMF components. The energy entropy of IMF components is calculated to form 

an eigenvector, which is input into the PNN model for training in order to obtain a fault recognition model with maximum output probability. 

The actual bearing vibration data is obtained and used to test and verify the effectiveness of the PAVMD-EE-PNN method. The experimental 

results show that the PAVMD-EE-PNN method can effectively and accurately identify the fault type, and the fault recognition effect is better 

than the contrast fault diagnosis methods. 

Keywords: Variational mode decomposition; Signal decomposition; Central frequency screening;Energy entropy; Probabilistic neural network;Fault diagnosis
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1. Introduction

Rolling bearing is an important part of motor. Its running state determines the working state of motor (Shen et al.2013; Wen 

et al.2019; Qian et al.2019; Luo et al.2018). Bearing is easy to be damaged during motor running. According to data statistics, 

70% of mechanical faults are vibration faults, and about 30% of vibration faults are caused by rolling bearing faults (Zhang et 

al. 2018; Deng et al. 2019a; Ren et al. 2019a; Abdelkader et al. 2018; Zhao et al. 2018; Zhang et al. 2018; Zhou et al. 2019; 

Kanget al. 2018; Yual. 2018; Chen et al. 2019). Therefore, the effective analysis and accurate diagnosis of motor bearing faults 

have very important scientific significance and application value.

When the bearing fault occurs, the vibration signal in the running process contains important fault information. How to 

extract the fault information effectively becomes the key part of fault diagnosis (Li et al. 2017; Deng et al. 2019b; Zhu et al. 

2019; Zhou et al. 2018a; Yang et al. 2018; Lu et al. 2018; Zhao et al. 2017; Chen et al. 2019; Deng et al. 2017a; Cai et al. 2019; 

Wu et al. 2019). At present, the most commonly used method for bearing fault diagnosis is to extract the fault features from 

the bearing vibration signal, and to realize the fault diagnosis by using the pattern recognition method (Zhang et al. 2017; Su 

et al. 2019; Shen et al. 2016; Song et al. 2019; Zhang et al. 2018; Lin et al. 2018; Liu et al. 2018; Cai et al. 2018; Peng et al. 

2017; Huang et al. 2018; Guo et al. 2018a; Wen et al. 2019a; Fu et al. 2018; Yu et al. 2018;). In view of the nonlinear and non-

stationary characteristics of vibration signals, some achievements have been achieved in bearing fault diagnosis by using 

traditional time-frequency analysis methods, such as short-time Fourier transform, wavelet transform and so on (Wen et al. 

2019b; Liu et al. 2019a; Deng et al. 2017b; Guo et al. 2019; Yang et al. 2018; Liu et al. 2019b; Ren et al. 2019b; Cao et al. 

2019; Guo et al. 2018b; Sun et al. 2017; Xu et al. 2019). Dong et al. (2009) proposed a novel method that can improve the sifting 

process's efficiency. Gong and Qiao (2013) proposed a method consisting of appropriate current frequency and amplitude 

demodulation algorithms for bearing fault diagnosis. Jiang et al. (2014) proposed a new fault diagnosis approach based on 

probabilistic PCA and cyclic bispectrum. Chen et al. (2015) proposed a new double-dot structuring element for multi-scale 

mathematical morphology. Wang et al. (2017) proposed a novel multiscale filtering spectrum method to obtain the weighted 

energy distribution of the monocomponent signals. Lu et al. (2019a) proposed a full-wave signal construction strategy for 

enhancing rotating machine fault diagnosis. Lu et al. (2019b) proposed a novel fast and online fault diagnosis method to realize 

variable-speed permanent magnet synchronous motor bearing. Deng et al. (2018) proposed a novel fault diagnosis method 

based on integrating empirical wavelet transform and fuzzy entropy. Yu and He (2018) proposed a fault diagnosis method of 

planetary gearboxes based on data-driven valued characteristic multigranulation model. 

The VMD is a new adaptive signal analysis method, in which the frequency center and bandwidth of each component are 

determined by iterative search for the optimal solution of the variational model (Dragomiretskiy and Zosso 2014). Therefore, 

the frequency domain division of the signal and the effective separation of each component can be realized adaptively. When 

VMD is used to decompose signal, the number of mode decomposition must be preset, and the decomposition effect is affected 

by the number of decomposition components (Lian et al. 2018; Duan et al. 2018; Xie et al. 2019; Zhang et al. 2016; Fu et al. 

2019; Zhou et al. 2018b; Chen et al. 2018). Zhu et al. (2017) proposed an adaptive VMD method with parameter optimization 

for detecting the localized faults. Wang et al. (2017) proposed a hybrid approach to fault diagnosis of bearings under variable 

speed conditions. Wan et al. (2018) proposed an improved fast spectrum kurtosis method combined with the VMD. Mohanty 

et al. (2018) proposed a novel fault identification method using correlation coefficient and Hurst exponent to depict the actual 

fault mode. Wang et al. (2018) proposed a novel PSO-VMD method, which adopts the minimum mean envelope entropy to 

optimize the parameters (α and K). Yu et al. (2019) proposed a fault severity identification method using flow graph and non-

naive Bayesian inference for roller bearings.

In this paper, a novel bearing fault diagnosis method based on parametric adaptive VMD, energy entropy and PNN is 

proposed. Firstly, a central frequency screening method is proposed, in which the minimum value of the standard deviation of 

the central frequency is taken as the evaluation parameter to determine the number of modal decomposition adaptively. Then 

a series of IMF components are obtained by decomposing the signal with improved VMD, and then the eigenvector is 

constructed by solving the energy entropy of IMF component. Finally, the eigenvector is input into the PNN training model, 

and the bearing fault diagnosis is realized in the form of the maximum output probability.

2. Methodology

2.1. Variational mode decomposition

VMD is a completely non-recursive signal decomposition method, its essence is multiple Wiener filter banks 

(Dragomiretskiy and Zosso 2014). The constructed variational model can solve the noise in the signal. The Wiener filtering 

algorithm can effectively remove the noise from the signal. It shows that the method has good performance in dealing with 

noise and has better noise robustness. The VMD decomposes the signal into a number of discrete sparse sub-signals, that is, 

the Intrinsic Mode Function(IMF). Assuming that each mode  has center frequency  and linited bandwidth, the 𝑢𝑘 𝜔(𝑘)
constraint condition is that the sum of each mode is equal to the input signal, and the sum of estimated bandwidth of each mode 

is the minimum. The  and bandwidth of each mode are updated continuously during the iterative process of solving the 𝜔(𝑘)
variational model, and finally the adaptive decomposition of the signal is realized.
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The signal is decomposed at scale K and the variational problem is constructed with the minimum of the sum of the 

estimated bandwidths of the IMF components.

                    (1)min
{𝑢𝑘},{𝜔𝑘}

{∑𝑘‖∂𝑡[(𝛿(𝑡) +
𝑗𝜋𝑡) ∗ 𝑢𝑘(𝑡)]𝑒―𝑗𝜔𝑘𝑡‖2

2}
Where  represents each modal function and  represents the central {𝑢𝑘} = {𝑢1,𝑢2,…,𝑢𝐾} {𝜔𝑘} = {𝜔1,𝜔2,…,𝜔𝐾}

frequencies of each modal function.

In order to transform the constraint problem into an unconstrained problem, the quadratic penalty factor and Lagrange 

multiplier are introduced. The quadratic penalty factor is used to guarantee the fidelity of the reconstructed signal, and the 

Lagrange multiplier is used to guarantee the strictness of the constraint. The extended Lagrange expression is as follows:

       (2)𝐿({𝑢𝑘},{𝜔𝑘},𝜆) = α∑𝑘‖∂𝑡[(𝛿(𝑡) +
𝑗𝜋𝑡) ∗ 𝑢𝑘(𝑡)]𝑒―𝑗𝜔𝑘𝑡‖2

2
+ ‖𝑓(𝑡) ― ∑𝑘𝑢𝑘(𝑡)‖2

2
+ 〈𝜆(𝑡),𝑓(𝑡) ― ∑𝑘𝑢𝑘(𝑡)〉

where,  represents a penalty factor;  represents a Lagrangian multiplier.α λ
In VMD, the multiplicative operator alternating direction method is used to solve thee variational problems. By alternately 

updating ,  and , we seek the "saddle point" of the extended Lagrangian expression. The modal component  𝑢𝑛 + 1𝑘 𝜔𝑛 + 1𝑘 λ 𝑢𝑘
and the center frequency  are described as follows.𝜔𝑘

                (3)𝑢𝑛 + 1𝑘 (𝜔) = (𝑓(𝜔) ― ∑𝑖 ≠ 𝑘𝑢𝑖(𝜔) +
𝜆(𝜔)

2 ) 1

1 + 2𝛼(𝜔― 𝜔𝑘)2

                                                                    (4)𝜔𝑛 + 1𝑘 =
∫∞

0
𝜔|𝑢𝑘(𝜔)|2𝑑𝜔∫∞

0
|𝑢𝑘(𝜔)|2𝑑𝜔

where,  is equivalent to the wiener filtering of the current residual  and the real part of 𝑢𝑛 + 1𝑘 (𝜔) 𝑓(𝜔) ― ∑𝑖 ≠ 𝑘𝑢𝑖(𝜔)

 after inverse Fourier transform is .𝑢𝑘(𝜔) 𝑢𝑘(𝑡)
2.2. Energy entropy

The energy in the signal is distributed with the frequency. When the bearing fails, it will produce the corresponding fault 

frequency. In this case, the energy of the signal will change with the distribution of the frequency. The IMF component of the 

signal decomposed by VMD contains fault feature information. However, because of the narrow frequency domain range of 

the IMF component, it is easy to overlap in the frequency domain, which results in the difficulty of feature extraction. In order 

to accurately represent the change of the energy of the bearing fault signal with the frequency, The concept of energy entropy 

is introduced.

The original signal is decomposed by VMD to obtain K IMF components, and the energy  of the K IMF E1,E2,…,Ek

components are calculated. Because the decomposition result of VMD is orthogonal, the energy of each IMF component is the 

total energy of the original signal.  represents the energy of each IMF component of different frequency E1,E2,…,Ek

components in the original signal, thus the energy distribution of the original signal in the frequency domain is represented The 

corresponding energy entropy is defined as follows:

                                          (5)𝐻𝐸𝑁 = ― ∑𝑘
1
𝑝𝑖𝑙𝑔𝑝𝑖

Where,  represents the energy of the i-th IMF component as a percentage of the total energy.  𝑝𝑖 = 𝐸𝑖/𝐸
2.3. Probabilistic neural networks

PNN is a new feedforward neural network. It overcomes the shortcoming of BP neural network which needs to calculate 

the reverse error. It has the advantages of less computation, stable results, strong fault tolerance and fast convergence rate and 

so on. The PNN contains input layer, pattern layer, summation layer and output layer. The basic constructure is shown in Fig.1.

(1) The input layer receives the sample eigenvector and passes it to the pattern layer. The number of neurons is equal to 

the dimension of the sample eigenvector.

(2) The pattern layer is connected to the input layer by connection weight value. The connection weight value is the 

matching degree between each neuron in the input layer and each neuron in the pattern layer. The formulas are described.

                           (6)𝑓(𝑋,𝑊𝑖) = 𝑒𝑥𝑝― (𝑋 ―𝑊𝑖)𝑇(𝑋 ―𝑊𝑖)
2𝛿2  

where, X represents the sample passed to the pattern layer, δ denotes the smoothing factor, and WCI represents the weight 

value between the input layer and the pattern layer.

(3) The summation layer calculates the probability of a certain category in the classification of samples, and then 

accumulates the probability, and obtains the probability density function of each pattern according to formula . The number (7)

of neurons is equal to the number of classification.

                  (7)𝑃(𝑥|𝜔𝑖) =
1

(2𝜋)

𝑛
2𝛿𝑛𝑁𝑖

∑𝑁𝑖𝑗 = 1
𝑒𝑥𝑝― (𝑥 ― 𝑥𝑖𝑗)𝑇(𝑥 ― 𝑥𝑖𝑗)

2𝛿2
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where,  is the input sample of class ,  is the j-th sample of class ,  is the dimension of sample eigenvector, and 𝑥 𝜔𝑖 𝑥𝑖𝑗 𝜔𝑖 𝑛
 is the sum of samples of class .𝑁𝑖 𝜔𝑖

(4)  The neurons of the output layer correspond to the class neurons in the summation layer, and the classification result 

is the output of the neuron corresponding to the maximum probability density of each category in the summation layer.

3. A novel bearing fault diagnosis(PAVMD-EE-PNN) method

3.1. Basic ideas of PAVMD-EE-PNN

At present, the commonly used fault diagnosis methods are wavelet transform, EMD, optimization algorithm, SVM, neural 

network, clustering analysis and so on. These methods have their own advantages and disadvantages in practical application. 

Because the VMD uses the non-recursive method in frequency domain, the signal decomposition accuracy is high and the mode 

aliasing can be avoided, but the number of modal decomposition must be preset. Energy entropy can accurately represent the 

variation of signal energy with frequency, and can accurately characterize the characteristics of the signal. PNN has the 

advantages that doesn’t need to calculate reverse error, small computational complexity, stable results, fast convergence rate, 

and so on. It is a neural network commonly used in pattern classification. This paper applies the above method to fault diagnosis 

and presents a bearing fault diagnosis method based on parametric adaptive VMD energy entropy and PNN. In order to solve 

the problem that VMD needs to presuppose the number of modal decomposition, a method of center frequency selection is 

proposed. The improved VMD is used to decompose the signal, and a series of IMF components are obtained. By solving the 

energy entropy of the IMF component, the eigenvector of the training sample is input to the PNN for model training. The 

eigenvector of the test sample is inputted for fault diagnosis.

3.2. PAVMD-EE-PNN model

A fault diagnosis method based on parameter adaptive VMD energy entropy and PNN (PAVMD-EE-PNN) is proposed 

in this paper. The PAVMD-EE-PNN model is shown in Fig.2.

The detailed steps of fault diagnosis model are described as follows:

Step1. The vibration signal set is divided into training samples and test samples.

Step2. The number of mode decomposition of VMD is determined by the center frequency update screening method. 

Step3. According to the K obtained from Step2, the training sample and test sample are decomposed by VMD, and some 

sets of IMF components are obtained.

Step4. The energy entropy of the IMF component obtained in the calculation Step3 constitutes the high-dimensional 

eigenvector of the training sample and the test sample.

Step5. The characteristic vector of the training sample is input to the PNN for model training.

Step6. The eigenvector of the test sample is input to PNN, to determine the bearing fault type according to the maximum 

probability of each kind of output, and the bearing fault diagnosis is realized.

3.3. Determination method of mode decomposition number of VMD

VMD decomposition needs to preset the number of mode decomposition K. How to effectively determine the number of 

decomposition will directly affect the final decomposition results. Therefore, the determination of K plays an important role in 

VMD. Each IMF component obtained by VMD decomposition corresponds to a central frequency, and the central frequency 

of IMF component in different scales is distributed from low to high. The distribution of central frequency varies with the 

increase of decomposition scale, and the center frequency is divided into low frequency band, middle frequency band and high 

frequency band. Standard deviation can reflect the dispersion degree of signal, the smaller the standard deviation is, the lower 

the signal dispersion is, that is, the stability of the signal is better. The standard deviation is used to weigh the central frequency 

distribution in a certain frequency band. If the signal is decomposed thoroughly at a certain scale, the sum of the standard 

deviation of the center frequency in the low frequency band, the middle frequency band and the high frequency band is the 

smallest. Determine  is the maximum scale of decomposition of VMD, decompose the signal at scales 2 to , the 𝐾𝑚𝑎𝑥 𝐾𝑚𝑎𝑥
central frequencies of each IMF component at different scales are obtained. The standard deviation of the center frequency in 

different frequency bands at different scales is solved respectively. If the standard deviation in a frequency band is all NaN, it 

shows that there is no signal component in this band. If the standard deviation in a frequency band exists NaN, it shows that 

there is no signal component in this band at the corresponding scale. If the standard deviation in a frequency band is all 0, it 

shows that the number of signal components in this band does not change with the increase of decomposition scale. By adding 

the standard deviations in different frequency bands at different scales, the minimum corresponding scale of the sum of standard 

deviations except 0 is the number of modal decomposition of VMD. If the standard deviations in a certain frequency band are 

all NaN, add up the standard deviations in other bands, the minimum corresponding scale of the sum of standard deviations 

except 0 is the number of modal decomposition of VMD.

The steps of improved VMD based on the central frequency screening method are described as follows:

Step1. Determine  is the maximum scale of decomposition of VMD;𝐾𝑚𝑎𝑥
Step2. The VMD is used to decompose the original signal, a series of IMF components at different scales are obtained, denoted 

as . Calculate the central frequency of each component in the set , denoted as ;𝐼𝑀𝐹𝐾 𝐼𝑀𝐹𝐾 𝑐𝑓𝐼𝑀𝐹𝐾(𝐾 = 2,3,…,𝐾𝑚𝑎𝑥)
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Step3. Extract the center frequency of each frequency band in the set  , denoted as 、 、𝑐𝑓𝐼𝑀𝐹𝐾 𝑐𝑓𝐼𝑀𝐹𝐾1 𝑐𝑓𝐼𝑀𝐹𝐾2 𝑐𝑓𝐼𝑀𝐹𝐾3
;(𝐾 = 2,3,…,𝐾𝑚𝑎𝑥)

Step4. Calculate the standard deviation in the set 、 、 , denoted as 、𝑐𝑓𝐼𝑀𝐹𝐾1 𝑐𝑓𝐼𝑀𝐹𝐾2 𝑐𝑓𝐼𝑀𝐹𝐾3 𝑠𝑡𝑑𝑐𝑓𝐼𝑀𝐹𝐾1 𝑠𝑡𝑑𝑐𝑓𝐼𝑀𝐹𝐾2
、 ;𝑠𝑡𝑑𝑐𝑓𝐼𝑀𝐹𝐾3(𝐾 = 2,3,…,𝐾𝑚𝑎𝑥)

Step5. Determine whether 、 、  contains a set that is all NaN. If conditions are met, 𝑠𝑡𝑑𝑐𝑓𝐼𝑀𝐹𝐾1 𝑠𝑡𝑑𝑐𝑓𝐼𝑀𝐹𝐾2 𝑠𝑡𝑑𝑐𝑓𝐼𝑀𝐹𝐾3
execute Step6; If not satisfied, execute Step7;

Step6. Calculate the sum of the sets that do not satisfy the judgment conditions in Step5, denoted as 0𝑠𝑢𝑚𝑠𝑡𝑑𝑐𝑓𝐼𝑀𝐹𝐾
;(𝐾 = 2,3,…,𝐾𝑚𝑎𝑥)

Step7. Calculate the sum of the sets 、 、 , denoted as 𝑠𝑡𝑑𝑐𝑓𝐼𝑀𝐹𝐾1 𝑠𝑡𝑑𝑐𝑓𝐼𝑀𝐹𝐾2 𝑠𝑡𝑑𝑐𝑓𝐼𝑀𝐹𝐾3 1𝑠𝑢𝑚𝑠𝑡𝑑𝑐𝑓𝐼𝑀𝐹𝐾
;(𝐾 = 2,3,…,𝐾𝑚𝑎𝑥)

Step8. Screen the minimum value other than 0 in the set  or , the scale K corresponding 0𝑠𝑢𝑚𝑠𝑡𝑑𝑐𝑓𝐼𝑀𝐹𝐾 1𝑠𝑢𝑚𝑠𝑡𝑑𝑐𝑓𝐼𝑀𝐹𝐾
to the minimum value is the number of modal decomposition of VMD .(𝐾 = 2,3,…,𝐾𝑚𝑎𝑥)
4. Experimental results and analysis 

4.1. Experimental data and environment

In order to verify the effectiveness of the proposed PAVMD-EE-PNN method, the QPZZ- Ⅱ rotary machinery test 

platform is used in here. The experimental platform can simulate many kinds of states and vibration of rotating machinery, can 

be compared, analyzed and diagnosed of various states, and can simulate the fault characteristics under different speed 

conditions. The range of transmission speed is 75-1450 rpm/min, the experimental platform is shown in Fig.3. In this paper, 

the single fault of normal, inner ring, outer ring and rolling body is selected to verify the method. In practical engineering, 

many faults often occur at the same time, so the next step is to solve the mixed fault problem with the method proposed in this 

paper. The mixed fault signal is decomposed by VMD to obtain the IMF component, the energy entropy of the IMF component 

is solved to form the eigenvector, and the eigenvector is input to the PNN, to identify the mixed fault.

In this paper, the USB-4431 data acquisition card produced by NI Company is used to collect the signal with LabVIEW. 

The speed of the motor is 1000r / min, the sampling frequency is 12kHz, the sampling time is 10s. By replacing the rolling 

bearing with different fault types, the normal signal and the inner ring, the outer ring and the rolling element fault signal under 

0 load are collected, respectively. The main parameters of the VMD algorithm include the component number K, the penalty 

of factor alpha, and the fidelity tau. The number of components K directly affects the final decomposition result. The constraint 

problem to be solved is transformed the Lagrangian operator and the penalty factor alpha. The role of alpha is to improve the 

convergence. Through the simulation analysis, it can be seen that when there is noise amplitude is large, the strict data fidelity 

can be performed by changing tau to achieve accurate signal reconstruction. In the experiment, the signal is subjected to the 

VMD decomposition by changing the values of alpha and tau. It can be seen from the results that when alpha and tau are taken 

as default values, the good signal decomposition results can be obtained. Therefore, the initial value of the alpha is 2000 and 

the initial value of the tau is 0 in this paper. The experiment environments are: Matlab2014b, the Pentium CPU i7, 8.0GB RAM 

with Windows10.

The vibration signal samples collected in each state are divided into 50 sub-samples with data length of 2048 points, the 

total number of samples is 600, 90 samples in 4 states are selected to form training samples, and the other samples constituted 

test samples.

4.2. Determination of K value for VMD

Five samples are randomly selected from each type of state signal, a total of 20 samples, and the number of modal 

decompositions of VMD is determined by the method proposed in this paper. The results are shown in Tab.2.

It can be seen from Tab.2 that the determined K by the 5 normal samples is all 4, the determined K by 4 samples of the 5 

inner ring fault samples is 6 and the determined K by the other one sample is 5, and the determined K by the 5 outer ring fault 

samples is all 4. The determined K by 5 rolling element fault samples is all 4, so the determined number of VMD modal 

decompositions of the normal and inner ring, outer ring and rolling element faults by the proposed method are 6, 4, 4 and 4 

respectively. The improved VMD is used to decompose 600 samples and extract one sample of four state signals, respectively. 

The rolling element signal is selected in here. The time domain waveform is shown in Fig.4.

4.3. MD energy entropy

The energy entropy can accurately represent the variation of the energy of the fault signal with the frequency, so the energy 

entropy of the fault signal is solved as the fault feature in this paper. The energy entropy of each IMF component of 600 samples 

decomposed by VMD is solved, and the energy entropy of each sample is formed as the eigenvector of PNN. The calculated 

results are shown in Tab.3.

4.4. Results of fault diagnosis

The eigenvectors of the training samples and the test samples are input into the PNN network. The labels for the four 

working state samples of the normal and inner ring, outer ring and rolling element faults are 1, 2, 3, and 4 respectively, and the 

diagnosis results are shown in Fig.5. 
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It can be seen from table 4 that the recognition rates of the inner and outer ring samples are all 100%, the recognition rate 

of the rolling element samples is 96.677%, the recognition rate of the normal samples is 98.33%, the overall recognition rate is 

98.75% and the overall operating time is 335.512s. It shows that the fault diagnosis method proposed in this paper can identify 

the fault type effectively and has high accuracy. Because VMD needs to presuppose the number of modal decomposition and 

the complexity of VMD itself, the overall running time is longer.

5. Comparison results and analysis

In order to verify the effectiveness of the improved VMD method proposed in this paper, the proposed method is compared 

with EMD energy entropy and PNN (EMD-EE-PNN), EEMD energy entropy and PNN (EEMD-EE-PNN). The diagnostic 

results are shown in Tab.5.

It can be seen from table 5 that the recognition rate of the PAVMD-EE-PNN method for four fault types is 100%. The 

recognition rate of outer ring fault by EMD-EE-PNN method is 100%, that of normal state is 86.67%, that of inner ring fault 

is 90% and that of rolling element fault is 63.33%. It can be seen that the EMD-EE-PNN method has the worst recognition 

effect for rolling element fault. The recognition rate of EEMD-EE-PNN is 100% for inner and outer ring faults, 93.33% for 

normal state and 90% for rolling element fault. The average recognition accuracy is better than that of EMD-EE-PNN method. 

By comparing the recognition rate, the PAVMD-EE-PNN method has the highest recognition rate and the best recognition 

effect. From the running time, the PAVMD-EE-PNN method needs to presuppose the number of modal decomposition and the 

complexity of VMD itself, which leads to the long running time. The EEMD-EE-PNN method needs to add Gauss white noise 

many times because of EEMD decomposition. In this paper, the number of white noise is 100, which results in the long running 

time of EEMD method, the shortest running time of EMD-EE-PNN method. Combined with the recognition rate analysis, the 

PAVMD-EE-PNN method is superior to the other two methods. 

To further verify the effectiveness of the PNN, compared with SVM and the diagnostic results are shown in Tab.6. 

It can be seen from table 6 that the recognition rate of normal state, outer ring and rolling element fault by PAVMD-EE-

SVM method is 100%, and that of inner ring fault is 95%. The recognition rate of outer ring fault by EMD-EE-SVM method 

is 100%, that of normal state is 70%, that of inner ring fault is 76.67% and that of rolling element fault is 81.67%. The 

recognition rate of outer ring fault by EEMD-EE-SVM method is 100%, that of normal state is 95%, that of inner ring fault is 

83.33%, that of rolling element fault is 61.67%. The result shows that this method has the worst effect on rolling element fault 

recognition, and the overall recognition effect is better than that of EMD-EE-SVM method. By comparing the recognition rate, 

the PASVM-EE-SVM method has the highest recognition rate and the best recognition effect. From running time, the PAVMD-

EE-PNN method needs to presuppose the number of modal decomposition and the complexity of VMD itself, which leads to 

the long overall running time. The EEMD-EE-PNN method needs to add Gauss white noise many times because of EEMD 

decomposition. In this paper, the number of white noise is 100, which results in the long running time of EEMD method and 

the shortest running time of EMD-EE-PNN method. Combined with the recognition rate analysis, the PAVMD-EE-SVM 

method is superior to the other two methods. It is proved that the classification effect of PNN is better than that of SVM.

By comparing the two methods of PAVMD-EE-PNN and PAVMD-EE-SVM, we can see that the fault recognition rate of 

PAVMD-EE-PNN method is higher than that of PAVMD-EE-SVM. The difference of running time between the two methods 

is about 0.1s. The recognition rate and running time show that the PAVMD-EE-PNN method proposed in this paper has the 

best effect on fault recognition, which proves the effectiveness of the proposed method.

6. Conclusion 
In this paper, a novel bearing fault diagnosis based on parametric adaptive VMD energy entropy and PNN is proposed. 

Aiming at the problem that the effect of VMD decomposition signal is affected by the number of mode, so a center frequency 

screening method is proposed. It is used to realize the adaptive determination of the number of modal decomposition in VMD. 

After the signal is decomposed by VMD, a series of IMF components are obtained, and then the energy entropy of each IMF 

component is calculated. The eigenvector of the training sample is input to the PNN for training model, and the eigenvector of 

the test sample is input for fault diagnosis. The experimental results show that the central frequency screening method can 

effectively determine the mode number of VMD decomposition and has a higher decomposition accuracy. The proposed 

PAVMD-EE-PNN method can effectively identify the normal state and inner ring fault, outer ring fault and rolling element 

fault. The experiment comparison results show that the proposed PAVMD-EE-PNN method is better than EMD-EE-PNN, 

EEMD-EE-PNN, PAVMD-EE-SVM, EMD-EE-SVM, EEMD-EE-SVM.
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Tab.1. Vibration signal sample

Normal Inner ring fault Outer ring fault Rolling element fault Total sample

Training sample 90 90 90 90 360

Test sample 60 60 60 60 240

Sample label 1 2 3 4

Tab.2. Determination of K value

Fault type Label 𝑲 = 𝟐 𝑲 = 𝟑 𝑲 = 𝟒 𝑲 = 𝟓 𝑲 = 𝟔 𝑲 = 𝟕 𝑲
1 NaN 0 45.49 153.40 172.46 168.58 4

2 NaN 0 43.35 96.50 120.90 271.21 4

3 NaN 0 36.04 125.49 161.16 183.13 4

4 NaN 0 38.32 127.86 173.53 174.12 4

Normal

5 NaN 0 44.64 86.90 93.08 132.95 4

1 NaN NaN NaN NaN 128.40 167.06 6

2 NaN NaN NaN NaN 144.10 220.62 6

3 NaN NaN NaN 83.17 140.37 223.23 5

4 NaN NaN NaN NaN 142.12 165.53 6

Inner ring fault

1 NaN NaN NaN NaN 128.40 167.06 6

1 NaN 0 151.90 194.90 176.54 170.67 4

2 NaN 0 155.72 167.15 170.72 195.65 4

3 NaN 0 153.13 164.91 155.93 184.15 4

4 NaN 0 160.46 171.32 161.26 186.87 4

Outer ring fault

5 NaN 0 157.26 169.14 160.84 186.09 4

1 NaN 0 28.06 114.21 176.95 207.79 4

2 NaN 0 34.23 113.04 174.16 212.08 4

3 NaN 0 34.40 146.52 184.90 186.23 4

4 NaN 0 26.15 118.79 162.89 166.52 4

Rolling element fault

5 NaN 0 29.55 107.50 134.79 148.64 4

Tab.3. Energy entropy of samples

Fault type Label IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 Expected output

1 0.3649 0.3644 0.3204 0.1831 1

2 0.3587 0.3351 0.3511 0.1692 1⋯ ⋯ ⋯ ⋯ ⋯Normal

150 0.3374 0.3459 0.2940 0.1749 1

1 0.1943 0.3547 0.3597 0.2463 0.0754 0.1038 2

2 0.1205 0.2549 0.3273 0.0634 0.0773 0.0996 2⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯Inner ring fault

150 0.1526 0.3435 0.3678 0.0700 0.0930 0.1142 2

1 0.2620 0.1466 0.0558 0.0665 3

2 0.2813 0.1562 0.0556 0.0557 3⋯ ⋯ ⋯ ⋯ ⋯Outer ring fault

150 0.2750 0.1549 0.0568 0.0704 3

1 0.3664 0.2731 0.3654 0.2493 4

2 0.3601 0.3361 0.3292 0.2494 4⋯ ⋯ ⋯ ⋯ ⋯Rolling element fault

150 0.3424 0.2672 0.3212 0.2901 4

Tab.4. Fault diagnosis results

Fault type
Test 

sample

Correct 

recognition

Accuracy 

rate(%)
Running
Time(s)

Average 

accuracy(%)

Normal 60 60 100 54.785

Inner ring fault 60 60 100 161.001
100%
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Outer ring fault 60 60 100 50.774

Rolling element fault 60 60 100 70.387

Tab.5. Comparison of fault diagnosis results with different methods

Method Fault type
Test 

sample

Correct 

recognition

Accuracy 

rate(%)
Running
Time(s)

Average 

accuracy(%)

Normal 60 52 86.67 6.373

Inner ring fault 60 54 90 6.885

Outer ring fault 60 60 100 7.17
EMD-EE-PNN

Rolling element fault 60 38 63.33 6.296

85

Normal 60 56 93.33 882.923

Inner ring fault 60 60 100 897.027

Outer ring fault 60 60 100 834.035
EEMD-EE-PNN

Rolling element fault 60 54 90 924.965

95.83

Normal 60 60 100 54.785

Inner ring fault 60 60 100 161.001

Outer ring fault 60 60 100 50.774
PAVMD-EE-PNN

Rolling element fault 60 60 100 70.387

100

Tab.6. Comparison results of fault diagnosis results with different methods

Method Fault type
Test 

sample

Correct 

recognition

Accuracy 

rate(%)

Running

Time(s)

Average 

accuracy(%)

Normal 60 42 70 6.272

Inner ring fault 60 46 76.67 6.784

Outer ring fault 60 60 100 7.069
EMD-EE-SVM

Rolling element fault 60 49 81.67 6.195

82.08

Normal 60 57 95 882.822

Inner ring fault 60 50 83.33 896.926

Outer ring fault 60 60 100 833.934
EEMD-EE-SVM

Rolling element fault 60 37 61.67 924.864

85

Normal 60 60 100 54.684

Inner ring fault 60 57 95 160.9

Outer ring fault 60 60 100 50.673
PAVMD-EE-SVM

Rolling element fault 60 60 100 70.283

98.75
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Fig.1. The basic constructure of PNN

Fig.2. The fault diagnosis model

Fig.3. Experimental platform

Fig.4. IMF of rolling element signal

Fig.5. Fault diagnosis results of testing samples

Tab.1. Vibration signal sample

Tab.2. Determination of K value

Tab.3. Energy entropy of samples

Tab.4. Fault diagnosis results

Tab.5. Comparison of fault diagnosis results with different methods

Tab.6. Comparison results of fault diagnosis results with different methods
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Fig.1. The basic constructure of PNN

Fig.2. The fault diagnosis model

Fig.3. Experimental platform
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Fig.4. IMF of rolling element signal
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Fig.5. Fault diagnosis results of testing samples
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