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ABSTRACT In this study, a novel Fault-Tolerant Control Methodology (FTCM) is developed for robot

manipulators. First, to overcome singularity glitch and to enhance convergence time of conventional Terminal

Sliding Mode Control (TSMC), a new Fast Terminal Sliding Mode Surface (FTSMS) is constructed. Next,

to reduce the computation complexity and to provide requirements about undefined nonlinear functions

for the control system, a Disturbance Observer (DO) to estimate uncertain dynamics, external distur-

bances, or faults. Besides, a Super-Twisting Reaching Control Law (STRCL) is designed to compensate

for the estimated error of disturbance observer with chattering rejection. Final, a novel, robust, FTCM

was developed for robot manipulators to obtain the stability goal of the system, to reach the prescribed

performance, and to overcome the effects of disturbances, nonlinearities, or faults. Accordingly, the proposed

FTCM has remarkable features, such as fast convergence speeds, robust precision, high tracking perfor-

mance, significant alleviation of chattering behavior, and finite-time convergence. The position tracking

computer simulations were implemented to exhibit the effectiveness and feasibility of the suggested FTCM

compared with other control algorithms.

INDEX TERMS Fault-tolerant control, Non-Singular Fast Terminal Sliding Mode Control, robotic manip-

ulators, disturbance observer, Super-Twisting Control Law.

I. INTRODUCTION

RRobots are essential for manufacturing, human life, and

performing complex tasks nowadays and in the future. With

the need for high-quality products, the robot is more widely

used. To achieve quality products with high productivity,

the robot system must be operated smoothly, reliably, and

safely. Unfortunately, Roboticmanipulators unavoidably face

many complicated uncertainties caused by unmodeled and

unknown dynamic models, nonlinear frictional forces, exte-

rior disturbances, or faults. Consequently, this leads to obsta-

cles for the control design process and precise control of robot

manipulators. The tracking control of robotic manipulators

has concerned many scientists in studying its potential capa-

bility. The tracking control method of robotic systems that

The associate editor coordinating the review of this manuscript and

approving it for publication was Ton Do .

require a high degree of precision, safety, and stability during

operation has been an important subject in both theoretical

and practical applications [1], [2]. Developing solutions to

enhance the tracking performance and fast response of robotic

systems, specifically with respect to uncertainty, external

disturbances, and possible faults, continues to present a

challenge in robotics research. To enhance the reliability,

tracking performance, and safety of robotic systems in all

cases, Fault-Tolerant Control Methods (FTCMs) have been

recommended [3]–[9], however, it is difficult to apply fault-

tolerant controls in robotic systems due to high nonlinearities,

external disturbances, and dynamic uncertainties. Further-

more, the time delay implicit in mechanical systems is also

a concern for the performance of FTCM. FTCMs can be

categorized as either passive FTCM or active FTCM [10].

In the passive FTCM, a control system is constructed

without fault detection process for both standard and fault
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conditions. Therefore, the performance of the control sys-

tem is depended on the robust properties to handle external

disturbances or uncertainties. As published in the literature,

several FTCMs have been successfully adopted to control

uncertain nonlinear systems. Noteworthy examples such as

sliding mode FTCM [11]–[13] or adaptive FTCM [14]. The

remarkable characteristics of the passive FTCM are fast

response with external disturbances, uncertainties or fault

occurrence. However, this method needs partial information

about possible system faults and capability solves high mag-

nitude faults. Consequently, it is limited in applying to the

real robot system.

Different from the passive FTCM, In the active FTCM,

the output signal of the controller is constantly adjusted

according to a fault approximation response, which is esti-

mated by a fault diagnosis observer (FDO) [14]–[17]. As a

result, the control performance of the active FTCM depends

on the fault information accuracy. The active FTCM with

the exact fault information will provide performance better

than that of a passive FTCM and therefore it is more suitable

for real robot applications. On the other hand, wrong fault

information leading to the robot system runs loss stability

and damage. Therefore, designing an active FTCM based

on the exact fault observation is really challenges for the

researchers. In controlling robot manipulators, active FTCM

offers a control performance better than passive FTCM due

to compensation from online control reconfiguration.

In the literature, several control methods, which can

be adapted for use in the FTCM design, have been suc-

cessful in controlling robot systems in real-world appli-

cations with uncertainties, disturbances, or faults. The

successful control methods employed in these studies include

Computed Torque Controllers (CTC) [15], PID controllers

[18], [19], Synchronization Controllers (SCs) [20], [21],

intelligent controllers [22]–[25], a predictive controller [26],

Adaptive Controllers (ACs) [27], [28], and Sliding Mode

Controllers (SMCs) [29]–[33]. Among these mentioned con-

trol methods, SMC has a simple design, a robust control

algorithm, and a proven ability to solve perturbations, uncer-

tainties, or system faults. SMC has attracted a great deal of

attention in control system as well as in FTCM [11]–[13].

Unfortunately, the classical SMC is not an optimal solution

for all robot control problems because of its limitations,

which include chattering behavior, singularity phenomena,

and the requirement to know the upper limit values of distur-

bances, uncertainties, and faults in advance. Recently, several

studies have proposed enhanced control algorithms to handle

the SMC control obstacles [34]–[36]; these control schemes

applied a nonlinear sliding variable for the improvement of

the transient performance, called the Terminal Sliding Mode

Control (TSMC).

Generally, the conventional TSMC can be used solve

the problems associated with classical SMC, but issues

persist with the singularity phenomenon, and convergence

speeds can be slower for TSMC than for SMC. Hence,

to remove the singularity phenomenon issue and improve

convergence speed at the same time, Non-Singular Fast

Terminal Sliding Mode Controllers (NFTSMCs) have been

developed [37]–[40].

Despite their advantages, it is important to note that serious

chattering phenomena will occur whenever using one of the

above control schemes in real robotic systems (e.g., SMC,

TSMC, and FNTSMC) with a large sliding gain value in the

switching control law. Consequently, the chattering can com-

promise the robustness behavior of the control system and

significantly weaken its performance. As such, researchers

have focused a lot of effort to develop methods that elimi-

nate chattering, including Boundary Layer (BL) [41]–[43],

High-Order Sliding Mode Control (HOSMC) [43]–[45],

Super-Twisting Algorithm (STA) [46], or Full-Order Sliding

Mode Control (FOTSMC) [47]–[51]. However, these meth-

ods using BL to eliminate chattering come with tradeoffs

and require selection between weakening the chattering phe-

nomenon or the path tracking precision. On the contrary,

HOSMC, STA, or FOTSMC offers both higher tracking

precision and chattering dismissal. Therefore, in this study,

we develop a novel, robust FTCM with STRCL to achieve

the control target with smooth control input signals.

As mentioned, the active FTCM will provide control per-

formance better than that of a passive FTCM when the exact

fault information is used. Therefore, to precisely estimate the

effects of the uncertainties, disturbances, or faults acting on

the robot system, a simple resolution is to design observers.

Researching this trend, numerous observers based on control

schemes have been established [52]–[55]. With those control

algorithms, firstly, a disturbance observer is constructed to

estimate external disturbance and uncertainty terms. Then,

these estimated values are supported for feedforward control

technique to compensate for disturbances and uncertainties in

the system. Noteworthy is that, according to the stable condi-

tion of the SMC, the sliding gain values must assign greater

than the boundary values of disturbances and uncertainties in

the system [33]. However, the large sliding gain values will

cause serious chattering. For this reason, a simple resolution

reduced the chattering in control input is that the effects of

disturbances and uncertainties must cut down on the system.

According to the mentioned solution, DO has been added into

the SMC to compensate for the effects of disturbances and

uncertainties to reject the chattering behavior [56], [57].

For all control methods based on SMC, TSMC,

NFTSMC, or FOTSMC, the two greatest challenges are to

achieve an exact value of the upper bounds for the lumped

uncertain terms and an exact robot model in the design pro-

cedure of the control system. To overcome these challenges,

many types of SMC and TSMC have been suggested based on

ACs because they can automatically adapt the control param-

eters to reject the influences of environmental disturbances,

uncertainties, or faults [42], [58]–[61]. And, to approx-

imate unknown nonlinear functions, several computing

attempts have been suggested, such as Neural Networks

(NNs) [23], [39], [62], [63] and Fuzzy Logic Systems (FLSs)

[22], [64], due to their approximation capabilities.
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However, using NNs or FLSs to approximate unknown non-

linear functions lead to increases the complex calculations for

the control system.

Purposed by the above analysis, the aim of this report is

to design a novel FTCM for robot manipulators based on

the combination of NFTSMC, DO, and STRCL that solves

several important problems: 1) speedy transient performance;

2) convergence in a short time; 3) rejection of the chattering

phenomenon; (4) highly effective for trajectory tracking con-

trol with the presence of exterior disturbances, uncertainties,

component or actuator faults; 5) rejects the requirement for

prior information about upper bound values of exterior dis-

turbances, uncertainties, or faults.

The remainder of this report is outlined as follows: The

problem statement is given in section 2. Section 3 describes

the design process of the proposed FTCM. In section 4,

the proposed FTCM is applied to a robotic system [65], and

its simulation tracks the prescribed pathway and compares

it to control schemes based on conventional SMC [33], [66]

and TSMC [34] to inspect positional errors, fast transient

performance, and chattering phenomenon rejection. Finally,

section 5 summarizes the notable conclusions of this work.

Notations: Several symbols are utilized throughout this

paper, ‖∗‖ and |∗| correspond to the Euclidean norm and

modulus, while N and R correspond to the spaces of natural

numbers and real numbers, respectively. {∗}−1 and {∗}T cor-

respond to inverse of and matrix transpose of, respectively.

II. STATEMENT OF THE PROBLEM

A. THE PROBLEM STATEMENT

Consider the robotic dynamic equation explained by:

θ̈ = M−1 (θ)
(

τ − Vm
(

θ, θ̇
)

θ̇ − Fr
(

θ̇
)

− G (θ)− τd
)

+ψ
(

t − Tf
)

ω
(

θ, θ̇ , τ
)

(1)

where θ (t) , θ̇ (t) , θ̈ (t) ∈ Rn represent the position, velocity

and acceleration at each joint of the robot system, respec-

tively, M (θ) ∈ Rn×n is the inertia matrix, Vm
(

θ, θ̇
)

∈ Rn×1

indicates the Coriolis and centrifugal forces, G (θ) ∈ Rn×1

is the gravitational force term, τ (t) ∈ Rn×1 represents the

control input torque, τd (t) ∈ Rn×1 indicates anonymous

disturbances, ψ
(

t − Tf
)

ω
(

θ, θ̇ , τ
)

is the unexpected fault

terms that affect the robotic system, Tf indicates the time

instant that a fault occurs, the ψ
(

t − Tf
)

function gives the

time profile of a fault that occurs at some unknown time Tf ,

and ω
(

θ, θ̇ , τ
)

is the bounded but uncontrollable term of the

controlled system output.

The following fundamental property satisfies the robot

dynamic model (1):

Property 1: The inertia matrix is a positive definite matrix

and limited as follows:

0 < λmin {M (θ)} 6 ‖M‖ 6 λmax {M (θ)} 6 ϒ,

ϒ > 0 (2)

where λmin {M (θ)} and λmax {M (θ)} correspond to the min-

imum and maximum eigenvalues of the inertia matrix.

The ψ
(

t − Tf
)

function is defined as a diagonal matrix

with the following form:

ψ
(

t − Tf
)

= diag
{

ψ1

(

t − Tf
)

, · · · , ψn
(

t − Tf
) }

(3)

In the literature, there are two types of faults that have been

identified, including abrupt and incipient faults, according to

the following formula:

ψ
(

t − Tf
)

=

{

0, t 6 Tf

1 − e−ν
(

t − Tf
)

, t > Tf
(4)

where ν > 0 indicates the unknown fault evolution rate.

When the value of ν is small, it characterizes incipient

faults. While ν is large, the formula characterizes abrupt

faults.

To simplify the analysis and design in the control system,

the robot dynamic model (1) can be rearranged:

θ̈ = M−1 (θ) τ +M−1 (θ)
(

Vm
(

θ, θ̇
)

θ̇ + G (θ)
)

+M−1 (θ)
(

Fr
(

θ̇
)

+ τd
)

+ ψ
(

t − Tf
)

ω
(

θ, θ̇ , τ
)

(5)

Here, we assign x1 = θ, x2 = θ̇ , x = [x1, x2]
T and u = τ ;

thus, the dynamic mode (5) can be described according to the

following expression:
{

ẋ1 = x2

ẋ2 = q (x) u− H (x)−1
(6)

where H (x) = M−1 (θ)
(

Vm
(

θ, θ̇
)

θ̇ + G (θ)
)

indicates the

known element, q (x) = M−1 (θ) represents a smooth

nonlinear function, and 1 = M−1 (θ)
(

Fr
(

θ̇
)

+ τd
)

−

ψ
(

t − Tf
)

ω
(

θ, θ̇ , τ
)

gives the anonymous element in the

system dynamics.

Our goal is to propose a robust, active FTCM such that

this control algorithm can provide the prescribed performance

regardless of disturbances, uncertainties, and faults.

The following constraint is assumed for the control design

approach.

Assumption 1: The modelling uncertainty is bounded such

that

‖1‖ 6 3 (7)

where 3 are arbitrary positive constants.

III. FTCM FOR ROBOT MANIPULATORS BASED ON

NFTSMC, DO, AND STRCL

This section presents FTCM for robot manipulators based

on the combination of NFTSMC, DO, and STRCL, which

secures the stabilization of the system and obtains the pre-

scribed tracking performance.

A. DESIGN OF THE NEW FTSMS

To overcome singularity glitch and to enhance conver-

gence time of conventional TSMC, the new FTSMS is con-

structed as:

σi = ėi +
2γ1

1 + E−µ1(|ei|−φ)
ei

+
2γ2

1 + Eµ2(|ei|−φ)
|ei|

αsgn (ei) (8)
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where σ ∈ Rn is the FTSMS, E defines as exponential

function. Likewise, ei = x1i − xri represents the positional

control error, and ėi = ẋ1i− ẋri represents the velocity control

error xr ∈ Rn is the prescribed reference path. Furthermore,

γ1, γ2, µ1, µ2 are the positive constants, 0 < α < 1, and

φ =
(

γ2
γ1

)1/(1−α)
.

Based on the SMC, the following terms must be satisfied

when the control errors run in the sliding mode:

σi = 0;

σ̇i = 0 (9)

Combining dynamic (8) with terms (9) gives:

ėi = −
2γ1

1 + E−µ1(|ei|−φ)
ei −

2γ2

1 + Eµ2(|ei|−φ)
|ei|

αsgn (ei)

(10)

To prove that ei = 0 is an equilibrium point, and it

will converge to zero in finite time, the following Lyapunov

function is considered:

V1 = 0.5e2i (11)

Calculating time derivation of Lyapunov function (11) and

noting (10), we can yield as:

V̇1 = eiėi

= −
2γ1

1 + E−µ1(|ei|−φ)
e2i −

2γ2

1 + Eµ2(|ei|−φ)
|ei|

α+1

< 0 (12)

The inequality (12) confirms ei = 0 in finite-time accord-

ing to Lyapunov criterion.

Once |ei (0)| > φ, the sliding motion includes two phases:

The first phase: ei (0) → |ei| = φ, the first part of Eq. (10)

offers the role of providing a rapid convergence speed and

the second part plays a secondary role.

t1
∫

0

dt =

ei(0)
∫

φ

1
2γ1

1+E−µ1(|ei|−φ)
ei +

2γ2

1+Eµ2(|ei|−φ)
|ei|

α
d (|ei|)

<

ei(0)
∫

φ

1

γ1 |ei|
d (|ei|) =

ln (|ei (0)|)− ln (φ)

γ1
(13)

The second phase: |ei| = φ → ei = 0, the second

component of Eq. (10) offers the role greater than the first

one.

t2
∫

0

dt =

φ
∫

0

1
2γ1

1+E−µ1(|ei|−φ)
ei +

2γ2

1+Eµ2(|ei|−φ)
|ei|

α
d (|ei|)

<

φ
∫

0

1

γ1|ei|
α d (|ei|) =

1

γ2 (1 − α)
|φ|1−α (14)

The time total of the sliding motion phase is defined as:

Ts = t1 + t2

<
ln (|ei (0)|)− ln (φ)

γ1
+

1

γ2 (1 − α)
|φ|1−α (15)

The state variable of the dynamic (10) converge to sliding

manifold(σ (0) → 0) within the defined time Tr , which was

point out in [67]. Therefore, the time total for stability on the

sliding manifold is computed as: T ≤ Tr + Ts.

B. DESIGN OF NFTSMC

With system (6), ë is described as follows:

ë = q (x) u− H (x)−1− ẍr (16)

Let us take the time derivation of Eq. (8):

σ̇ = ë+
2γ1

1 + E−µ1(|e|−φ)
ė+

2γ1µ1ėsgn (e)E
−µ1(|e|−φ)

(

1 + E−µ1(|e|−φ)
)2

e

+
2γ2α

1 + Eµ2(|e|−φ)
|e|α−1ė−

2γ2µ2ėE
µ2(|e|−φ)

(

1 + Eµ2(|e|−φ)
)2

|e|α (17)

Noting result (16), therefore, Eq. (17) becomes:

σ̇ = q (x) u− H (x)−1− ẍr +
2γ1

1 + E−µ1(|e|−φ)
ė

+
2γ1µ1ėsgn (e)E

−µ1(|e|−φ)

(

1 + E−µ1(|e|−φ)
)2

e

+
2γ2α

1 + Eµ2(|e|−φ)
|e|α−1ė−

2γ2µ2ėE
µ2(|e|−φ)

(

1 + Eµ2(|e|−φ)
)2

|e|α

(18)

In order to reach the prescribed tracking performance,

the following control method is designed for the robotic

system (1):

u = −q−1 (x) (un + ur ) (19)

where the term of the nominal control, un, holds the path of

the control errors on the FTSMS (8). un is defined as follows:

un = −H (x)− ẍr +
2γ1

1 + E−µ1(|e|−φ)
ė

+
2γ1µ1ėsgn (e)E

−µ1(|e|−φ)

(

1 + E−µ1(|e|−φ)
)2

e

+
2γ2α

1 + Eµ2(|e|−φ)
|e|α−1ė−

2γ2µ2ėE
µ2(|e|−φ)

(

1 + Eµ2(|e|−φ)
)2

|e|α

(20)

In order to combat the influences of the lumped anonymous

elements on dynamics of the robot manipulator, a reach-

ing control law is proposed according to the following

expression:

ur = (3+ ρ) sgn (σ ) (21)

where ρ is a minor positive constant.
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Remark 1: The convergence condition of slidingmode only

guarantees that the initial motion point at any position in the

state space can approach the sliding surface within a defined

time, and there is no limitation on the prescribed pathway

of the reaching motion. The reaching law enhances faster

convergence time of reaching motion.

C. STABILITY ANALYSIS OF NFTSMC

Applying control input signals (19)-(21) to Eq. (18) gives:

σ̇ = −ur −1 (22)

To confirm the correctness of the control commands

(19)-(21), the Lyapunov function is defined as:

V2 = 0.5σ Tσ (23)

Therefore, the time derivative of Eq. (23) is given as:

V̇2 = σ T σ̇ (24)

Now, substituting Eq. (22) into Eq. (24), we can yield the

following inequality:

V̇2 = σ T (−ur −1)

= σ T (− (3+ ρ) sgn (σ )−1)

= (−3 |σ | −1σ)− ρ |σ |

≤ −ρ |σ | (25)

From inequality (25), it is apparent that the robotic system

of Eq. (1) is globally stable under the control law (19)-(21),

and the control errors will approach zero in a short time

regardless of disturbances, uncertainties, and faults. However,

the main challenge in scheming an FTCM based on SMC,

TSMC, or NFTSMC is serious chattering. To overcome the

above challenge, proposed FTCM for robot manipulators is

developed and clearly stated below.

D. DESIGN OF DO

The lumped uncertain component can be described according

to estimation, as follows:

1 = 1̂+ 1̃ (26)

where 1̂ is the estimated value of the lumped uncertainty of

1, it is used to compensate the effects of the lumped uncertain

term, and 1̃ is the estimated error of disturbances, 1̃ =

[1̃1, . . . , 1̃n], this estimated error is assumed to be bounded

by an unknown positive constant, ‖1̃i‖ ≤ 5i|σi|
0.5; i =

1, . . . , n with 5i > 0.

We design an observer to estimate the lumped uncertain

term for the system (6) with time-varying disturbance as:

˙̂
1 = k1

(

ω̂ − ẋ1
)

˙̂ω = q (x) u− H (x)− 1̂− k2
(

ω̂ − ẋ1
)

(27)

where 1̂ is the estimated value of 1, and ω̂ is the estimated

value of x2, k1 > 0, k2 > 0.

E. STABILITY ANALYSIS OF DO

Let us select the Lyapunov function for DO (27) as:

V3 = 0.5
1

k1
1̃2 + 0.5ω̃2 (28)

where 1̃ = 1 − 1̂ is the estimated error of disturbances,

ω̃ = x2 − ω̂ is the estimated error of the state variable x2.

Taking time derivative of Eq. (28), we have:

V̇3 =
1

k1
1̃

˙̃
1+ ω̃ ˙̃ω

=
1

k1
1̃

(

1̇−
˙̂
1

)

+ ω̃
(

ẋ2 − ˙̂ω
)

=
1

k1
1̃1̇−

1

k1
1̃

˙̂
1+ ω̃

(

ẋ2 − ˙̂ω
)

(29)

Substituting Eqs. (26) and (27) into Eq. (29) gives:

V̇3 =
1

k1
1̃1̇+ 1̃ω̃ + ω̃

(

−1+ 1̂+ k2
(

ω̂ − ẋ1
)

)

=
1

k1
1̃1̇− k2ω̃

2 ≤ 0 (30)

When k1 is selected as a relative large value, we have
1
/

k1
1̇ ≈ 0. Obviously, the lumper uncertainty can be esti-

mated by this DO, and the compensation of the lumped

uncertain term will be realized in the designed controller.

F. DESIGN OF THE PROPOSED FTCM

In this paper, the FTCM is proposed for robot manipulators

to achieve high performance with no significant chattering as

follow:

u = −q−1 (x) (un + ur ) (31)

where, the un is designed based on novel FTSMS and DO as

follows:

un = −H (x)− 1̂− ẍr +
2γ1

1 + E−µ1(|e|−φ)
ė

+
2γ1µ1ėsgn (e)E

−µ1(|e|−φ)

(

1 + E−µ1(|e|−φ)
)2

e

+
2γ2α

1 + Eµ2(|e|−φ)
|e|α−1ė−

2γ2µ2ėE
µ2(|e|−φ)

(

1 + Eµ2(|e|−φ)
)2

|e|α

(32)

and STRCL of ur is designed as

ur = ϒ1|σ |0.5sgn (σ )+ η

η̇ = −ϒ2sgn (σ ) (33)

where ϒ1 = diag (ϒ11, . . . , ϒ1n) and ϒ2 = diag(ϒ21, . . . ,

ϒ2n). ϒ1i and ϒ2i are assigned to satisfy the following rela-

tionship[63]:






ϒ1i > 25i

ϒ2i > ϒ1i

55iϒ1i + 452
i

2 (ϒ1i − 25i)
;

i = 1, 2, . . . , n (34)

BlockDiagram of the designed control system is illustrated

in Fig. 1.
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FIGURE 1. Diagram of the proposed FTCM.

G. STABILITY ANALYSIS OF THE PROPOSED FTCM

To verify correctness of the proposed system (31)-(33),

the following procedure:

Applying control commands (31)-(33) to Eq. (18) gains:
{

σ̇ = 1̃− ϒ1|σ |0.5sgn (σ )− K

K̇ = −ϒ2sgn (σ )
(35)

Now, using one of the elements in Eq. (35) as follows:
{

σ̇i = 1̃i − ϒ1i|σi|
0.5sgn (σi)− Ki

K̇i = −ϒ2isgn (σi)
(36)

Let us consider the following Lyapunov function for

dynamic (36):

V4 = κTQκ (37)

Here, κ =
[

σ 0.5
i , λi

]T
, Q = 1

2

[

4ϒ2i + ϒ2
1i

−ϒ1i

−ϒ1i

2

]

.

If ϒ2i > 0, so, according to Rayleigh’s inequality:

λmin (Q) ‖κ‖
2 ≤ V4 ≤ λmax (Q) ‖κ‖

2 (38)

with ‖κ‖2 = |σi| + η2i .

Taking the time derivation of Eq. (37), we can yield:

V̇4 = −
1

|σi|
0.5
κTPκ +

1

|σi|
0.5

[

1̃i, 0
]

Qκ (39)

with P = ϒ1i
2

[

2ϒ2i + ϒ2
1i

−ϒ1i

−ϒ1i

1

]

.

With Assumption

∥

∥

∥
1̃i

∥

∥

∥
≤ 5i|σi|

0.5; i = 1, . . . , n, it can

gain:

V̇4 ≤ −
1

|σi|
0.5
κT P̃κ

≤ −
1

|σi|
0.5
λmin

(

P̃
)

‖κ‖2 (40)

where

P̃ =
ϒ1i

2





(

2ϒ2i + ϒ2
1i

− (4ϒ2i + ϒ1i)5i

)

− (ϒ1i + 25i)

− (ϒ1i + 25i) 1



 .

We select P̃ > 0. So, V̇4 < 0.

Employing inequality (38) obtains:

|σi|
0.5 ≤ ‖κ‖ (41)

It follows that

V̇4 ≤ υV 0.5
4 (42)

with υ =
λmin

(

P̃
)

λ0.5max(Q)
.

Refer to [67], σi = 0 and σ̇i = 0 in finite-time

(tri = 2V 0.5
4 (t = 0)

/

υ). Therefore, σ = 0 and σ̇ = 0 in

finite-time (Tr = maxi=1,...,n {tri}) and ei,ėi also stabilize

to zero in finite-time (T ≤ Tr + Ts) under the control

commands (31)-(33).

IV. SIMULATION RESULTS AND DISCUSSION

To exhibit the tracking performance of the suggested control

method, position tracking computer simulations were per-

formed for a PUMA 560 robot [65]. For convenience in the

analysis, in this work, we only consider a robot manipulator

with the first three joints (the remainder three joints were

locked). The kinematic and dynamic model with the crucial

parameters found in a 3-DOF PUMA560 robot manipulator

has been previously described in detail [65].

The friction and disturbance term at each joint are mod-

elled as follows:

Fr
(

θ, θ̇
)

+ τd =











1.5 sin
(

(t − 2) θ̇1
)

+ 1.2θ31
1.3 sin

(

(t − 2) θ̇2
)

+ 1.1θ32
2.5 sin

(

(t − 2) θ̇3
)

+ 1.3θ31

(43)
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FIGURE 2. Assumed and estimated value of disturbance, uncertainty, and fault: (a) at the first Joint,
(b) at the second Joint, and (c) at the third Joint.

The reference joint paths for the position tracking at each

joint are designed according to the following expression:

xr =

















0.5 + cos

(

t

5π

)

− 1

−0.5 + sin

(

t

5π
+
π

2

)

0.5 + sin

(

t

5π
+
π

2

)

− 1

















(44)

The initial position trajectories for the robotic system were

indicated as θ1 (0) = 0, θ2 (0) = 0, θ3 (0) = 0, θ̇1 (0) = 0,

θ̇2 (0) = 0, and θ̇3 (0) = 0.

MATLAB/Simulink software was used to perform all sim-

ulations with a fixed-step size of 10−3s.

In order to exhibit the improvements in the tracking per-

formance gained by using the suggested control algorithm,

its reference path performances were compared with other

control algorithms, including the normal SMC [33] and

NFTSMC [37], [68], [69]. The details of SMC and NFTSMC

design are briefly described as follow:

The normal SMC [33] has the following control torque:

u = −q−1 (x)

[

H (x)+ c (x2 − ẋr )− ẍr
+ (6 + ξ) sgn(σ )

]

(45)

where σ = ė+ce is the linear sliding manifold, c is a positive

constant.

Further, the NFTSMC [69] has the following control

torque:

u = −q−1 (x)

[

H (x)+̟
q
l
ė2−l/q − ẍr

+ (6 + ξ) sgn (σ )

]

(46)

where σ = e+̟−1ėl/q is a nonlinear sliding manifold.

TABLE 1. Control parameter selection of control algorithms.

The control parameters that were selected for use in the

algorithms are depicted in Table 1. The performance simu-

lations were carried out in cases of both normal and fault

operations to compare the controllers under expressions of

positional accuracy, transient response, steady-state error, and

the resulting chattering phenomenon in their control inputs.

For situation 1, the systemwas controlled in normal operating

condition with the assumed disturbances and uncertainties.

For situation 2, the system was controlled in fault operating

conditions with the assumed disturbances, uncertainties, and

faults.
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FIGURE 3. Tracking positions are provided by SMC, NFTSMC, and proposed controller: (a) at the first Joint,
(b) at the second Joint, and (c) at the third Joint.

TABLE 2. The average control errors are provided by control systems.

In Situation 1 at times where 0s < t < 10s, we first

consider the robot working in normal operation. The effec-

tiveness of DO is analyzed. The target of DO in this condition

is to precisely approximate the assumed value of disturbances

and uncertainties. The time history of the assumed distur-

bances and uncertainties, and the outputs of DO are illustrated

in Fig. 2. From Fig. 2, it is seen that DO has estimated

the assumed value of disturbances and uncertainties with

high precision, thus, DO provides exact information for the

control loop in this phase. The tracking positions, positional

control errors, and velocity control errors of the three joints

for all three of the tested control algorithms are shown in

Figs. 3, 4, and 5, respectively. Table 2 states the aver-

age control errors which are provided by SMC, NFTSMC,

and proposed controller. From the simulation results in

Figs. 3, 4, and 5, we observed that each control algorithm

offered good tracking performance when the assumed distur-

bances and uncertainties were applied to the robotic dynamic

system. SMC, NFTSMC, and proposed controller are based

on the SMC to design a control approach. Therefore, those

controllers preserve the robust ability of SMC in mitigating

disturbances and uncertainties, as well as the ability to obtain

high position tracking accuracy. It is noteworthy that the

controller suggested in this study has the best performance

compared to the other tested control algorithms because it

preserves the low steady-state error and the fast-transient

response properties of the NFTSMC, exact information from

DO, and STRCL. The reader can see the results reported

in Table 2.

Fig. 6 shows response time of the sliding mode manifolds

at the first three joints of the robot manipulator. It is seen that

the novel FTSMS has a fast-transient response.

In Situation 2 at times where 10s 6 t 6 40s, the fault-

tolerant ability of all tested control methods was considered

to inspect the influences of the faults to the robot manipula-

tor, and a fault function was assumed in the robotic system

according to the following expression:

ω
(

θ, θ̇ , τ
)

=













(

25 sin (θ1θ2)+ 1.5 cos
(

θ̇1θ2
)

+2.5 cos
(

θ̇1θ̇2
)

)

0.3 sin (t) u2
(

15 sin (θ3θ1)+ 1.2 cos
(

θ̇2θ2
)

+2.5 cos
(

θ̇2θ̇3
)

)













Tf > 10s (47)
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FIGURE 4. Positional control errors are provided by SMC, NFTSMC, and proposed controller: (a) at the first Joint,
(b) at the second Joint, and (c) at the third Joint.

FIGURE 5. Velocity control errors are provided by SMC, NFTSMC, and
proposed controller: (a) at the first Joint, (b) at the second Joint, and
(c) at the third Joint.

From Eq. (47), an abrupt fault, 25 sin (θ1θ2) + 1.5 cos
(

θ̇1θ2
)

+ 2.5 cos
(

θ̇1θ̇2
)

, was assumed to appear in the first

joint at times where t > 10s, the effectiveness of the con-

trol input at the second joint was assumed to be damaged

by 0.3 sin (t) u2 once the time reached t > 10s, and an

FIGURE 6. Response time of the sliding mode manifolds: (a) at the first
Joint, (b) at the second Joint, and (c) at the third Joint.

abrupt fault, 25 sin (θ1θ2) + 1.5 cos
(

θ̇1θ2
)

+ 2.5 cos
(

θ̇1θ̇2
)

,

was assumed appear in the third joint at times where t > 10s,

during the simulation. The effectiveness of DO is also inves-

tigated. The goal of DO in the second phase is to precisely

approximate the assumed disturbances, uncertainties, faults.

109396 VOLUME 8, 2020



A. T. Vo, H.-J. Kang: Novel FTCM for Robot Manipulators Based on Non-Singular Fast TSMC and DO

FIGURE 7. Control input signals are provided by SMC, NFTSMC, and proposed controller: (a) at the first Joint,
(b) at the second Joint, and (c) at the third Joint.

From Fig. 2, it is observed that DO also has the ability to

estimate the assumed value of disturbances, uncertainties, and

faults with high accuracy, thus, DO exactly provides infor-

mation of these lumped uncertain components for designed

control loop in fault occurrence phase.

From Figs. 3, 4, 5, and Table 2, we observed that SMC

offers the poorest path tracking performance, where the oper-

ation of the robotic manipulator becomes unstable, especially,

at the third joint, during the presence of a fault. Although

SMC gives good tracking performance for the robotic sys-

tem in cases of disturbances and uncertainties, once faults

appear, the system loses stability instantaneously. NFTSMC

has better tracking performance than SMC, but its accuracy is

low, especially, at the first joint. While the proposed control

algorithm provides a faster transient response and smaller

trajectory tracking error compared to SMC and NFTSMC.

The proposed control algorithm offered the best performance

with respect to tracking errors among the compared control

algorithms because of the combination of NFTSMC, DO, and

STRCL.

Throughout the simulation process in both situations,

the proposed control scheme improves the tracking posi-

tion accuracy at the three joints, respectively in comparison

with SMC, as follows: the first joint (64.85%), the second

joint (62.52%), and third joint (98.11%). And. the proposed

scheme also enhances the tracking position precision at

the three joints, respectively in comparison with NFTSMC,

as follows: the first joint (85.88%), the second joint (45.18%),

and third joint (42.51%).

The control input signals of the controllers, including

SMC, NFTSMC, and suggested control methodology, are

depicted in Fig. 7. The results in Fig. 7 indicates that

suggested control methodology seems to offer a contin-

uous control signal with minor chattering. Because dis-

turbances, uncertainties, faults were estimated by DO.

Moreover, the remaining of the estimated errors also were

handled by STRCL. While SMC and NFTSMC offer dis-

continuous control efforts when both methods applied a large

gain in high-frequency control to combat the effects of those

lumped uncertain components.

From trajectory tracking performance and its performance

comparison, we observed that suggested control algorithm

offers the best performance compared to the other control

methods, including SMC and NFTSMC, under expressions

of the pathway tracking precision, speedy transient response,

small steady state error, and chattering removal.

Remark 2: The parameters for SMC, NFTSMC, and pro-

posed sliding surface were experimentally selected and based

on their convergence properties. For example, γ1, γ2, µ1, µ2

are the positive constants, 0 < α < 1, and φ =
(

γ2
γ1

)1/(1−α)
.

The parameters for the proposed control input with DO and
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STRCL were experimentally chosen to make system stable,

to obtain the desired performance with a fast convergence

time, and to satisfy the conditions, which were mentioned

in the study and have been explained in greater detail by

previous researchers [37], [38], [58], [70]. The parameters of

the controllers, including SMC and NFTSMCwere chosen to

guarantee stability and obtain the good performance (refer to

SMC [33], and NFTSMC [37], [68]).

Remark 3: In this work, we only simulated abrupt faults,

as their influences are larger than incipient faults in a robotic

system. Therefore, since the suggested control scheme can

effectively manage abrupt faults entirely, it is also able to

resolve the influences from incipient faults.

Remark 4: In order to confirm the effectiveness of the sug-

gested control system from a technical viewpoint, it would be

more convincing to demonstrate experimental results on real

systems. Nonetheless, experimenting with various fault types

in a real system is difficult and presents dangerous challenges

and possible damage to the robotic system. Accordingly,

in literature related to fault-tolerant control systems, almost

every strategy, including this report, has adopted simulation

performance to prove the usefulness of controllers [71]–[73].

However, verifying the effectiveness of the suggested con-

trol methodology in experimental patterns by implementing

suitable methods without destroying a robotic system is an

important goal and will be considered in future study.

Remark 5: It should be noted that the control parameters

are chosen by performing repetitive testing and control error

checking. In this condition how to choose these parameters

is a remarkable issue. Future research is to select the optimal

control parameters by applying optimization algorithms.

V. CONCLUSION

In this study, a novel FTCM is developed for robot manipu-

lators. First, to overcome singularity glitch and to enhance

convergence time of conventional TSMC, a new FTSMS

is constructed. Next, to reduce the computation complex-

ity and to provide requirement about undefined nonlinear

functions for the control system, a DO to estimate uncertain

dynamics, external disturbances, or faults. Besides, a STRCL

is designed to compensate the estimated error of distur-

bance observer with chattering rejection. Final, a novel,

robust, FTCMwas developed for robotmanipulators to obtain

the stability goal of the system, to reach the prescribed

performance, and to overcome the effects of disturbances,

nonlinearities, or faults. Accordingly, the proposed FTCM

has remarkable features, including fast convergence speeds,

robustness against uncertainty, high tracking performance,

and convergence errors in finite-time. Furthermore, the con-

trol input signal has impressively small chattering behavior.

Finally, position tracking computer simulations were used

to confirm that the suggested FTCM offers better tracking

performance when compared with other control algorithms.

According to theoretical proof, simulation performance,

and a comparison with both SMC and NFTSMC, the pro-

posed control strategy has some contributions, as follows:

(1) the proposed strategy is easy in implementation, which

provides finite-time convergence, and faster transient per-

formance without singularity obstacle in controlling; (2) the

proposed strategy inherits the advantages of the NFTSMC,

STRCL, and estimation ability of DO in the features of

robustness towards the existing uncertainties; (3) a new

FTSMS was introduced, and evidence of finite-time conver-

gence was sufficiently confirmed; (4) the accuracy of the pro-

posed strategy was further enhanced in the trajectory tracking

control; (5) the proposed strategy displayed the smoother

control torque actions with lesser oscillation.
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