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Abstract: Since the hydraulic axial piston pump is the engine that drives hydraulic transmission
systems, it is widely utilized in aerospace, marine equipment, civil engineering, and mechanical
engineering. Operating safely and dependably is crucial, and failure poses a major risk. Hydraulic
axial piston pump malfunctions are characterized by internal concealment, challenging self-adaptive
feature extraction, and blatant timing of fault signals. By completely integrating the time-frequency
feature conversion capability of synchrosqueezing wavelet transform (SWT), the feature extraction
capability of VGGI11, as well as the feature memory capability of the long short-term memory (LSTM)
model, a novel intelligent fault identification method is proposed in this paper. First, the status
data are transformed into two dimensions in terms of time and frequency by using SWT. Second,
the depth features of the time—frequency map are obtained and dimensionality reduction is carried
out by using the deep feature mining capability of VGG11. Third, LSTM is added to provide the
damage identification model for long-term memory capabilities. The Softmax layer is utilized for the
intelligent evaluation of various damage patterns and health state. The proposed method is utilized
to identify and diagnose five typical states, including normal state, swash plate wear, sliding slipper
wear, loose slipper, and center spring failure, based on the externally observed vibration signals of
a hydraulic axial piston pump. The results indicate that the average test accuracy for five typical
state signals reaches 99.43%, the standard deviation is 0.0011, and the average test duration is 2.675 s.
The integrated model exhibits improved all-around performance when compared to LSTM, LeNet-5,
AlexNet, VGGI11, and other typical models. The proposed method is validated to be efficient and
accurate for the intelligent identification of common defects of hydraulic axial piston pumps.

Keywords: hydraulic axial piston pump; fault diagnosis; damage identification; date analysis; state
evaluation; health monitoring

1. Introduction

Hydraulic transmission has the advantages of high power density, fast response speed,
and high load resistance stiffness [1], which is widely used in marine equipment, aerospace
equipment, mining machinery, construction machinery, and other mechanical equipment
(Figure 1) [2-4]. Among them, the working environment of marine engineering machinery
and equipment is very complex and harsh, and it has the high requirements for the safety,
stability, and reliability of its hydraulic transmission system [5-7]. As one of the commonly
used “power hearts” of hydraulic transmission systems, axial piston pumps have a very
wide range of applications in the fields of hydraulic transmission and intelligent control due
to their small moment of inertia, compact structure, high rotational speed, easy variables,
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and other characteristics [8,9]. It plays a vital role in ensuring the stability and reliability of
the hydraulic transmission system. However, the structure of a hydraulic axial piston pump
is complex, and it often faces harsh working conditions such as high pressure and variable
load [10,11]. The key components such as slipper, swash plate, and central spring are prone
to wear failure. The failure will lead to the unstable operation of the hydraulic system,
abnormal operation of the equipment, economic losses, and even endanger personal safety.
Therefore, in order to ensure the safety and reliability of the whole machine and reduce the
incidence of disaster accidents, it is very important to achieve an efficient, accurate, and
intelligent diagnosis of typical faults of hydraulic axial piston pumps.

(e) Construction machinery m(-f) Oil and gas exl‘arlorati‘(')mﬁ
Figure 1. Application of hydraulic system.

In 2006, Hinton first proposed the theory of deep learning (DL) in science. Since then
and in recent years, the fault diagnosis of mechanical equipment has always attracted
the attention of domestic and foreign scholars [12]. With the development of science and
technology, DL has been widely used and achieved great success in computer vision,
natural language processing, image processing, and other fields [13,14]. At the same time,
the emergence of DL also brings new ideas and methods for intelligent fault diagnosis of
mechanical equipment such as hydraulic axial piston pumps.

The intelligent fault diagnosis method of mechanical equipment based on the DL
theory is typically represented by convolutional neural networks (CNNs). The commonly
used CNN models include LeNet-5, AlexNet, VGG, and GoogLeNet. Owing to the pow-
erful self-learning ability and feature extraction ability of the CNN, it has been applied
in the field of fault diagnosis. To solve the problem of low diagnostic accuracy caused
by insufficient samples, Zhao et al. used stochastic wavelet expansion for data enhance-
ment and generated synthetic samples as training sets to train a one-dimensional CNN
with two-layer convolution. The fault diagnosis of aero hydraulic pumps was achieved
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with small samples. The complex and changeable working conditions made the failure
mechanism of mechanical equipment unclear, and it is difficult to use feature matching for
fault diagnosis [15]. By using a CNN model structure with five hidden layers, Wang et al.
proposed a CNN method for fault classification based on the minimum entropy deconvolu-
tion. Compared with the traditional CNN method, this method can better complete the
multi-fault classification of axial piston pumps [16]. By combing the ResNet model, He et al.
proposed a multi-signal adversarial fusion model based on transfer learning. The method
solved the problem of fault diagnosis of hydraulic axial piston pumps under the condition
of uneven data distribution. The average diagnosis accuracy reached more than 98.5% [17].
By using spectral denoising and the improved LeNet-5 model, Chao et al. processed one-
dimensional vibration data through the short-time Fourier transform to complete the fault
identification of high-speed axial piston pumps. The method significantly improved the
CNN model in the noise environment. In order to further improve the fault diagnosis
performance of axial piston pumps, a decision-level multi-sensor fusion diagnosis method
was proposed. The vibration data of three channels were sent to three identical LeNet-5
models to generate preliminary classification results. Then, the results were fused to obtain
the final prediction results [18]. The classification accuracy was increased by about 2%, 4%,
and 5% after fusion [19]. To achieve the deep mining of features, Tang et al. constructed an
adaptive LeNet-5-Bayesian optimization model based on the Gaussian process, and carried
out the fault diagnosis of an axial piston pump driven by the vibration signal. Compared
with the traditional LeNet-5, the accuracy was increased by 2.92%, and the typical fault
states of an axial piston pump were effectively identified [20]. The above models were
applied to the pressure signal analysis to achieve the fault diagnosis of axial piston pumps.
The average accuracy of fault diagnosis reached 99.51%, which was 5.45% higher than the
traditional LeNet-5 model [21]. Due to the dependence on a large number of signal process-
ing techniques and expert diagnosis experience as well as the time-consuming limitations
of data pre-processing of traditional mechanical fault diagnosis, Zhu et al. constructed
a particle swarm optimization (PSO)-Improved-CNN diagnostic model to classify and
identify the typical state data of hydraulic piston pumps and obtained a high diagnosis
accuracy of 99.06% [22]. To solve the uncertainty of manual parameter adjustment, they
continued the research and identified the fault of an axial piston pump based on acoustic
signals compared with the classical CNN models such as AlexNet, VGG11, VGG13, VGG16,
and GoogLeNet; the results indicated that the method had stronger stability and higher
diagnostic accuracy [23]. For other rotating machinery, Sinitsin et al. combined with hybrid
input for rolling bearing diagnosis, a bearing fault diagnosis method is proposed based on
the hybrid CNN-MLP model. The hybrid model is superior to CNN and MLP models in
separation, and the detection accuracy of bearing fault can reach 99.6% [24]. Choudhary
et al. used multi-input convolutional neural net-work (MI-CNN) technology to fuse the
characteristics of vibration signals and acoustic signals, and proposed a vibration—acoustic
fusion technology for the fault diagnosis of induction motors under different working
conditions. The effectiveness of the method is verified by bearing and gearbox datasets.
This method can accurately and efficiently achieve the fault diagnosis of the motor and can
be applied to other rotating machinery [25]. Glowacz proposed a new feature extraction
method named power of normalized image difference (PNID). The deep neural networks
GoogLeNet, ResNet50, and EfficientNetB0 were used to analyze the thermal image of the
fault axis of the brushless DC motor, and a high-precision fault diagnosis was achieved [26].
As compound faults are difficult to accurately identify, Dibaj et al. used only a single fault
dataset to train the CNN. When the obtained CNN output probability meets a set of proba-
bilities, the untrained compound fault state is alarmed. The performance of the fine-tuning
VMD and the proposed hybrid method was evaluated by decomposing the simulated
vibration signal and analyzing the composite fault scenario of the gearbox system. The
experimental results show that this method has high accuracy in compound fault diagnosis,
small fault feature extraction, and serious fault classification [27].
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A recurrent neural network (RNN) is also the main model of deep neural networks.
Long short-term memory (LSTM) is a variant of an RNN, which solves the problem
of training difficulty from gradient disappearance and gradient explosion in ordinary
recurrent neural networks. It is more suitable for processing time series information. LSTM
has successful applications in speech recognition, text recognition, and is also used in
the field of fault diagnosis of mechanical equipment [28,29]. To improve the operational
reliability of the wind turbine gearbox, Zhu et al. proposed an evaluation framework of DL-
based multi-indicator operating conditions to predict the real-time operation state of wind
turbines based on LSTM networks by analyzing the operating condition monitoring data
of wind turbines. The method effectively detected the potential faults of wind turbines [30].
In view of the inconsistent distribution of fault monitoring data among wind turbines, a
prediction method combined with LSTM, fuzzy synthesis, and feature transfer learning
was proposed to sensitively detect potential faults of wind turbines, which could effectively
predict the operating state of the wind turbine [31]. By using 1D-CNN for feature extraction
and combining it with the temporal correlation between LSTM learning features, Sun et al.
proposed a fault diagnosis method based on IDCNN-LSTM and LeNet-5 to achieve the end-
to-end intelligent fault diagnosis of bearings [32]. The average fault recognition accuracy
rate reached more than 99%. By decomposing the vibration signal of the reciprocating
pump, Bie et al. proposed an improved deep neural network based on the adaptive
noise empirical mode decomposition method [33]. They established a classification model
based on the LSTM deep network to accurately identify the failure mode. Zhao et al.
combined CNN and LSTM networks to achieve multi-fault classification of the main pump
of a converter station, with the accuracy rate of 98.7% [34]. By using LSTM, Khan et al.
evaluated the operating state of industrial mud pumps to achieve the prediction of the
remaining life [35]. At present, although the application of LSTM in the field of mechanical
equipment fault diagnosis is gradually expanding, there are relatively few studies on fault
diagnosis of axial piston pumps based on RNNs.

The fault data of the axial piston pump have evident temporality. The RNN model
can effectively and accurately process this type of data, while it has no feature extraction
capability and generally takes time domain or frequency domain signals as part of the
preprocessing. These preprocessing methods do not have high feature extraction efficiency
as does a CNN, and the relevant parameters also need to be manually adjusted under
multiple working conditions. CNNs and RNNs are the two most common deep learning
networks. They are widely used in fault diagnosis of hydraulic axial piston pumps, but
there are still some challenges and problems in the current research.

(1) Most of the research on deep learning models focuses on the intelligent fault
diagnosis of bearings, gearboxes, and motors, and is still relatively rare on hydraulic axial
piston pumps. The structure and working mechanism of this kind of pump are complex.
The concealment and coupling of its faults make it more valuable and challenging for fault
diagnosis and condition monitoring.

(2) The traditional intelligent diagnosis method performs time-consuming preprocess-
ing on the original signal. In addition, the understanding of equipment failure mechanism
and data preprocessing technology is stricter.

(3) CNN does not have memory ability, and the calculation time is too long; LSTM
cannot effectively address high-dimensional data, and there will be a long-term dependence
problem when the sample sequence is too long. It is difficult to identify when addressing
faults with similar features.

Therefore, the main contributions of this work are as follows:

(1) Aiming at the special structure and mechanism of a hydraulic axial piston pump,
the intelligent fault diagnosis of a hydraulic axial piston pump is explored. Non-destructive
condition monitoring is achieved by using the characterization information of pump body
as data source. It makes full use of the characteristics of the original sensor information
in the time domain and frequency domain, eliminating the complex and time-consuming
signal preprocessing steps.
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(2) Different working conditions are set up, and different wear degrees of the same
fault type are included in the analysis. The performance of the proposed method is
discussed from different perspectives. Using the feature extraction ability of a CNN for
high-dimensional information and the high-precision recognition ability under supervised
learning, the time—frequency feature self-learning and classification of the hydraulic axial
piston pump are achieved.

(3) A fault diagnosis model combining efficient feature extraction of VGG network and
time series information learning of the LSTM model is proposed. Combined with the SWT
time—frequency feature extraction method, intelligent fault diagnosis of a hydraulic axial
piston pump is carried out, which enhances feature extraction ability, shortens calculation
time, and improves fault diagnosis accuracy and efficiency.

The rest of the main structure is as follows. In Section 1, the basic principle of the SWT,
CNN, and LSTM algorithm is summarized. In Section 2, the implementation process of
the intelligent fault diagnosis method based on the improved VGG-LSTM fusion model
is introduced. Section 3 analyzes the collection of experimental data and the construction
process of fault samples in detail. Section 4 conducts comparison experiments and analyzes
the main results. Finally, conclusions are summarized and the future research is prospected
in Section 5.

2. Basic Theory
2.1. Synchrosqueezing Wavelet Transform

SWT is a time—frequency redistribution method proposed by Daubechies et al. by
combining synchronous compression technology with the continuous wavelet transform
(CWT) [36,37]. One principle applied in this method is that the scale change cannot affect
the phase of the signal after wavelet transform. Then, the scales are added at the same
frequency. Additionally, the coefficients around the same frequency are compressed to
this frequency by combining the synchronous compression technology. According to the
size of each element mode in the time-scale plane, the energy of the time—scale plane is
redistributed. Finally, the time—scale plane is transformed into the time—frequency plane
through a special mapping relationship, and the spectrum with concentrated coefficients
is obtained to improve the time—frequency resolution of the signal. The higher time-
frequency concentration and the finer time—frequency line are achieved. Compared with
the conventional wavelet transform, SWT has a higher time—frequency resolution.

Let us suppose ¢ is a square-integrable function, a family of functions is defined

as follows:
ax() = lal 29 () <1>

where a is the scaling factor, « € R and a # 0, T is the translation factor, and ¢, (f) is the
continuous wavelet. Let the input signal S(t) € L?(R); then, its CWT expression is

CWTs(0,) = (8(0), x) = Iol 2 [ sty (7 ) %)

where (1=1) is the complex conjugate of 1(t), (S(t), »,r) denotes the inner product of
S(t), and 1/J“,T

According to Plancherel’s theorem, rewriting CWTs(a, T) as CWT of signal S(t) in the
frequency domain:

CWTs(a, 7) \a\”z/s B(af)eiag @3)
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A
where ¢ is the angular frequency and S(¢) is the Fourier transform of the signal S(t). When
the wavelet transform coefficient at any point (&, T) is not equal to zero, the instantaneous-
frequency CWTg(a, T) of the signal S(t) is

ws(a,7) = ~i(CWT5(a, 7)) ' o CWT5(a,7) @

Then, a synchronous compression transformation is performed to establish the map-
ping from the starting point (7, a) to (7, ws(a, 7)), CWTs(a, T) et al. is transformed from
the time—scale plane to the time—frequency scale plane to obtain the new time—frequency
spectral map.

In practical applications, it is necessary to first discretize the frequency variable w,
the scale variable «, and the displacement variable . When the frequency w and the scale
« are discrete variables, and a; — a1 = (Aa), is satisfied at the point a, CWTs(«, T)
can be obtained. Its corresponding synchronous compression transform Tg(«,T) can
likewise be accurately calculated only when the continuous interval [w — %Aw, w+ %Aw]
satisfies wy — w1 = Aw. Finally, the expression of the simultaneous compressive wavelet
transform is obtained by combining different conditions:

Ts (wi, T) = Aw™! ) CWTs (g, T)Dék_% (Aw), (5)

ag:| (o, T) —wy|

2.2. CNN

The CNN is relatively mature in the development of DL models, which are widely used
in image recognition and speech analysis [38,39]. The CNN can be considered as a multi-
layer fully connected neural network based on the addition of convolutional layers, pooling
layers, etc. The network is formed by stacking each processing layer, as shown in Figure 2.
The commonly used classical CNN models are LeNet-5, AlexNet, VGGNet et al. [40—42].
As a feed-forward neural network, it contains two parts: feature self-learning and classifi-
cation [43]. Feature self-learning is usually performed in the convolutional and pooling
layers. The classification task is mainly performed by the fully connected layer.

The convolutional layer is the core of the CNN. A convolutional layer can contain
different feature information extracted from multiple convolutional kernels [44]. The more
layers, the richer the data extraction, the more evident the features. Let us suppose the
input feature map of the vibration signal to be y; then, the convolution layer operation
formula can be described as follows:

I+1 M l l 1

= (oK) + ! ©)
i=1

1+1

]

and M denotes the number of feature maps. xf denotes the output of the i-th neuron in

where 7" denotes the input of the j-th neuron in layer / + 1; f is the activation function;

layer I. ® denotes the convolution operation. kf- denotes the convolution kernel of the i-th
neuron in layer / with the j-th neuron in layer I + 1. b denotes the bias. The calculation
process of the convolution layer is displayed in Figure 3. The original feature map is of size
6 X 6, and the output feature map is 3 x 3 after the convolution calculation.
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(b) Convolutional neural network model

Figure 2. Schematic diagram of the structure of network model.

Input image

Convolution result

Convolution
kernel o I
11o|-17
str=1
1 0 -1 pad=1
Lo -3

Figure 3. Schematic diagram of convolution calculation.

As a down-sampling structure acting between successive convolutional layers, a
pooling layer generally includes a maximum pooling layer, an average pooling layer,
and a random pooling layer. The maximum pooling layer and the average pooling layer
extract the maximum value and average value of the pooling window as the output result.
Then, sliding the window continuously reduces the size of the input data so as to reduce
the redundant information. Among them, the maximum pooling is most used in the
convolutional neural network. The maximum pooling is presented in Equation (7) and
given schematically in Figure 4.

PI(E) = max_yywr<e<n {20} 7)
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Figure 4. Schematic diagram of maximum pooling.

In this research, the cross-entropy loss function is utilized. After the error value of
back propagation is calculated by the neural network via derivation, the value of the weight
matrix is corrected to update the weight. The expression of the weight update formula is

dLoss
oW

WH=W-—y ®)
where W represents the weight, # is the learning rate, and Loss represents the loss function.

The fully connected layer integrates the extracted features from the previous layers,
maps the high-dimensional feature map into a vector of fixed dimensions, and finally
completes the pattern recognition in the classifier.

2.3. LSTM

As a variant of the RNN, the LSTM is a temporal recurrent neural network to alleviate
the gradient problem of the RNN during training [45,46]. By introducing the gate function,
it can tap into the relatively long intervals and delays in time series [47]. With a certain
ability to learn to long-term dependent information, the LSTM effectively overcomes the
gradient disappearance or explosion problem, which is applied in major fields, such as
language translation, audio analysis, remaining life prediction, etc. [48-51]. The LSTM
controls the information flow through three gates: input gate, forget gate, and output
gate [52]. Its basic network structure is revealed in Figure 5.

Forgetting gate

k.

Input gate Output gate

Figure 5. Structure sketch of LSTM network model.

The input x;, the state memory unit S;_;, and the intermediate output h;_; in the
forgetting gate determine the forgetting part of the state memory unit together. The x; in
the input gate is jointly determined to retain the vector in the state memory cell through
respective changes of sigmoid and tanh function. The intermediate output /; is determined
by the updated S; and the output o; together. The calculation formula is as follows:

fr= U(foxt + Wephp—1 + bf) 9
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it = o (Wixxe + Wiphy 1 + b;) (10)
gt = ¢(Weaxe + Wehy 1 + by (11)
ot = 0(Woxxt + Wophi—1 + bo) (12)
St = 2101 + S,_10f; (13)

hi = ¢(St)@o; (14)

where ft, it, g1, 0+, Iy, and Sy are the states of the oblivion gate, input gate, input node,
output gate, intermediate output, and state unit. fo, th, Wix, Win, Wex, Wgh/ Wy, and
W,j, are the matrix weights of the corresponding gates multiplied by the input x; and
intermediate output ;1. by, b;, bg, and b, are the bias terms of the corresponding gates. ©
denotes the bitwise multiplication of the elements in the vector. ¢ denotes the change in
sigmoid function. ¢ denotes the change in tanh function.

In the LSTM, there are three sources of information flow, namely input x; at the current
moment, hidden state /1;_; at the previous moment, and neuron state S;_; at the previous
moment. The fundamental information flow is only the current input x; and the previous
hidden state ;_1, which controls the data update.

new = ¢(Wasxt + Wiyshi_1 + bs) (15)

In this research, dropout technology is adopted into the LSTM layer, setting p = 0.5. In
the process of model training, some neurons are randomly deactivated, and the correspond-
ing parameters will not be calculated. In this way, the model can randomly ignore some
details of the input data. The over-fitting problem can thereby be prevented to identify the
target from the overall information.

3. Intelligent Fault Diagnosis Model

Combining the characteristics of the vibration signal of the hydraulic axial piston
pump and the respective advantages of the CNN and LSTM in deep learning, this paper
constructs an intelligent fault diagnosis model based on VGG-LSTM, which integrates
depth feature mining with fault pattern recognition. By introducing the LSTM, the method
has a certain feature memory capability, which achieves an efficient and accurate intelligent
fault diagnosis of hydraulic axial piston pumps.

3.1. Model Construction

The VGG-LSTM model is a new network fusion method proposed in this paper.
Combining the respective advantages of VGG11 and LSTM, an LSTM network is added
after the last pooling layer of the VGG11 network for training. Finally, the feature graph is
expanded into a 1D vector input into the full connection layer, and the mapping between
feature vector and fault category is established. The specific network structure parameters
are shown in Table 1, and the model structure is presented in Figure 6. The model has eight
convolutional layers, five maximum pooling layers, one LSTM network layer and one fully
connected layer. The convolution layer uses a 3 x 3 convolutional kernel to extract features
and activates the output by the ReLU function. The pooling layer uses a 2 x 2 convolutional
kernel to reduce the dimensionality of the input data. The ratio of the dropout layer is
set to 0.5. After several stacked convolutional pooling operations, the size of the output
feature map changes from (224, 224, 3) to (7, 7, 512). The size of the output feature map is
reconstructed to (49, 512) by the Reshape method, and further input to the LSTM network
to extract the corresponding temporal information. After analyzing the temporal features,
the images are sorted using the fully connected layer to determine their affiliation classes.
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Table 1. Structure parameters of VGG-LSTM network.

Network Layer Output Dimension Parameter Setting
Convl 224 x 224 3 x 3 64
3 x 3, 64
Pooll 112 x 112 2 x 2 maxpooling, stride = 2
Conv2 112 x 112 3 x 3,128
3 x 3,128
Pool2 56 x 56 2 x 2 maxpooling, stride =2
Conv3 56 x 56 3 x 3,25 ,
13 x 3, 256|
Pool3 28 x 28 2 x 2 maxpooling, stride =2
Conv4 28 x 28 3 x 3,512 2
3 x 3, 512]
Pool4 14 x 14 2 x 2 maxpooling, stride =2
Convb 14 x 14 3 x 35121,
3 x 3, 512]
Pool5 7x7 2 x 2 maxpooling, stride = 2
LSTM 49 x 1 -
Fc 1x1 64
- 1x1 Output, 5, Softmax

Convolution Convolution Convolution Convolution Convolution
&Poolingl &Pooling3 &Pooling4 &Pooling

——————————————————— 1 mmmmm

S

Expand

Category

Figure 6. Sketch of model structure of VGG-LSTM network.
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3.2. Diagnostic Process

Figure 7 shows the whole process of fault diagnosis of a hydraulic axial piston pump
based on the SWT time—frequency analysis and the VGG-LSTM fusion model.

R

Overlap sampling

Data augmentation

SWT time-frequency
transformation

\ LSTM

@00000)

dicted label

Pr

@O000 L
o VGG-LSTMNewok _ _ _ | Disguostcrei

Figure 7. Diagnosis flow chart of VGG-LSTM network.

The specific diagnostic steps are as follows:

Step 1: The original vibration signals of the piston pump in different states are collected
by the sensors mounted on the axial piston pump.

Step 2: The collected original signals are resampled, and the training samples are
added to improve the generalization ability of the network model.

Step 3: The processed time domain data are converted into two-dimensional time-
frequency diagrams by SWT. The images are data-enhanced by random rotation, flip, scale
transformation, and translation. Finally, the signals are transformed into a 224 x 224 x 3
RGB time—frequency image dataset.

Step 4: Based on Python programming, the two-dimensional time—frequency diagrams
are divided into training set, validation set, and test set according to a certain number of
proportions. The corresponding labels are added to make the number of samples in each
fault state reach a balance. Finally, the fault sample library is constructed.

Step 5: The training set is fed into the constructed fusion model for learning and train-
ing while the parameters of manual tuning are performed. The optimal hyperparameters’
combination and the final model for testing are identified.

Step 6: The determined optimal diagnostic model is used to identify the test set, and
the final state identification results of hydraulic piston pump are obtained.

Step 7: The standard CNN model and the standard LSTM model with different layers
are built based on the Pytorch framework. The stability and robustness of the model are
verified by comprehensive comparison with the constructed model. The standard CNN
models include LeNet-5, AlexNet, and VGG11, and the standard LSTM models comprise
one, two, and three layers.
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4. Experimental Data Collection and Sample Construction
4.1. Status Signal Acquisition

The test bench of the hydraulic axial piston pump is built, as shown in Figure 8. The
model of the axial piston pump is MCY14-1B, the theoretical displacement is 10 mL/x,
the nominal pressure is 31.5 MPa, and the drive motor is Y132M-4. The rated speed is
1470 r/min. A piezoelectric accelerometer is employed for vibration signal acquisition,
whose type is YD72-D, and its frequency range is 1~18 kHz. The vibration accelerometer is
installed in the end cover of the pump shell by direct paste. The operating pressure of the
piston pump is set at 2 MPa, 5 MPa, 8 MPa, 10 MPa, and 15 MPa. Under each operating
pressure, the acceleration sensor is used to collect the vibration signals of five typical states
of the piston pump. The five states include normal state, swash plate wear, loose slipper,
sliding slipper wear, and center spring failure. The four typical faulty components are
displayed in Figure 9. Figure 10 is the basic structure diagram of the hydraulic axial piston
pump, which is a pump with fixed displacement. The pitch diameter of the arrangement of
the pistons in the cylinder block is 43 mm and their number is 7. The angle of swash plate
is 16°, the stroke of the pistons and springs are 13 mm and 5 mm, respectively. During the
signal acquisition process, the piston pump operates at only one state. In addition to the
normal operating state, the remaining four fault states of the piston pump are achieved by
manually replacing the faulty components.

Vibration m
sensor I
0

!j'_

(b) Interior view of the pump

sl T . START

Sampling
‘T
e

sl v;.‘::.wd'x-l-ﬁ- o m
silelis ﬁ Ml peiw g
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2
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(c) Side view of the test bench (d) Data acquisition system

Figure 8. Test system of hydraulic axial piston pump.
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Figure 9. Photos of typical faulty components.
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Figure 10. Basic structure diagram of a hydraulic axial piston pump.

Figure 11 reveals the partial time domain waveforms of vibration signals under five
different states when the working pressure of the hydraulic axial piston pump is 5 MPa.
It can be seen from the diagrams that there is a difference in the time domain diagram of
the vibration signal between the normal state and the fault states. When the piston pump
fails, the amplitude changes, but the difference between the time domain diagrams can
only assist in judging whether the piston pump fails, and the corresponding fault types
cannot be directly identified.
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Figure 11. Time domain diagrams of vibration signals of five typical states.

4.2. SWT Time—frequency Feature Extraction

In order to obtain more relevant effective fault features, the vibration signals are
converted to the time—frequency domain by using SWT for analysis, so as to better highlight
the hidden information. After the SWT time—frequency characteristics are extracted, the
data are enhanced using transforms. The time—frequency diagrams of the partial vibration
signals of the five typical states of the hydraulic axial piston pump are presented in Figure 12.
As can be seen in the figure, there are differences between the time—frequency diagrams of
different state signals, and the performance characteristics of the time-frequency diagrams
corresponding to different fault types are different. It is difficult to visually determine
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the type of fault corresponding to each time—frequency diagram. Therefore, a recognition
model with self-learning is needed to identify the typical fault states of the piston pump.
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Figure 12. Time—frequency diagrams of vibration signals of five typical states.

4.3. Time—Frequency Feature Sample Library Construction

In order to investigate the effectiveness of the VGG-LSTM model in identifying
different levels of fault in the hydraulic axial piston pump, in the experiment, three different
degrees of faults including mild, moderate, and severe are set under the three states of
loose slipper fault, slipper wear, and central spring failure. To ensure the balance of the
sample data, the number of samples of each fault type should be kept consistent. When the
operating pressure is 5 MPa, the composition of the sample library is described in Figure 13.
The number of mild, moderate, and severe fault samples obtained by loose slipper, slipper
wear, and central spring failure is 160, and the total number of samples is 480. In addition,
the number of samples for different working pressures of swash plate wear and normal
state signals is also 480. Since the vibration signals under five typical states are collected
at operating pressures of 2 MPa, 5 MPa, 8 MPa, 10 MPa, and 15 MPa, the total number of
vibration signal samples is 12,000.
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Figure 13. Sample library composition at 5 MPa working pressure.

The dataset of the constructed sample library is divided. The model learns the labeled
training dataset to deepen the memory of each fault state information by supervised
learning training. Finally, the model performs a predictive classification of the test dataset
to achieve the identification of fault information. Therefore, it is necessary to divide the
vibration signals time—frequency diagram database and add label operations before the
model training. Samples are randomly selected under the same label and divided into
training set, validation set, and test set to constitute the final dataset, of which 60% is the
training set, 20% is the validation set, and 20% is the test set. The specific description is
shown in Table 2.

Table 2. Division of sample library.

Sample Number

Piston Pump Status Label
Training Set Validation Set Test Set
Normal state 1440 480 480 0
Swash plate wear 1440 480 480 1
Loose slipper fault 1440 480 480 2
Sliding slipper wear 1440 480 480 3
Center spring failure 1440 480 480 4

5. Results and Discussion

In order to verify the effectiveness of the proposed method, the performance of the
traditional LSTM models, the classical CNN models (AlexNet, LeNet-5, VGG11) and the
intelligent fault diagnosis model fused with SWT and VGG-LSTM are verified using the
constructed sample library. The model parameters are set as follows: the number of images’
batch size is selected as 32, the number of iterative steps Epoch is preset as 70, the SGD
algorithm is selected as the optimizer, Momentum is set as 0.9, cross-entropy is used as the
loss function, and the learning rate is set as 0.001. The validation set verifies the model
training effect and finetunes the model parameters based on the validation results. The
deep learning framework is Pytorch (version 1.11.0+cul13), the development language is
Python, and the hardware configuration of computer is Intel(R) Xeon(R) W-2235 CPU @
3.80 GHz with 64 GB RAM.

5.1. Fault Diagnosis Based on Traditional LSTM Model

In order to test the performance of the model, the LSTM model (single-layer LSTM,
double-layer LSTM, three-layer LSTM) is used for the fault diagnosis of the hydraulic axial
piston pump on the same dataset. The diagnosis results are revealed in Table 3. All model
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inputs are two-dimensional time—frequency diagrams, and the number of hidden nodes is
set to 132 according to the complexity of the dataset. The comparison results of accuracy
and error value of different models are shown in Figure 14. Combined with Table 3 and
Figure 14, it can be seen that the single-layer LSTM model has better synthesis performance
compared with the two-layer LSTM or three-layer LSTM. The accuracy curve is relatively
stable in the training process, with a maximum accuracy of 85% for the training set and
78% for the validation set. The loss curve converges faster, and the training and validation
error curves can drop to smaller values more rapidly and steadily.

Table 3. Results of different LSTM models.

Model Accuracy of Training Error Training Accuracy of Validation Proof
ode Training/% Value Time/s Verification/% Error Value Time/s
Single-layer LSTM 85.14 0.00645 14.367 78.25 0.00788 5.373
Double-layer LSTM 65.32 0.01309 14.221 65.29 0.01253 5.691
Three-layer LSTM 39.42 0.02140 14.561 34.29 0.02233 5.627
90% F—=—1LSTM1 vacc 0000
—o— LSTMI _tacc 0.024 }
—e—LSTM2_vacc
75% | —v— LSTM2_tacc
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LSTM{tvaacccc 0.020 1
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Figure 14. Comparison results of different LSTM models.

In order to verify the generalization of the single-layer LSTM model, the test set is
used to test the performance of the trained model. Ten independent repeated tests are
performed on the test set, and 20% of the samples are randomly selected from the dataset
for each calculation. The test results are displayed in Table 4 and Figure 15. According to
Table 4 and Figure 15, the average accuracy of ten independent repeated tests is 70.42%,
and the standard deviation is 0.005.

Table 4. Repeated test accuracy and time of the single-layer LSTM mode.
Serial Number 1 2 3 4 5 6 7 8 9 10 Mean Star.ldefrd
Deviation

Test accuracy/% 6958 7091 71.08 69.91 71 7079 69.62 7025 7070 70.3 70.42 0.0050
Test time/s 1912 1946 1908 1916 1991 1996 1947 1903 1935 2.073 1912 0.0510
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Figure 15. Repeat test results of the single-layer LSTM model.

5.2. Fault Diagnosis Based on Classical CNN Models

In order to better select the optimal model for comparative testing, some classic CNN
models (LeNet-5, AlexNet, VGGL11) are utilized for the fault diagnosis of the same dataset.
The training samples and verification samples are input into the established classic CNN
models for training, and the test samples are used to test the performance of the models.

The variation curves of accuracy and error loss corresponding to the training results
of the LeNet-5 model are presented in Figure 16. As can be seen from Figure 16a, with the
increase in training time, the accuracy rate shows an overall upward trend. The accuracy
rate of the training set can reach 90.33%, but the accuracy rate of the verification set is
not stable and there are many oscillations. According to Figure 16b, with the increase in
training time, the error of the training set keeps decreasing and tends to be level, while the
error of the validation set is relatively unstable with visible oscillations.
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1.5}
212t
Q
_
091
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—BE—train_acc
10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
Epoch Epoch
(a) Accuracy (b) Error value

Figure 16. Training results of LeNet-5 model.

The variation curves of accuracy and error loss corresponding to the training results of
the AlexNet model are displayed in Figure 17. As can be seen from Figure 17a, the accuracy
curve increases and converges with the increase in training time. Moreover, the highest
accuracy of the training set reaches 88.79%, and the highest accuracy of the validation
set reaches 88.59%. Figure 17b shows that the error curve decreases with the increase in
training time and finally tends to smooth, with the lowest error of 0.5329 in the validation
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set and 0.5318 in the training set. The overall performance of the model is relatively stable
and the oscillation is not evident.
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Figure 17. Training results of AlexNet model.

The variation curves of accuracy and error loss corresponding to the training results
of the VGG11 model are demonstrated in Figure 18. It can be seen that with the increase in
training time, the accuracy of the training set increases gradually, and fluctuates in a small
range, up to 92.12%. The accuracy of the validation set gradually increases as a whole, but
the performance is not stable in the process of increasing, with an accuracy up to 90.42%.
The error loss of the training set gradually decreases and smooths, and the error loss of the
validation set gradually decreases but displays several oscillations.
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Figure 18. Training results of VGG11 model.

Keeping the hyperparameters of the three classical CNN models unchanged, ten
independent repeated trials are performed on the test set. For each calculation, 20% of the
samples are randomly selected from the dataset for testing. The test time of the ten repeated
experiments of the three classical CNN models is shown in Table 5, and the ten test results
are described in Figure 19. From Table 5, the average test time of the LeNet-5 model is
0.2074 s, the average test time of the AlexNet model is 0.3736 s, and the average test time of
the VGG11 model is 3.0375 s. It can be seen from Figure 19 that the average value of ten
test results of the LeNet-5 model is 90.80%, and the standard deviation is 0.0054. For the
AlexNet model, the average value is 88.72% and the standard deviation is 0.0067. For the
VGG11 model, the mean value is 93.07% and the standard deviation is 0.0057. Although
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the test time of the LeNet-5 model and the AlexNet model is shorter than that of the VGG11
model, the accuracy rate is not as high as that of the VGG11 model. By comparing the
accuracy, test time, and standard deviation of the three classical CNN models, the overall
performance of the VGG11 model is the best.

Table 5. Independent repetition test time of classical CNN models.

2 3 4 5 6 7 8 9 10 Average

Serial Number 1
LeNet-5 0.2279
AlexNet 0.4420
VGG11 2.9760

0.2230 02110 0.2200 0.1962  0.1969  0.1901  0.2029  0.2030  0.2030 0.2074
0.3539 03570 03590 0.4339 03506 0.3550 0.3539  0.3580  0.3731 0.3736
3.0180 29850 32569 3.2395 3.0735 2.7993 29649  3.0064  3.0559 3.0375
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93.00%

92.00%
91.00%
Q

gmm%
989.00%
<t::;:;.00%
87.00%
86.00%
85.00%
84.00%

mLeNet-5 | 91.04% | 9145% | 91.62% | 90.95% | 9037% | 91.16% | 90.08% | 91.08% | 89.87% | 90.54%
u AlexNet | 88.75% | 88.75% | 88.83% | 89.58% | 8825% | 88.70% | 87.50% | 89.12% | 87.91% | 9037%
mVGG11 | 9329% | 93.00% | 93.50% | 93.12% | 93.75% | 92.83% | 92.87% | 9333% | 92.62% | 92.75%

Figure 19. Repeat test results of classical CNN models.

5.3. Intelligent Fault Diagnosis by Integrating SWT and VGG-LSTM

The training samples and validation samples are input into the established VGG-
LSTM fusion model for training, and the model performance is tested by test samples. The
optimizer is bound to an exponential decay learning rate controller, and the learning rate
is set to 0.001. Each epoch learning rate is multiplied by 0.5 for each 30 steps of training.
As the iteration continues, the learning rate is gradually updated, making the model more
stable in the later stage of training.

The curves of accuracy and error loss corresponding to the training results of the VGG-
LSTM fusion model are presented in Figure 20. In the first 10 trainings, the accuracy rate
gradually increased. After 10 trainings, the accuracy curve tended to be stable. The training
results of the training set could reach 100%, and the training results of the verification
set could reach 99.83%. Similar to the accuracy curve, the error curve rapidly dropped
to a stable value in the first 10 trainings. After 10 trainings, the training process is stable,
and the error of the training set and the verification set approaches zero. In summary, the
VGG-LSTM fusion model has higher identification accuracy and faster convergence speed
in the training process.
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Figure 20. Training results of VGG-LSTM fusion model.
To demonstrate the generalization of the proposed method, 20% of the test set is
randomly selected to test the performance of the trained model, and ten independent
repeated tests are performed on the test set. The test results are displayed in Table 6.
Combined with Figure 21, the results of ten tests are calculated, the average test accuracy is
99.43%, and the standard deviation of the test accuracy is 0.0011. The average test time is
2.6755 s, and the standard deviation of the test time is 0.0527.
Table 6. Repeat test time and accuracy of VGG-LSTM fusion model.
Serial Number 1 2 3 4 5 6 7 8 9 10 Average Star}da}rd
Deviation

Testaccuracy/%  99.54 99.33  99.41 9929 99.62 99.62 99.45 9937 99.29 9941 99.43 0.0011
Test time/s 2732 2642 2612 2633 2669 2610 2647 2716 2729 2765 2.675 0.0527
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Figure 21. Repeat test results of VGG-LSTM fusion model.

5.4. Comparation Analysis of Different Models

In order to better verify the superiority of the constructed models, a comparison test of
the above models is performed. From the perspective of accuracy, error, standard deviation,
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and time, the above models are comprehensively compared. The details of each model are
described in Table 7.

Table 7. Multi-model comparison.

Single Layer = Double Layer  Three-Layer

Model LSTM LSTM LSTM LeNet-5 AlexNet VGGI11 VGG-LSTM
Training accuracy/% 85.14 65.32 39.42 90.33 88.79 92.12 100
Training error 0.00645 0.01309 0.02140 0.57240 0.53189 0.48868 0.00011
Average training time/s 14.376 14.221 14.561 40.725 40.265 80.458 41.458
Accuracy of verification/% 78.25 65.29 34.29 89.65 88.76 90.43 99.62
Verification error 0.00788 0.01253 0.02233 0.5649 0.5329 0.60265 0.00013
Average verification time/s 5.373 5.691 5.627 17.899 17.852 23.130 4.771
Average test accuracy /% 70.38 52.06 45.65 90.81 88.77 93.10 99.43
Test standard deviation 0.0056 0.0076 0.0071 0.0054 0.0081 0.0035 0.0011
Average test time/s 1.952 2.091 2.167 0.207 0.373 3.037 2.675
Model parameter 2 3 4 5 8 11 10

It can be seen from Table 7, compared with different layers of LSTM models, that the
training accuracy, verification accuracy, and average test accuracy of the single-layer LSTM
model are the highest. Its training accuracy is 85.14%, the verification accuracy is 78.25%,
and the average test accuracy is 70.38%. Compared with the three classical CNN models
(LeNet-5, AlexNet, VGG11), the training accuracy, verification accuracy, and average test
accuracy of the three models are all above 85%, among which the accuracy of LeNet-5 and
VGG11 is higher, and the three accuracy rates are all above 90%, which can better identify
the time-frequency diagram of vibration signals of the piston pump. For the VGG-LSTM
fusion model, the training accuracy rate is 100%, the verification accuracy rate is 99.62%,
and the average test accuracy rate is 99.43%. It has a strong recognition ability and can well
identify the five typical states of the axial piston pump.

It can be seen by analyzing the error, the training error, and verification error of
the VGG-LSTM fusion model are the lowest, approaching zero, 0.00011, and 0.00013,
respectively. Compared with the three classical CNN models, the training error and
verification error of the LeNet-5 model are 0.5724 and 0.5649, respectively, the training
error and verification error of the AlexNet model are 0.53189 and 0.5329, respectively,
and the training error and verification error of the VGG11 model are 0.48868 and 0.60265,
respectively. Hence, the training error and verification error of the three classical CNN
models are much higher than that of the VGG-LSTM fusion model. Compared with
different layers of LSTM models, the training error and verification error of the single-layer
LSTM model are 0.00645 and 0.00788, respectively, the training error and verification error
of the double-layer LSTM model are 0.01309 and 0.01253, respectively, and the training error
and verification error of the three-layer LSTM model are 0.02140 and 0.02233, respectively.
Although the error of the LSTM model with different layers is much smaller than that of
three classical CNN models, it is still much higher than that of the VGG-LSTM model, and
the accuracy of the LSTM model is low.

By analyzing the standard deviation of ten independent repeated tests, the test stan-
dard error of the VGG-LSTM fusion model is the lowest, approaching zero, which is 0.0011.
Comparing the three classical CNN models, the standard deviations of LeNet-5, AlexNet,
and VGGL11 are 0.0054, 0.0081, and 0.0035, respectively. The standard deviations of the
single-layer LSTM model, two-layer LSTM model, and three-layer LSTM model are 0.0056,
0.0076, and 0.0071, respectively. The results of ten repeated tests show that the VGG-LSTM
fusion model has the lowest standard deviation, which indicates that the fusion model is
more robust.

From the perspective of time, comparing the average training time, the average
training time of LSTM models with different layers is within 20 s, and the average training
time of other models is more than 20 s, with the longest training time reaching 80.458
s. The model training process consumes a longer time, among which the training time
of the VGG-LSTM fusion model is 41.458 s. Comparing the average validation time,
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the time of the LSTM models with three different layers are 5.373 s, 5.691 s, and 5.627 s.
The average training times of the three classical CNN models are 17.899 s, 17.852 s, and
23.130 s. Additionally, the average validation time of the VGG-LSTM fusion model is
4.771 s. From the average test time of the ten tests, the times of the LSTM models with three
different layers are 1.952 s, 2.091 s, and 2.167 s. The average test time of the three classical
CNN models are 0.207 s, 0.373 s, and 3.037 s. Additionally, the average test time of the
VGG-LSTM fusion model is 2.675 s.

In summary, the VGG-LSTM fusion model has the highest accuracy and the lowest
training and verification errors. The average test accuracy of the ten tests is the highest, the
standard deviation of the test is the smallest, and the average test time is relatively short.
Hence, the comprehensive performance of the VGG-LSTM fusion model is the best, which
can effectively achieve the accurate identification of typical faults of an axial piston pump.

The confusion matrix of each model is generated by reloading the weight file corre-
sponding to the optimal recognition rate, as shown in Figure 22. It can be seen from the
confusion matrixes that the LSTM models have low accuracy in identifying the faults of the
axial piston pump. The four models of LeNet-5, AlexNet, VGG11, and VGG-LSTM can
accurately identify the three states such as slipper wear, swash plate wear, and normal state.
The VGG-LSTM model has the highest accuracy, and the recognition accuracy for the above
three typical states is 100%. For another two fault states such as loose slipper and center
spring failure, several models have some misclassification phenomenon. Commendably,
the VGG-LSTM model has the lowest misclassification rate, only 1.29% of loose slipper
failures are misidentified as center spring failures, and 0.43% of center spring failures are
misidentified as loose slipper failures.
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J. Mar. Sci. Eng. 2023, 11, 594

24 of 29
ss
400 400
s
- 300 _ 300
] [%)
K= =
. - CS
= 00 & 200
sp
100 100
NS
0 0
s cs sp ss s cs SP NS
Predicted label Predicted label
(e) AlexNet model (f) VGG11 model
500
sS
400
LS
I 300
k=
: cs
. 200
SP
100
NS
0
ss LS cs SP NS

Predicted label
(g) VGG-LSTM model

Figure 22. Confusion matrix of optimal test of each model.

Then, the VGG-LSTM fusion model is further cross-validated with the two better-
performing models, including LSTM and VGG11, by setting different training ratios of
40% (4:3:3), 60% (6:2:2), and 80% (8:1:1). The average diagnosis results of the three models
under different training ratios are displayed in Table 8, and the comparison results of ten
independent repeated tests are shown in Figure 23.

Table 8. Multi-model results under different training ratios.

Proportion Model Index Single Layer LSTM VGG11 VGG-LSTM
Training accuracy /% 85.56 86.66 99.95
40% training Accuracy of verification/ % 82.80 76.79 98.05
Training time/s 9.5185 45.117 34.132
Authentication time/s 8.112 26.48 7.666
Training accuracy/% 86.41 92.12 100
60% training Accuracy of verification/ % 80.25 81.14 98.79
Training time/s 14.376 57.328 41.458
Authentication time/s 5.373 23.131 4.772
Training accuracy/ % 87.91 94.83 100
80% training Accuracy of verification/% 83.33 83.17 99.08
Training time/s 18.859 72.487 55.250
Authentication time/s 2.476 21.942 2.624
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Figure 23. Repeated test results of multiple models with different training ratios.

As can be seen from Table 8, compared with single-layer LSTM and VGG11, the VGG-
LSTM fusion model has the highest accuracy rate of fault diagnosis at different training
ratios. In terms of program running time, the verification time of the VGG-LSTM fusion
model is much faster than that of VGG11. Through Figure 23, it is evident that the accuracy
of the proposed VGG-LSTM fusion model is higher than that of the VGG11 model and
the single-layer LSTM model, and the results of ten independent tests are also more stable
compared to the above two models.

6. Conclusions

To achieve an intelligent fault diagnosis of a hydraulic piston pump, a combined model
based on SWT and VGG-LSTM is proposed. The correlation in the original vibration signal
is carefully explored, and the diagnosis accuracy of the common faults of a hydraulic axial
piston pump is enhanced by integrating the translation invariance of a CNN in time-space
and the memory capacity of an RNN. The following findings are obtained:

(1) The SWT method is used for the establishment of a data sample library and
transforms 1D vibration signals into 2D time-frequency maps, giving a good input of a
diagnostic model. The proposed VGG-LSTM diagnosis model combines the advantages
of the single-layer LSTM network model and the VGG11 network model, and has great
stability. Meanwhile, it can resolve the long training time of the VGG11 model and the low
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diagnostic accuracy of the LSTM model. It provides a novel approach for the intelligent
fault diagnosis of a hydraulic axial piston pump.

(2) Some classic methods are employed to identify the five typical states by using the
measured vibration signals of a hydraulic axial piston pump. The recognition accuracy
of the single-layer LSTM model is 85.14%, and the recognition accuracy of the standard
VGG11 model is 92.12%. The proposed VGG-LSTM fusion model is rebuilt by integrating
the advantages of the VGG11 model and the single-layer LSTM model. The layered learning
rate is configured to increase the recognition accuracy of the fusion model up to 100%. The
VGG-LSTM fusion model has higher fault recognition accuracy when compared to some
classic models such as single-layer LSTM, two-layer LSTM, three-layer LSTM, LeNet-5,
AlexNet, and VGGL11. It has lower training and validation errors, faster learning and
training speeds, and a shorter testing time.

(3) The failure data of a hydraulic axial piston pump are time series data with tempo-
rality. The VGG-LSTM fusion model reduces the diagnosis time by utilizing the potent
timing processing capabilities of LSTM. The training time of the fusion model is 15.87 s
faster than that of the VGG11 model under identical operating conditions. However, when
the single-layer LSTM and VGG11 models are combined, the ability of the LSTM model
to mine features is improved, while the VGG11 model’s reliance on the number of data
samples is lessened. The effective information buried in the temporal data is mined in
conjunction with the prospective feature extraction capability of the VGG11 model, the
diagnostic accuracy and effectiveness of the common faults of the hydraulic axial piston
pump are improved.

The approach can further be explored as a method for the intelligent fault diagnosis of
other rotating machinery such as motors, gears, bearings, and so on. The following work
can be explored in the future:

(1) The effect of the VGG-LSTM model on fault identification of hydraulic axial piston
pumps under variable speed.

(2) The number of layers of the VGG-LSTM fusion model can be reduced so as to
further optimize the model.

(3) The influence of different sampling frequencies on the results of the fusion
diagnosis method.
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Nomenclature

Abbreviation Full name

SWT Synchrosqueezing wavelet transform
LSTM Long short-term memory

DL Deep learning

CNNs Convolutional neural networks

NCNN Normalized convolutional neural network
PSO Particle swarm optimization

MI-CNN Multi-input convolutional neural network
PNID Power of normalized image difference
RNN Recurrent neural network

EMD Empirical mode decomposition

CWT Continuous wavelet transform

SS Slipper wear

LS Loose slipper fault

CS Center spring failure

SP Swash plate wear

NS Normal state
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