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Axle box bearings are the most critical mechanical components of railway vehicles. Condition monitoring is of great bene
t to
ensure the healthy status of bearings in the railway train. In this paper, a novel fault diagnosis model for axle box bearing based on
symmetric alpha-stable distribution feature extraction and least squares support vector machines (LS-SVM) using vibration signals
is proposed which is conducted in three main steps. Firstly, fast nonlocal means is used for denoising and ensemble empirical mode
decomposition is applied to extract fault feature information.	en a new statistical method of feature extraction, symmetric alpha-
stable distribution, is employed to obtain representative features from intrinsicmode functions. Additionally, the hybrid fault feature
sets are input into LS-SVM to identify the fault type. To enhance the performance of LS-SVM in the case of small-scale samples,
Morlet wavelet kernel function is combined with LS-SVM for the classi
cation of fault type and fault severity and the particle
swarm optimization is used for the optimization of LS-WSVM parameters. Finally, the experimental results demonstrate that the
proposed approach performs more e�ectively and robustly than the other methods in small-scale samples for fault detection and
classi
cation of railway vehicle bearings.

1. Introduction

Rolling element bearings have been widely used in indus-
trial applications. Axle box bearings are one of the critical
mechanical components of railway vehicles. 	e frequent
failures including pitting, stripping, wear, crack, and abrasion
of train bearings have a great in�uence on the trac safety.
	erefore, e�ective identi
cation of bearing health status is
indispensable to monitor the working condition of axle box
bearings for train maintenance [1, 2]. Currently, vibration
analysis and acoustic analysis are two main approaches for
defect detection [3, 4]. Vibration-based diagnosis has become
themost commonmonitoring technique because of its higher
reliability.

In the process of fault diagnosis, extracting defect features
from noisy vibration signals remains a great challenge. Many
sources of signal contamination including additive noise,

the signals from sha�s, gearboxes, and other mechanical
components of railway vehicles overlap signals of interest in
both time and frequency. 	us, it is vital to advance signal
denoisingmethod to get rid of the noises and extract the fault
characteristics. For that reason, a lot of algorithms have been
developed for vibration signal denoising. In recent years, the
methods based on the discrete wavelet transform (DWT) [5–
7] coecient shrinkage, the empirical mode decomposition
(EMD) [8–13], and the nonlocal means (NLMs) [14, 15]
have been introduced as three popular methods to rotating
mechanical fault diagnosis. DWT is characteristic of ana-
lyzing signals on multiple scales by discarding the lower
magnitude, and the performance of the wavelet transform
relies on the selection of the wavelet basis function. In
the EMD method, the clean vibration signal is obtained
by discarding 
rst few intrinsic mode functions (IMFs).
Mode mixing [16], resulting from signal intermittence, is
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the disadvantage of EMD. To overcome this obstacle, the
ensemble EMD (EEMD) was proposed by Wu and Huang
[17]. 	e fast NLMs (FNLM) approach is a very successful
image denoising method [14], which has been applied for
rotating machinery fault diagnosis. In this study, the FNLM
approach and the EEMD approach are combined to denoise
the raw vibration signal.

A�er denoising step, the feature parameters which cor-
rectly represent the health status of the axle box bearing
should be extracted. According to previous studies, the
fault features such as permutation entropy [18, 19], subband
energy [20], and statistical features (variance, kurtosis) [13] in
frequency domain, time domain, and time frequency domain
could be extracted. However, the methods above are not
stable for complex signal. As a number of non-Gaussian
signals have an impulsive property and heavy tail in engi-
neering, alpha-stable distribution has been widely applied in
various 
elds [21–23]. 	ree estimation methods for alpha-
stable distribution were comparatively analyzed theoretically
[21], and the results showed that the stability and estimation
accuracy of empirical characteristic function method (ECF)
ranked 
rst.	e kurtogram and stable parameter� have been
proposed to detect incipient bearing faults in [22]. A�er the
analysis on stability and sensitivity of parameters, optimal
parameters are selected for bearing fault diagnosis [23].

However, the estimation of the symmetry parameter �
and location parameter� can be calculatedwith the estimated
value of � and �, resulting in cumulative error propagation of
such � and �. Meanwhile, because the characteristic function
of� stable distribution is intermittent in � = 1, the estimation
error is particularly serious in� ̸= 0 and� → 1. Furthermore,
the geometry of the bearing structure is symmetric, so
the S�S distribution is a more accurate statistical model
to describe the bearing signals. 	erefore, to enhance the
computational eciency and recognition accuracy of rolling
bearings diagnosis, it attempts to extract fault feature using
symmetric � stable distribution in this paper.

A�er feature extraction and selection, the early fault of
axle box bearing should be detected via the classi
cation of
the selected fault characteristics. Recently, based on statistical
learning theory, support vector machine is widely used in
pattern classi
cation and fault diagnosis of rotating machin-
ery due to its high classi
cation accuracy [18, 19, 24–27]. For
its low complexity and improved computational eciency,
LS-SVM has better performance in applications. 	e kernel
function of LS-SVM is critical for a better classi
cation result.
Multiple kinds of kernel functions including Polynomial
Kernel, Gaussian Kernel, and Sigmoid Kernel are applicable.
In order to obtain better performance, WSVM is proposed
here with the combination of Morlet wavelet kernel and
SVM. Compared with RBF kernel, the Morlet wavelet kernel
shows a more reasonable hyperlane. 	us, this article will
employ LS-SVMwith wavelet kernel function and optimized
parameters by PSO to enhance the accuracy of fault diagnosis.

	e remainder of this paper is organized as follows. We
brie�y describe the FNLM and EEMD denoising methods in
Section 2. 	e introduction of the feature extraction based
on symmetric alpha-stable (S�S) distribution is presented in
Section 3. Section 4 describes the proposed PSO-LSWSVM

method. In Section 5 the proposed approach is validated by
experimental data. 	e conclusion is drawn in Section 6.

2. Denoising and Feature Extraction

2.1. Fast Nonlocal Means Algorithm. With the additive noise
models, the de
nition of noise signals can be expressed as	(
) = �(
) + �, where � is the true signal and � is additive
noise. For a given sample 
, the estimate of signal � is a
weighted sum of values within their neighbourhood(
):

�̂ (
) = 1� (
) ∑
�∈�(�)

� (
, �) 	 (
) , (1)

where �(
) = ∑� �(
, �), and the weights are [14]

� (
, �) = exp(−∑�∈Δ (	 (
 + �) − 	 (� + �))22�Δ�2 )
= exp(�2 (
, �)2�Δ�2 ) .

(2)

	is similarity is measured via the weighted Euclidean
distance. 	e weight �(
, �) takes a large value if the patch
 is similar to the patch j and vice versa. In (2), � is
a bandwidth parameter, while Δ stands for a local patch
of samples surrounding 
, with �Δ samples included. To
reduce the computing time, the fast NLM has been proposed.
For a signal of length , given a translation vector ��,�	� corresponds to the discrete integration of the squared

di�erence of the sample y and its translation by ��.
�	� ( ) = 
∑

�=0
(	 (!) − 	 (! + ��))2 ,  ∈ . (3)

Now let �� = � − 
 and de
ne # = 
 + �; the patch size isΔ = [−$, $]. 	us, �2(
, �) can be rewritten as follows:

�2 (
, �) = �+
∑
�−


(	 (#) − 	 (# + ��))2 . (4)

We split the sum and use the identity in (3); we obtain

�2 (
, �) = �	� (
 + $) − �	� (
 − $) . (5)

	is is the key expression that computes the weight for a pair
of pixels in constant time.

2.2. Ensemble Empirical Mode Decomposition. As an
improved version of EMD, EEMD can decrease the mode
mixing e�ect. 	e algorithm can be given as follows [17].(1) Add white noise ��(%) with the given amplitude to the
original signal �(%) to generate a new signal:

�� (%) = � (%) + �� (%) , (6)

where ��(%) represents the noise-added signal of the 
th trial,
while 
 = 1, 2, . . . ,&.
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(2)With EMD algorithm, the signal ��(%) is decomposed
into some IMFs.

�� (%) = �∑
=1
'�, (%) + *�, (%) , (7)

where '�,(%) represents the IMFs ('�,1, '�,2, . . . , '�,, . . . , '�), *�,(%)
is the 
nal residue, and � is the number of IMFs.(3) Repeat steps (1) and (2) while 
 < &, with various
white noise series every time to acquire an ensemble of IMFs.(4) Ensemble means of the corresponding IMFs of the
decomposition is calculated; the 
nal result is as follows:

' (%) = 1&
�∑
�=1
'�, (%) , (8)

where '(%) is the -th IMF decomposed by EEMD, while 
 =1, 2, . . . ,&, and - = 1, 2, . . . , �. 	e IMFs include di�erent
frequency bands ranging from high to low. In this study, the

rst 
ve IMFs are chosen for analysis.

3. Symmetric Alpha-Stable Distribution

3.1. Alpha-Stable Distribution. It is found that alpha-stable
distribution can provide useful models for non-Gaussian
signals with impulsive waveform and heavy tail probability
density. Since the probability density function of an alpha-
stable random variable cannot be given in a closed-form, the
characteristic function can always be given as follows:

/ (%) = exp (
�% − �� |%|� (1 − 
� sign (%) � (%, �))) , (9)

where

� (%, �) = {{{{{
− tan(:�2 ) , � ̸= −12 log |%|: , � = 1

sign (%) =
{{{{{{{{{
1, % > 0
0, % = 0
−1, % < 0.

(10)

	us, the characteristic function is a four-parameter
family of distribution and is denoted by �(�, �, �, �). 	e 
rst
parameter � (0 < � ≤ 2) is the characteristic exponent
which describes the tail of the density function. 	e second
parameter � (−1 ≤ � ≤ 1) is called symmetric parameter
controlling the skewness. 	e parameters � (� > 0) and� (−∞ < � < +∞) are the scale parameter and the location
parameter, respectively.

3.2. Symmetric Alpha-Stable Distribution. In the case of � =0, the distribution is symmetric about �, called symmetric
alpha-stable (S�S), which has a characteristic function such
that

/ (%) = exp (
�% − �� |%|�) . (11)

Furthermore, as the large estimation error, the location
parameter� cannot describe the health condition of bearings.
	us, the parameter � is set to be zero so as to improve pro-
cessing speed; the characteristic function could be rewritten
as

/ (%) = exp (−�� |%|�) . (12)

3.3. Empirical Characteristic Function Parameter Estimation
Method. In practical applications of engineering, the real-
time parameter estimation of random sequence is crucial
in alpha-stable distribution. In the literature, there are three
major methods used to obtain the parameter value: (1)
quantiles method, (2) logarithmic moment method, and (3)
empirical characteristic function method. By comparative
analysis [21], the empirical characteristic function approach
has the highest estimation accuracy for four parameters of
alpha-stable distribution with best stability. 	e parameter
estimation process based on ECF is described as follows [28]:(1) Calculating the sample characteristic function is as
follows:

/̂ (%) = 1�
�∑
�=1

exp (�%��) , (13)

where �� (! = 1, 2, . . . , �) is the sample of a random variable.(2) Equation (14) can be easily achieved based on (12):

log (− log BBBB/ (%)BBBB2) = log (2��) + � log (%) . (14)

(3)	e characteristic exponent � and the scale parameter� are acquired by linear regression estimation:

	� = D + �E� + F�
	� = log (−log (/̂ (%�))2) , (15)

where D = log(2��), E� = log(%�), %� = :!/25, F� is the
random error, ! = 1, 2, . . . , I, and parameter I is accessible
judging by Table 1 in [28].

	e S�S distribution densities with di�erent� and � value
are shown in Figure 1. For the fault bearing signal, the defect
characteristic parameters, such as the exponent �, the scale
parameter �, and the maximum PDF (MPDF) value which
represent the healthy status of the bearing, can be gained by
the S�S distribution method.

4. Bearing Defect Diagnosis Methodology
Based on PSO-LS-WSVM

4.1. Morlet Wavelet Kernel-Based SVM. Support vector
machines (SVM) have been shown to be e�ective for many
classi
cation problems.	e SVM, a new supervised machine
learning technique on the basis of statistical learning theory,
is designed to 
nd optimal hyperplanes among diverse kinds
of input training data in high dimensional feature space.
Subsequently, with separating hyperplanes, testing data could
be sorted. In order to reduce computing time and enhance
recognition accuracy, the least squares SVM (LS-SVM) was
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Figure 1: (a) 	e pdf of S�S with di�erent � values; (b) the pdf of S�S with di�erent � values.
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Figure 2: 	e Morlet wavelet function.

proposed. Kernel mapping is applied to map the data in
input space to a high dimensional feature space, where the
problem is linearly separable. 	erefore, the kernel function
is a critical factor for classi
cation accuracy. Several types of
kernel functions including Sigmoid Kernel, Gaussian (RBF)
Kernel, and Polynomial Kernel are generally used in many
applications; speci
cally, Gaussian Kernel has been widely
used due to excellent performance. In recent years, the
wavelet kernel as a type of multidimensional wavelet can
approximate arbitrary nonlinear function, and Zhang et al.
have proven that wavelet kernel is better than the Gaussian
Kernel [26].

We consider that the wavelet analysis is a function with a
family of functions emerging from dilating and translating of
a mother wavelet function:

ℎ�,� (�) = |K|−1/2 ℎ (� − 'K ) , (16)

where �, K, ' ∈ L, K is a dilation factor, ' is a translation
factor, and ℎ(�) is the mother wavelet. 	e product of one-
dimensional wavelet function can be written as follows:

ℎ (�) = �∏
�=1
ℎ (��) , (17)

where {� = (�1, . . . , ��) ∈ L�}. If �, �� ∈ L�, the dot-
product wavelet kernels are

I(�, ��) = �∏
�=1
ℎ (�� − '�K ) ℎ(��� − '��K ) . (18)

And the translation invariant wavelet kernels are

I(�, ��) = �∏
�=1
ℎ(�� − ���K ) . (19)

With no loss of generality, people can construct Morlet
wavelet functions as translation invariant wavelet kernel
functions as follows:

ℎ (�) = cos (1.75�) exp(−�22 ) . (20)

	e Morlet wavelet function is shown in Figure 2. Equation
(19) de
nes the mother wavelet, of which the wavelet kernel
can be described as follows:

I(�, ��) = �∏
�=1
ℎ(�� − ���K )

= �∏
�=1

(cos(1.75 × �� − ���K )

⋅ exp(−QQQQQ�� − ���QQQQQ22K2 )) .
(21)
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4.2. Particle Swarm Optimization for Parameter of LS-WSVM.
Particle swarm optimization (PSO) is a population based
on stochastic optimization technique inspired by social
behavior of bird �ocking or 
sh schooling [29]. Compared
to genetic algorithm (GA) [30], the advantages of PSO are
easy to implement and there are few parameters to adjust.
	us, it shows better performance with optimization prob-
lems.

In PSO, suppose that the search space is S-dimensional;
there are � particles in the population. 	e position of the
particle 
 in generation % is expressed as S-dimensional vec-
tor, ��(%) = (��1(%), ��2(%), . . . , ���(%)). 	e position represents
the particle velocity vector, V�(%) = (V�1(%), V�2(%), . . . , V��(%)).
	e position and velocity of each particle are replaced con-
tinuously according to the formula as follows:

V
�+1
�	 = � ⋅ V��	 + '1*1 ⋅ ( �best,�	 − ���	) + '2*2

⋅ (T�
best,	 − ���	)

��+1�	 = ���	 + V
�+1
�	 ,

(22)

where % is the updated iteration of the particle. 	e best
position of the 
th particle in S-dimensional search space
can be recorded as follows:  best,�(%) = ( best,�1(%),  best,�2(%),. . . ,  best,��(%)), and the best position in whole swam is
recorded as follows: Ubest,�(%) = (Tbest,�1(%), Tbest,�2(%), . . . ,Tbest,��(%)). '1 and '2 are the acceleration constants. *1 and*2 are two independent random parameters which obey
the uniform distribution ranging for [0, 1]. Parameter �,
being applied to resolve the capabilities of global and local
exploration, should be set as follows:

�� = �max − �max − �min

itermax

× iter, (23)

where �min is theminimal inertia weight and �max is themax-
imal inertia weight, iter is the current iteration number, and
itermax is the maximum iteration number. 	e optimization
procedure is illustrated in Figure 3.

5. The Proposed Intelligent Bearing Fault
Diagnosis Method and Experimental Results

5.1. 
e Proposed Intelligent Bearing Fault Diagnosis Method-
ology. On the basis of the superiorities of FNLM, EEMD,
S�S, and PSO-LS-WSVM, researchers put forward a new
bearing fault diagnosis approach, with the purpose of sorting
multiple and normal types of faulty bearing. Figure 4 shows
the proposed procedure and the steps are displayed as follows.

(1) Samples of vibration signals are taken by acceleration
sensors at a particular sampling frequency under
various operating conditions.

(2) FNLM and EEMDmethods are applied to preprocess
the vibration-based signals, aiming at acquiring a
range of IMF components. Subsequently, for feature
extraction, the 
rst 
ve IMF components with more
important state information are chosen.

Start

Initialize random particles of penalty parameter C
and the kernel parameter a

Calculate �tness values
for each particle

Maximum iteration
number reached?

Update particle velocity
and position

Save optimum solution

End

Yes

No

Set best particle’s pbest

value to gbest

Figure 3: Flowchart of the PSO optimization procedure.

(3) Extract the �, �, and MPDF feature parameters using
S�S; then choose the best IMF with feature param-
eters which describe the bearing health condition to
construct the new fault feature vector.

(4) 	e obtained feature data is partitioned into training
samples and testing samples.

(5) 	e Morlet wavelet kernel function is chosen for
LS-WSVM classi
cation and its parameters are opti-
mized by PSO.

(6) Put the training and testing samples into the classi
er
to conduct automatic fault diagnosis.

5.2. Experimental Results. With the purpose of examining the
e�ectiveness of the proposed approach, the axle box bear-
ing vibration data are used as an example. Figure 5 displays
the experimental test on the axle box bearings of railway
conducted in test rig. 	e test rig for data acquisition con-
sists of two motors, two friction wheels, hydraulic loading
installation, and control electronics (not shown). Experimen-
tal bearing is mounted to the wheelset which is 
xed by
installation of the test rig, and the wheelset is driven by a
friction wheel. Figure 6 displays the experimental test on the
axle box bearings of railway conducted in test rig. Every fault
condition consists of two sizes: the width is set as 0.1mm;
the depth is set as 0.23mm and 0.43mm, respectively. An
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Figure 4: Structure diagram of the proposed fault diagnosis algorithm.

Table 1: Geometrical parameters of the bearings.

Axle box
bearing

Outside diameter
(mm)

Inside diameter
(mm)

Pitch diameter
(mm)

	ickness (mm)
Ball diameter

(mm)
Ball thickness

(mm)

NJ(P)3226X1 250 130 190 80 32 52

accelerometer, attached to the housing with glue, is applied
to collect vibration data. As the occupation at six o’clock of
housing, the accelerometers are located at the two o’clock
position on the housing, with the sampling frequency of
25.6 kHz. 	e parameters of the axle box bearings are shown
in Table 1; and defect frequencies of the axle box bearings are
shown in Table 2.

As shown in Table 2, the present research needs to
distinguish 7 classes in total. For each condition, 80 samples
can be obtained. 	e gathered original signals are classi
ed
into training samples and testing samples for each condition,
with each sample containing 5000 data points. 	e training
samples are used to train the classi
er model and the testing
samples are used to evaluate the e�ectiveness of the proposed
fault diagnosis methods.

Figure 7 shows the typical waveforms in time domain
by FNLM denoising method and EEMD decomposing algo-
rithm. Generally, defect information is contained in the 
rst

ve IMF components, which could be utilized to extract
defect features using S�S. 	e detailed steps to extract S�S
features have already been discussed in Section 3.2.

Table 3 shows characteristic exponent values of all 
ve
modes, and the third mode (c3) performs a better fault indi-
cation, where three values observed under normal situation
and abnormal situations with inner race fault (0.43mm) and
roller fault (0.43mm) are 1.1757, 1.1618, and 1.1409, respect-
ively. 	e above three values are supposed to be pretty close.
	erefore, single alpha values of mode c3 fail to show the dif-
ference of bearing healthy status. Scale parameter andMPDF
value of mode c3 in Tables 4 and 5 show the distinctions
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Table 2: Speci
cations of the bearing defects.

Fault ID Defect type Defect size (mm) Rotating speed (rpm) Defect frequency (Hz)

F1 Normal — 230 —

F2 Outer race (OR) 0.23 230 22.31

F3 Outer race (OR) 0.43 230 22.31

F4 Inner race (IR) 0.23 230 31.35

F5 Inner race (IR) 0.43 230 31.35

F6 Rolling element 0.23 230 11.04

F7 Rolling element 0.43 230 11.04

F F

(1)
(2)

(5)

(6)
(7)

(4)

(3)

Accelerometer

Wheelset

Figure 5: Experimental setup for vibration signal acquisition. (1)
Accelerometer; (2) normal axle box bearing; (3) fault axle box
bearing; (4) installation of wheelset; (5) friction wheel; (6) induction
motor; (7) ground.

Table 3: Characteristic exponent � values of IMFs (c1–c5).

Fault ID IMF1 IMF2 IMF3 IMF4 IMF5

F1 2 1.9838 1.1757 2 1.9888

F2 1.9946 0.9609 0.7953 2 1.9187

F3 2 1.3545 1.1618 2 1.9781

F4 2 1.5353 1.0183 2 2

F5 2 1.9849 1.8908 2 1.9614

F6 2 1.9612 1.2997 1.8759 2

F7 2 1.9279 1.1409 1.9920 2

under di�erent bearing fault conditions. 	us, characteristic
exponent, scale parameter, and MPDF value have been com-
bined to describe the working condition of axle box bearing.
	e parameters �, � and MPDF value of 40 training samples
are aligned in Figures 8(a), 8(b), and 8(c), respectively. It
can be seen that anyone of the three parameters cannot
identify di�erent fault types, but when the three parameters
were combined, samples of the same class exhibit excellent
clustering result in Figure 8(d).

Table 4: Scale parameter � values of IMFs (c1–c5).

Fault ID IMF1 IMF2 IMF3 IMF4 IMF5

F1 0.0028 0.0017 0.0182 0.0437 0.0113

F2 9.4197X − 04 9.9551X − 04 0.0152 0.0115 0.0040

F3 0.0015 0.0013 0.0258 0.0107 0.0038

F4 9.2164X − 04 6.7810X − 04 0.0094 0.0091 0.0037

F5 0.0035 0.0021 0.0097 0.0268 0.0110

F6 8.8241X − 04 5.6481X − 04 0.0054 0.0118 0.0135

F7 6.8524X − 04 4.5847X − 04 0.0073 0.0084 0.0047

Table 5: MPDF values of IMFs (c1–c5).

Fault ID IMF1 IMF2 IMF3 IMF4 IMF5

F1 99.2876 162.8502 16.5710 6.4530 24.9091

F2 299.4869 325.4653 23.8567 24.6207 71.4203

F3 182.225 230.6710 11.7176 26.2765 74.7419

F4 306.0803 422.6269 33.5958 31.0184 77.1418

F5 80.7348 134.6213 29.1551 10.5104 25.6892

F6 319.6866 499.6525 54.0628 24.0175 20.8936

F7 411.6718 615.8217 41.7425 33.5575 59.5689

A�er feature extraction, the di�erent feature sets, includ-
ing�, �,MPDF, and hybrid feature set, are used as input to the
wavelet-based LS-SVM for fault diagnosis. Based on experi-
ence and experimental tests, computation complexity is taken
into consideration in the experiment and the parameters of
PSO optimization are set as follows: the number of particles
is set as 20, the acceleration constants both are set as 2.0, and
the evolutional generation is set as 100. As shown in Table 6,
when using 40 training samples and 40 testing samples as the
input to proposed classi
ers, the classi
ers yield recognition
rates, 88.57% for the � feature, 92.86% for the � feature set,
93.57% for the MPDF feature set, and 95.71% for the hybrid
feature set. It shows that the hybrid feature set contains more
information characterizing the condition of axle box bearing.
Moreover, Figure 9 shows that the consuming time of Morlet
wavelet kernel is shorter than RBF kernel.

For the reason that the performance of diagnosismethods
is closely related to the amount of training samples, we will
study the recognition rates in di�erent samples. In the testing
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(a) (b)

(c) (d)

Figure 6: Arti
cial defects on the components of the axle box bearing: (a) axle box bearing; (b) defect on the outer race; (c) defect on the
inner race; (d) defect on the rollers.

Table 6: Fault diagnosis result of the proposed fault diagnosis
method based on S�S and PSO-LS-WSVM.

Fault feature
Faults classi
cation result (%)

F1 F2 F3 F4 F5 F6 F7 Average accuracy

� 80 100 100 100 55 100 85 88.57

� 100 80 85 100 85 100 100 92.86

MPDF 100 85 80 90 100 100 100 93.57

Hybrid
feature set

100 90 100 95 85 100 100 95.71

experiment, 5, 10, 20, 30, and 40 samples for each class as
the training and testing set were randomly selected, aiming
at assessing the classi
cation accuracy of diverse methods,
respectively. To show the classi
cation accuracy of wavelet-
based LS-SVM and RBF-based LS-SVM in di�erent numbers
of samples, the above training setswere input to the classi
ers,

respectively. 	e comparing recognition results are shown
in Figure 10, which proves that the proposed method has
reached higher recognition accuracy than that of RBF-based
LS-SVM in di�erent training sample. With the increase of
the number of samples, the classi
cation accuracy rate is also
rising, and the proposed approach showed good performance
in the case of a very small number samples.

To obtain the better recognition accuracy, many opti-
mization algorithms including PSO, GA, and Grid Search
(GS) were combined with LS-SVM classi
er. In this paper,
the PSO algorithm is used in our work; thus the GA and Grid
Search algorithm are comparedwith PSO in optimizing para-
meters. 	e parameters of GA are set as follows: the popula-
tion size is set as 20, the iteration number is set as 100, and
the crossover probability and the mutation probability are
set as 0.5 and 0.1, respectively. 	e comparison result of 40
samples for each fault class is shown in Table 7 and Figure
11; the classi
cation result of PSO-LS-WSVM is 95.71%, in
comparisonwith the 92.14% and 93.57% usingGS-LS-WSVM
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Figure 7: (a) Denoised signal a�er FNLM and (b) 
rst 8 IMF components a�er EEMD.

Table 7: Recognition accuracies of the feature classi
cation with di�erent methods.

Fault classi
cation method
Faults classi
cation result (%)

F1 F2 F3 F4 F5 F6 F7 Average accuracy

GS-LS-WSVM 95 82.5 100 90 77.5 100 100 92.14

GA-LS-WSVM 100 87.5 100 85 82.5 100 100 93.57

PSO-LS-WSVM 100 90 100 92.5 87.5 100 100 95.71

and GA-LS-WSVM, respectively. As shown in Figure 11, the
consuming time of PSO-LS-WSVM is longer than that of the
other two approaches. 	e main reason is that PSO is not
good at binary coding. Moreover, the average classi
cation
accuracy of wavelet-based LS-SVM optimized by PSO, GA,
and GS in di�erent number training sets and testing sets is
compared. From Figure 12, it can be seen that the recognition
rate of PSO algorithm is obviously higher than that of the
other twomethods. It can be concluded that the classi
cation
accuracy is a�ected by the number of training samples.

It should be noted that the Morlet-LSSVM method
has better performance than RBF-LSSVM for small feature
dataset. From the above analysis, the result of RBF-LSSVM is
seriously a�ected by the number of training samples in small

size samples. 	e training time and the testing time of the
classi
ers rely on the sample size and coded programming.
Hence, under the same condition, the smaller the sample size,
the less the time it consumes. Furthermore, the consuming
time of the Morlet-LSSVM method is less than that of the
RBF-LSSVM.	is phenomenonmay be attributed to the fact
that the Morlet kernel is approximately orthonormal, but the
RBF kernel is not.

6. Conclusion

We proposed a novel bearing multifault diagnosis method
based on FNLM and EEMD for denoising, symmetric alpha-
stable distribution (S�S) for feature calculation, and an
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Figure 8: Illustration of S�S features of c3: (a) � feature parameter; (b) � feature parameter; (c) MPDF feature parameter; (d) combined�-�-MPDF clustering result.

appropriate PSO-LS-WSVM classi
er. 	e results of exper-
iment suggest that the denoised method FNLM-EEMD
improves eciency of defect feature extraction, and the
proposed S�S parameter extraction method is capable of
making the most discriminate and ecient features for
fault diagnosis. By comparing combinations of S�S feature
parameter with the LS-SVM based Morlet wavelet kernel
and RBF-based classi
ers and then optimizing with di�erent
algorithm, respectively, the classi
cation capacity of the
above classi
cation methods has been studied under various
sizes of training and testing samples. All results reveal that

the wavelet-LSSVM has better performance than the RBF-
LSSVM when the size of data sample is very small. For its
higher recognition accuracy and computational eciency,
the bearing fault diagnosis based on FNLM-EEMD, S�S, and
the PSO-LS-WSVMclassi
er is an e�ective and powerful tool
for monitoring the health status of axle box bearings.
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