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ABSTRACT Minimum entropy deconvolution (MED) is widely used in the gearbox fault diagnosis because
it can enhance the energy of the impact signal. However, it is sensitive to single abnormal impulsive
oscillation. This is because it takes kurtosis as the objective function and solves the optimal filter by iteration.
In addition, the filter length is not adaptive and needs to be determined artificially. This paper proposes
a maximum kurtosis spectral entropy deconvolution (MKSED) method and applies it to bearing fault
diagnosis. Considering that the kurtosis spectral entropy has the advantage of highlighting the continuous
impact oscillation, the kurtosis spectral entropy is chosen as the objective function of deconvolution. At the
same time, kurtosis spectral entropy is also used as the fitness function of improved local particle swarm
optimization algorithm (LPSO), and the filter length is optimized by LPSO, which makes that MKSED
adaptively determines the length of the filter while solving the deconvolution, so that it can accurately extract
the continuous pulse signal. The results of the simulation signal analysis show that the proposed MKSED
method is superior to MED, and the proposed method is applied to bearing fault diagnosis, which verifies
its ability to extract continuous impact.

INDEX TERMS Minimum entropy deconvolution, particle swarm optimization, maximum kurtosis spectral
entropy deconvolution, fault diagnosis.

I. INTRODUCTION

As the most commonly used rotating machinery, rolling
bearing faults are very common, including outer ring, inner
ring and rolling element faults [1]. These faults are char-
acterized by the periodic impact. However, when the fault
occurs, due to the complex environment, the vibration sig-
nal collected by the sensor often has a lot of background
noise. These impulsive signals are often submerged by noise,
so it is very important to quickly and accurately find the
location of bearing fault. In other words, reasonable and
effective noise reduction methods are very important for
the development of fault diagnosis. So far, there are many
common methods for fault diagnosis of rotating machinery,
including autoregressive models [3], spectral kurtosis [4],
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cyclostationary theory [5], Empirical Mode Decomposi-
tion (EMD) [6], Ensemble Empirical Mode Decomposition
(EEMD) [7], Variational Mode Decomposition (VMD) [8]
and so on.

Since 2012, this is easy to find that MED has been
widely used in fault diagnosis of rotating machinery because
it can detect impulse components in fault signals. The
purpose of MED is to extract fault components from
impulse signals by maximizing kurtosis and to further solve
filter [10]. In recent years, EEMD has been widely used in
fault diagnosis and fault feature extraction in strong noise
environment [11], [12]. The purpose of EEMD is to over-
come the mode aliasing of EMD by noise-assisted analy-
sis method [13]. However, considering that the noise can-
not be completely neutralized, which makes the EEMD still
exist modal aliasing phenomenon, Wang et al. [14] pro-
posed a combination of MED and EEMD, which avoided
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successfully the modal aliasing phenomenon of EEMD and
applied it to the fault diagnosis of the gearbox. At the same
time, Wang et al. [15] proposed a method combining local
mean decomposition (LMD) with MED to overcome the
modal aliasing of LMD. Endo and Randall [16] combined
MED technology with the autoregressive model, proposed
a new deconvolution technology and applied it to fault sig-
nal extraction of the gearbox, which proved its feasibility.
Sawalhi et al. [17] presented an algorithm for enhancing the
surveillance capability of spectral kurtosis (SK) by using
the minimum entropy deconvolution (MED) technique, and
verified its effectiveness through bearing failure experiments.
Considering that MED can only extract a single impulse,
to improve the shortcomings of MED, McDonald et al. [18]
proposed a new method called maximum correlation kurtosis
deconvolution (MCKD) and validated its effectiveness by
simulation signals.With its good deconvolution performance,
MCKD can extract multiple impulse signals [9], [19]. How-
ever, although MCKD is more effective than MED, the noise
reduction accuracy of MCKD is limited by multiple param-
eters and resampling process. In order to solve these short-
comings, Miao et al. [9] proposed an improved maximum
correlation kurtosis deconvolution (IMCKD) method to
update the fault cycle iteratively according to the autocorrela-
tion function of the envelope signal to prevent the resampling
process. IMCKD validates the effectiveness of the method
through simulation and experimental analysis.
In MED technology and its extended version, the selected

iteration objective function is kurtosis maximization [20].
At the initial stage of rotating machinery failure, the kur-
tosis index increases obviously, but with the emergence of
many periodic pulses, the kurtosis value decreases. Therefore,
the kurtosis index is very sensitive to the transient pulse. The
kurtosis value of a single impulse is larger. When a series
of impulse signals appear, the kurtosis value will become
smaller. However, the best result we need is to denoise and
highlightmore impulsive pulses throughMED. So, if wewant
to get the best result, we need to improve MED from the
source. In other words, we need to find a parameter that can
reflect more periodic pulses to replace the objective function
of MED to achieve the purpose of improving MED.
In this paper, a new index, Kurtosis Spectral Entropy (KSE),

is proposed. The parameter consists of two parts, one is
Kurtosis value, the other is Envelope Spectrum Entropy.
When there are multiple periodic pulses in rotating machin-
ery, the main components of envelope spectrum are concen-
trated in the low frequency range after envelope spectrum
analysis of periodic signals, which leads to the reduction of
envelope spectrum entropy. Therefore, the envelope spectral
entropy can express the uniformity of periodic pulses. The
more pulses detected, the clearer the envelope spectrum
and the smaller the envelope spectrum entropy [23]. In fact,
the kurtosis spectral entropy proposed in this paper is the
ratio of kurtosis to envelope spectral entropy. This definition
not only keeps the original characteristics of MED, but also
increases the uniformity of periodic pulses. At the same time,

the effective diagnosis of complex faults is considered. This
paper first denoises the original signal by EEMD, then
removes the high-frequency noise and the intrinsic mode
function with less correlation, and resolves the mode mixing
of EEMD by reconstructing the mode function. EEMD can
decompose the components of different frequencies into
different time scales, and then use MKSED to enhance the
impact of different periods to obtain good diagnostic results.
Finally, the effective intrinsic mode function is determined
as the object of deconvolution, and the kurtosis spectral
entropy is used as the objective function to solve the inverse
filter. At the same time, the kurtosis spectral entropy is used
as the fitness function of particle swarm optimization, and
the filter length is optimized by improved particle swarm
optimization. By calculating the kurtosis spectral entropy of
each layer intrinsic mode function and taking its maximum
as the objective function, the noise reduction effect of MED
is further improved. This method is called MKSED.

This paper verifies that MKSED has better noise reduction
effect than MED and MCKD through simulation and mea-
surement signals, and applies it to gear box fault diagnosis.

II. THEORETICAL FOUNDATIO

A. MINIMUM ENTROPY DECONVOLUTION

Minimum Entropy Deconvolution (MED) was first proposed
by Wiggins [22], which is a filtering method to maximize the
kurtosis of the original signal. In 2007, Sawalhi et al. [17]
applied the MED method to the diagnosis of rolling bearings
and gears. The purpose of the MED algorithm is to increase
the signal-to-noise ratio of the signal with the maximum
value of the kurtosis as the iterative termination condition.
Therefore, it is widely used in fault diagnoses such as gears
and bearings.

MED is to eliminate the influence of transmission path by
the optimized filter. xn (n = 1, 2, · · ·,N ) is the input vibra-
tion signal sequence, which includes random noise, periodic
impact, harmonics and so on. The output signal generated by
the input signal xn and the FIR filter f = [f1, f2, · · ·, fL] can
be expressed as follows:

yn =

L
∑

l=1

flxn−l (1)

The output yn should coincide with the impulse signal
of the original signal as far as possible. If a shock signal
corresponds to a larger kurtosis value, then the filter of MED
must maximize the kurtosis of the output signal. The kurtosis
of the zero means of the output signal yn is defined as follows:

k (f ) =

∑N
n=1 y

4
n

(
∑N

n=1 y
2
n

)2
(2)

The optimal solution foptimal maximizes the kurtosis of the
output signal, K

(

foptimal
)

≥ K (f ) , ∀f ∈ RL , RL is an
L-dimensional Euclidean space, K represents the kurtosis in
formula (2) and f represents a filter of arbitrary length L.
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The iteration formula of the iteration process is as follow:

f =

∑N
n=1 y

2
n

∑N
n=1 y

4
n

(

X0X
T
0

)−1
X0

[

y31 y
3
2 · · · y3N

]

(3)

where

X0 =










x1 x2 x3 xN
0 x1 x2 · · · xN−1
0 x1 xN−2

...
. . .

...

0 0 0 · · · xN−L+1










L×N

Details of this algorithm, including the deduction of the
iteration formula and the stopping criteria of the iteration
algorithm, can be found in [22].

We can note that the MED solves the inverse filter based
on kurtosis maximization rather than minimizing entropy.
Although there is a certain relationship between kurtosis and
entropy, its basis is still to maximize kurtosis. Thus, MED
finds the source withmaximum kurtosis rather thanminimum
entropy. This is the most important reason for the unimodality
of MED results.

B. IMPROVED PARTICLE SWARM OPTIMIZATION

Particle swarm optimization (PSO) algorithm has good
global optimization ability. Suppose there are M particles in
D-dimensional space, which constitute particle space X =

(X1,X2, · · ·,XM ). Each particle is a D-dimensional vector,
and the vector of the t-th particle is Xi = (Xi1,Xi2, · · ·,XiD),
which represents the position of the t-th particle in the
D-dimensional search space. The velocity of the t-th particle
is Vi = (Vi1,Vi2, · · ·,Vin), the individual historical optimal
solution Pi = (Pi1,Pi2, · · ·,Pin), and the global optimal
solution G = (g1, g2, · · ·, gn) in the whole space. As the
iteration progresses, the velocity and position of the particle
are updated as follows:

vk+1
id = ω × vkid +c1 × rand × (Pi − xkid )

+c2 × rand × (G − xkid ) (4)

xk+1
id = xkid + vk+1

id (5)

where: ω is the inertia factor; i =1,2,..,M; d =1,2, ..., D; k is
the current iteration number; c1,c2 is the learning factor of
particles; Rand is the random number between [0,1].
The above is the standard PSO algorithm. However, it has

the disadvantage of easily falling into a local optimum. There-
fore, this paper optimizes the parameters of MKSED through
the improved local PSO algorithm (LPSO). By improving the
speed update formula of PSO, the global historical optimal
solution g of the particle swarm is replaced by the optimal
solution Pnext of the particles in the neighborhood of the
particle, so that the particle swarm velocity update is no
longer dependent on the global optimal, and it is not easy
to fall into the local optimal solution. The improved speed
update formula is:

vk+1
id = ω × vkid +c1 × rand × (Pi − xkid )

+ c2 × rand × (Pinext − xkid ) (6)

where, Pinext is the optimal solution of the particles in the
neighborhood of the i-th particle.
From [8], it is found that in order to obtain better con-

vergence effect for the velocity change in particle swarm
optimization algorithm and obtain more accurate results,
the inertia factor changes according to concave function is
better than linear change, and linear change is better than
constant change. Therefore, the concave function is used in
this paper to change with the number of iterations.

ω = (ωmax − ωmin) × (
k

max gen
)2

+ (ωmax − ωmin) × (2 ×
k

max gen
) + ωmax (7)

where,ωmax is the maximum ofω;ωmin is the minimum ofω;
k is the number of iterations of particle swarm optimization;
max gen is the total number of iterations of PSO algorithm.

In the standard particle swarm algorithm, the learning
factors cl, c2 are generally constant values. But according
to the experiment, the learning factor which changes with
iteration can get better convergence effect. That is, in the
early stage of particle evolution, the particles can search
carefully in their own neighborhood to prevent the particles
from convergence to the local optimal solution [23]. At the
later stage of evolution, PSO should converge to the global
optimal solution faster and more accurately. That is to say,
in the initial stage, the value of c1 will be larger, while in the
later stage, the value of c2 will increase with the number of
iterations. So, the improved learning factor formula is:

c1 = 4 − e
−

∣
∣
∣
∣
∣

1
M

M∑

i=1
(Pi−G)

∣
∣
∣
∣
∣

(8)

c2 = 4 − c1 (9)

When searching for the optimal solution, particle swarm
optimization needs to choose a fitness function to measure
the effect of the optimal solution. When the particle updates
a position, it needs to calculate the fitness value of each
time according to the fitness function, and select the opti-
mal solution by comparison. The traditional fitness func-
tion chooses signal-to-noise ratio, kurtosis and entropy as
the fitness function to evaluate the noise reduction effect of
MED. The main idea of this paper is to reflect the continuous
impulsive signal of the original vibration signal through the
results ofMED noise reduction, so the kurtosis is not suitable.
In order to highlight the pulse of the continuous periodic
signal, the kurtosis spectral entropy is selected as the filter
effect of MED. The specific concept of kurtosis spectral
entropy is shown in the following section.

C. MAXIMUM KURTOSIS SPECTRUM ENTROPY

DECONVOLUTION METHOD

Kurtosis index is sensitive to transient impulse signals and is
widely used in gear box fault diagnosis. However, the kurtosis
is only sensitive to a single impulse, and when multiple
impulses exist simultaneously, the kurtosis decreases. When
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an early failure occurs in gear or bearing, the kurtosis index
increases significantly. However, kurtosis is not suitable for
describing impact vibrations with periodicity. On the con-
trary, the envelope spectrum entropy can express the uni-
formity of periodic pulses. When the number of pulses is
detected, the envelope spectrum is clear and the envelope
spectral entropy is smaller.
Assuming that SR (ω) represents the envelope spectrum

of the original signal and j is the number of components
decomposed by EEMD, the envelope spectrum can be evenly
divided into j frequency intervals along the frequency axis,
and the percentage of the i-th interval can be described as B,
which satisfies:

J
∑

i=1

Pi (SR (ω)) = 1 (10)

Therefore, the envelope spectral entropy is defined

Es = −

J
∑

i=1

Pi (SR (i)) lnPi (SR (i)) (11)

where, Pi (SR (i)) = SR (i)
/

∑N
j=1 SR (j).

Kurtosis represents the impact characteristics of signals,
envelope spectral entropy represents the periodic character-
istics of signals, and a new index kurtosis spectral entropy
can be expressed as follows:

KSE(x) =
kurt(x)

Es
(12)

where, kurt(x) represents the kurtosis of the input signal and
KSE(x) represents the kurtosis spectral entropy of the signal.
Obviously, for the periodic impulse signal, the envelope spec-
trum is concentrated in the low frequency region, resulting in
a smaller value of Es. Sporadic impulse signals lead to larger
envelope spectral entropy, so KSE(x) can reflect the unifor-
mity of periodic impulse signals. The same intrinsic mode
function obtained by EEMD decomposition is reconstructed,
and MKSED is used to denoise the EEMD and extract more
uniform periodic pulses.

KSE(x) =
kurt(IMFi)

Es
(13)

In actual working conditions, noise often affects the extrac-
tion of fault features. Selecting appropriate indicators for
deconvolution and adaptive selection of filter length are
the key to extract and analyze bearing fault features using
MKSED. Using KSE as the objective function of deconvolu-
tion can highlight most of the impact signals. Here, the IMF
is assumed to be time series x(n), then:

KSE (f (l)) =
−

∑N
n=1 x

4 (n)
(
∑N

n=1 x
2 (n)

)2 (
∑N

i=1 pi · ln pi
) (14)

Then, by combination with equation (11) and taking
the derivatives of equation (14) with respect to filter

coefficients f , and solving it equal to zero:

∂KSE (f (n))

∂f (l)
= 0 (15)

The following equation can be obtained from the deconvo-
lution process:

∂x (n)

∂f (l)
= m (n− l) (16)

where, m(n) Is a sequence of outputs. Formula 16 is
introduced into 15 to obtain:

4
∑N

n=1 x
3 (n)

(
∑N

i=1 Pi(SR (i)) · lnPi (SR (i))
)

· m (n− l)

4
∑N

n=1 x
2 (n)+

(
∑N

n=1 x
2 (n)

)2 (
∑N

i=1 (1+lnPi (SR (i)))
)

︸ ︷︷ ︸

b

=
∑N

n=1
m (n− l)m (n− p)

︸ ︷︷ ︸

A

·
∑L

p=1
f (p)

︸ ︷︷ ︸

f

(17)

Eq. (17) can be written in matrix form:

b = A× f (18)

The inverse filter matrix can be calculated iteratively by
Eq. (18):

f = A−1
× b (19)

However, when multiple faults coexist, different fault fea-
tures need to be decomposed into different intrinsic mode
function. Therefore, the signal needs to be decomposed
by EEMD. It can not only eliminate the high noise component
unrelated to the original signal, but also decompose different
time scales into different intrinsic mode function. Consid-
ering the existence of mode mixing in EEMD, the idea of
reconstructing modal function is introduced to improve the
energy of the impact signal while eliminating mode mixing.
In order to determine the filter length adaptively, LPSO is
used to optimize the filter length, which not only avoids the
subjectivity of artificial setting, but also improves the accu-
racy of parameter selection. Finally, the envelope spectrum
analysis of the denoised signal is carried out to determine the
final fault characteristics.
1) Firstly, the vibration signals are decomposed by

EEMD.
2) Determine whether there is modal mixing, and remove

the high frequency noise component and the eigenmode
function with weak correlation.

3) If there is modal mixing, the same mode function is
reconstructed to obtain CMF1, CMF2, etc.

4) Solve the envelope spectrum of the above eigenmode
function and calculate the kurtosis and Es.

5) Calculate the kurtosis spectral entropy KSE.
6) Set the particle population size M and the number of

iterations N in the LPSO algorithm, set the maximum
and minimum values of the inertia factor, and initial-
ize L. In order to cover the whole frequency band
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FIGURE 1. Flow chart of the proposed method.

of the fault accurately, L should satisfy the inequality
L > 2Fm / Fs, where Fm is the fault characteristic fre-
quency and Fs is the sampling frequency.

7) The L and signal are input into the improved LPSO.
The improved LPSO is used to optimize the filter length
of MKSED, and the optimal solution L0 is obtained.
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8) The obtained optimal length L0 is input to the MKSED
filter, and the kurtosis spectral entropy of the fifth step
is used as an objective function to denoise the MKSED
for CMF1 and CMF2. The optimal filter is obtained and
the denoised signal is output.

9) The output is demodulated by the envelope spectrum to
determine the fault characteristic.

The algorithm flow of the proposed method is shown in
Figure 1.

III. SIMULATION

When the gear is spalled and the inner and outer rings of
the bearing are cracked, the vibration signal is expressed as
periodic pulses and noise. In this paper, a periodic vibration
signal is given as shown in equation (20), in which the nat-
ural frequency is 300 Hz and the periodic shock frequency
is 50 Hz. The sampling points are 2000.

x3(t) = Am × exp(−
g

Tm
) sin(2π fct) + 0.5 × randn(t)

Am = 1.1, g = 0.1,Tm = 1/50, fc = 300Hz (20)

Figure 2 shows the time-domain graph and the envelope
spectrum of the simulated signal. It can be observed that the
impact is submerged by noise. There is no obvious periodic
pulse in the time domain graph, and the envelope spectrum is
also disorderly, which contains a lot of noise.

FIGURE 2. Time domain waveform and envelope analysis of simulation
signals.

FIGURE 3. Time domain waveform and envelope spectrum of the
simulated signal after noise reduction by MED at L=10.

FIGURE 4. Time domain waveform and envelope spectrum of the
simulated signal after noise reduction by MED at L=20.

Figure.3-8 shows the results obtained by MED with dif-
ferent filter lengths. The corresponding filter lengths L are

FIGURE 5. Time domain waveform and envelope spectrum of the
simulated signal after noise reduction by MED at L=30.

FIGURE 6. Time domain waveform and envelope spectrum of the
simulated signal after noise reduction by MED at L=40.

FIGURE 7. Time domain waveform and envelope spectrum of the
simulated signal after noise reduction by MED at L=50.

FIGURE 8. Time domain waveform and envelope spectrum of the
simulated signal after noise reduction by MED at L=60.

10, 20, 30, 40, 50, and 60, respectively. Figure.3 shows the
results of MED at L = 10. It can be seen that the peak value
of time domain waveform increases little and the noise com-
ponent decreases somewhat. In the envelope spectrum, there
is an obvious peak at 50Hz, which corresponds to the fault
cycle. Figure.4 shows the results of MED at L= 20. The peak
value of time domain waveform increases obviously, and
there are obvious peaks at 50Hz and 100Hz in the envelope
spectrum, which corresponds to the fault frequency and its
twice. With the increase of L, it can be observed that the peak
value of time domain waveform increases, but the number
of enhanced pulses decreases. As shown in Figure.6 and
Figure.7, There are obvious single pulses in the time domain
graph, which is due to the principle of MED. Therefore,
MED does not extract pulses well, and there are limitations
in the diagnosis of rotating machinery faults.
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FIGURE 9. Time domain waveform and envelope spectrum of the
simulated signal after noise reduction by MKSED at L=10.

FIGURE 10. Time domain waveform and envelope spectrum of the
simulated signal after noise reduction by MKSED at L=20.

FIGURE 11. Time domain waveform and envelope spectrum of the
simulated signal after noise reduction by MKSED at L=30.

FIGURE 12. Time domain waveform and envelope spectrum of the
simulated signal after noise reduction by MKSED at L=40.

FIGURE 13. Time domain waveform and envelope spectrum of the
simulated signal after noise reduction by MKSED at L=50.

Figure.9-14 shows the results obtained by MKSED with
different filter lengths. The corresponding filter lengths L
are 10, 20, 30, 40, 50, and 60, respectively. Figure.9 shows
the results of MKSED at L = 10. It can be seen that the
peak value of time domain waveform increases and the noise
component decreases somewhat. In the envelope spectrum,
there are obvious peaks at 50Hz, 100Hz, 150Hz and 200Hz,
which correspond to the fault frequency and its double, triple
and quadruple respectively. Compared with the results of

FIGURE 14. Time domain waveform and envelope spectrum of the
simulated signal after noise reduction by MKSED at L=60.

FIGURE 15. Time domain waveform and envelope spectrum of the
simulated signal after noise reduction by MKSED at L=57.

MED at L=10 shown in Figure.3, the effect of MKSED
is significantly better than that of MED. With the increase
of L, the peak value of time domain waveform will increase,
and the fault frequency and its multiple shown in envelope
spectrum will become clearer and clearer. Figure.11 shows
the results of MKSED at L = 30. In the envelope spectrum,
the peak value appears at the fault frequency and at its double,
triple, quadruple, quintuple and six times. However, as the
filter length continues to increase, the effect of MKSED
will also decline. Figure. 13 shows the processing result
of MKSED at L = 60. It can be observed that the pulse
uniformity of the time domain waveform is degraded, and
the fault period of the envelope spectrum extraction is also
disordered. It is easy to understand that the filter length also
has a great influence on the results of MKSED, which needs
to be optimized.

Figure. 15 shows the results of signal processing by opti-
mizedMKSED. The filter of MKSED is optimized by LSPO,
and the optimal length is L=57. From the envelope spectrum,
it can be observed that there are obvious peaks in the envelope
spectrum at the frequencies of 50 Hz, 100 Hz, 150 Hz,
200 Hz, 250 Hz and 300 Hz, which correspond to the fault
frequency and its double, triple, quadruple, quintuple and six
times respectively, and the spectrum lines are obvious. The
result of the optimization is perfect.

In order to further illustrate the effectiveness of the pro-
posed method for extracting multiple faults, two impulse
signals are constructed based on equation 15. The natural
frequency of x1 is 300 Hz, and the impulse period is 1/30 s,
corresponding to the frequency of 30 Hz. The natural fre-
quency of x2 is 180 Hz, and the impulse period is 1/20 s,
corresponding to the frequency of 20 Hz. Figure 16 shows
the time domain diagram and envelope spectrum of the simu-
lation signal. It can be observed that the impact is submerged
by noise. There is no obvious periodic pulse in the time
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FIGURE 16. Time domain waveform and envelope analysis of simulation
signals. (a) Time domain. (b) Envelope spectrum.

domain graph, and the envelope spectrum is also disorderly,
which contains a lot of noise.
Figure. 17 is the result of the synthetic signal x decom-

position by EEDM. It can be observed that the first layer
and the second layer are the components corresponding to
signal x1, and the third layer is the components correspond-
ing to signal x2. The first layer and the second layer have
mode mixing, and then the mode mixing is eliminated by
mode reconstruction. The reconstructed results are shown in
Figure 18.
Figure. 19 shows the results of the reconstructed compo-

nents CMF1 and CMF2 processed by MED. Figure 19 (a)
shows the results of CMF1. It can be seen from the time
domain diagram that the results of MED processing do not
show periodic pulses, only individual pulses are obvious, but
there is no regularity to follow, and the spectral lines in the
envelope spectrum are not obvious. Figure 19 (b) shows the
results of CMF2. It can be observed that there are obvious
single pulses without periodic impact. Moreover, there is no
obvious spectrum of fault frequency (20Hz) in the envelope
spectrum. It is obvious that the results obtained by MED are
poor and the fault components are not extracted.
Figure. 20 shows the results of the reconstructed compo-

nents CMF1 and CMF2 processed byMKSED. Figure. 20 (a)
shows the results of CMF1. From the time-domain diagram,
periodic shocks can be observed in the results of MKSED.
Compared with the results of MED, the spectral lines in
the envelope spectrum become clearer. Peaks at frequencies

FIGURE 17. The decomposition result of the signal obtained by EEMD. (a)
Time domain. (b) Frequency domain.

of 30 Hz, 60 Hz, 90 Hz, 120 Hz and 150 Hz can be observed,
which correspond to the fault frequency and its double, triple,
quadruple and quintuple respectively. Figure.20 (b) shows the
results of CMF 2. It can be observed that there are obvious
periodic pulses. Peaks appear at frequencies 20 Hz, 40 Hz,
60Hz and 80Hz in the envelope spectrum, the fault frequency
and its double, triple, and quadruple respectively. It is obvious
that the results obtained byMKSED are obviously better than
those obtained by MED. Therefore, the proposed method
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FIGURE 18. The results of mode reconstruction. (a) Time domain.
(b) Frequency domain.

FIGURE 19. The results of the reconstructed components (a) CMF1 and
(b) CMF2 processed by MED.

using kurtosis spectral entropy instead of kurtosis as the
objective function of deconvolution iteration can improve its
performance.

FIGURE 20. The results of the reconstructed components (a) CMF1 and
(b) CMF2 processed by MKSED.

FIGURE 21. The test bench. 1—Speed-adjustable motor, 2—Coupling,
3—Accompanied gearbox, 4—Speed reversing instrument, 5—Torsion bar,
6—Test gearbox, 7—Acceleration sensor 1#, 8—Acceleration sensor 2#.

IV. EXPERIMENTAL VERIFICATION

In order to verify the superiority of the proposed method in
engineering application, the closed power flow test bench is
used to do relevant experiments. The main components of the
test bench include a test gear box, console, motor, a three-way
acceleration sensor, etc. The power of the motor is 30KW,
and the range of speed adjustment is 120r/min∼1300r/min.
The specific experimental platform is shown in Figure. 21.
In order to verify the effectiveness of the proposed method,
experiments are carried out with flaking defective gears and
cracked bearing outer rings. The specific failure form is
shown in Figure. 22. The accelerometer for collecting vibra-
tion signals is YD77SA. Its sensitivity is 0.01v/ms2, the bear-
ing model is 3222, the sampling frequency is 8000Hz and
gear teeth are 18. Through simple calculation, the meshing
frequency of gear is 360 Hz and the failure frequency of
bearing outer ring is 160 Hz, as shown in Table 1.

Figure. 23 is the time domain diagram and frequency
domain diagram of the vibration signal collected by the sen-
sor. From the frequency domain diagram, it can be observed
that there are obvious peaks at frequency 360Hz and 720Hz,
corresponding to the gear fault frequency and its twice,
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FIGURE 22. Bearing and gear fault diagram. (a) Bearing fault. (b) Gear
fault.

TABLE 1. Fault frequency.

FIGURE 23. Vibration signal. (a) Time domain. (b) Frequency domain.

and the bearing outer ring fault frequency corresponding to
160Hz is submerged by noise.
The fault signal is decomposed by EEMD, and the result

is shown in Figure.24. Figure. 24 (a) is a decomposed time
FIGURE 24. The decomposition result of vibration signal obtained by
EEMD. (a) Time domain. (b) Frequency domain.
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FIGURE 25. The results of mode reconstruction. (a) Time domain.
(b) Envelope spectrum.

domain diagram, and Figure. 24 (b) is a spectrum diagram
obtained by spectral transformation. As can be seen from the
figure, the signal is adaptively decomposed into 11 layers.
The first layer is the high frequency noise component, which
does not contain fault information. The second layer has an
obvious amplitude at frequency 720, which is twice the gear
fault frequency. The third layer is like the second layer. There
is an obvious amplitude at the frequency 720, which is twice
the gear failure frequency. The fourth layer has an obvious
amplitude at frequency 360, which is gear fault frequency.
Therefore, the second layer, the third layer and the fourth
layer are all fault components of gears. The fifth layer has
an obvious amplitude at 160Hz, which is the characteristic
frequency of bearing outer ring fault. The layers 6 to 11 do
not contain fault information and are pseudo components.
According to the EEMD decomposition results of the

vibration signal, firstly, the high-frequency noise component,
namely IMF1, is removed. Then the components with mode
mixing are reconstructed to eliminate the phenomenon of
modal aliasing. That is to say, the components IMF2, IMF3
and IMF4 are reconstructed to CMF1, and IMF5 is CMF2.
Finally, the pseudo component, IMF6-IMF11, which does not
contain fault information, is removed. The results of mode
reconstruction are shown in Figure 25. Figure 25 (b) shows
the envelope analysis of the reconstructed component. It can
be observed that the fault frequencies of 360 Hz and 160 Hz

FIGURE 26. The results of the reconstructed components CMF1 and CMF2
processed by MKSED and envelope analysis. (a) Time domain waveform.
(b) Envelope spectrum.

can be found in the envelope spectrum, but the spectrum lines
are cluttered and easy to cause misdiagnosis.

The reconstructed components are processed by MKSED,
and the results are shown in Figure 26. It can be observed
that the signal is processed by MKSED, and the time
domain waveform shows obvious periodicity. Uniform peri-
odic pulses can be clearly observed from time domain illus-
trations. Figure 26 (b) shows the envelope spectrum of the
results of MKSED. It can be observed that there are obvi-
ous spectral lines in the envelope spectrum. The extracted
frequencies in CMF1 are 360 Hz and 720 Hz, which cor-
respond to gear faults. The frequency extracted in CMF2 is
160Hz and its multiple, which corresponds to the bearing
outer ring fault. In order to fully illustrate the advantages of
MKSED, the reconstructed signal is processed byMCKD and
compared with the results of MCKD.

The reconstructed components are processed by MCKD,
and the results are shown in Figure 27. It can be observed that
only a limited number of pulses can be extracted by MCKD,
which is the result of its principle. Figure 27 (b) shows the
envelope analysis of the results of MCKD. Since the number
of points (22.22) corresponding to the CMF1 period is not
equal to an integer, the MCKD performs the resampling pro-
cess. This causes the frequency in the envelope spectrum to
deviate from the fault frequency. The extracted frequency in
CMF2 is 160Hz, but there is only one obvious line. Therefore,
the proposed method in this paper is superior to MCKD.
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FIGURE 27. The results of the reconstructed components CMF1 and CMF2
processed by MCKD envelope analysis. (a) Time domain waveform.
(b) Envelope spectrum.

V. CONCLUSION

Because the minimum entropy deconvolution can only high-
light a single impact, it has great limitations in fault diagnosis.
Therefore, a maximum kurtosis spectral entropy deconvolu-
tion (MKSED) method is proposed and successfully applied
to gear box fault diagnosis. The reasonwhyminimum entropy
deconvolution can only highlight a single impact is that it
takes the maximum peak value as the objective function in the
iteration process. In order to highlight the continuous impact,
the kurtosis spectral entropy is constructed as an index to
measure the effect of the continuous pulse. The maximum
kurtosis spectral entropy is taken as the iteration objective,
which effectively improves the limitation of MED. Then the
kurtosis spectral entropy is used as the objective function
of the improved particle swarm optimization algorithm to
optimize theMKSED, which effectively overcomes the influ-
ence of filter length on the MKSED. Finally, the proposed
method is applied to the fault diagnosis of gearbox. The
simulation and experimental results prove the effectiveness
and superiority of the proposed method.
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