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Abstract Meta-heuristics are frequently used to tackle NP-hard combinatorial op-
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1 Introduction

For many NP-hard combinatorial optimization problems, meta-heuristic algorithms
such as local search [15], simulated annealing [22], evolutionary algorithms [11],
and ant colony optimization [9] have produced good results. Despite the numerous
applications of meta-heuristics to hard combinatorial optimization problems, it is
hard to understand the success of these algorithms from a theoretical point of view.

Strict mathematical investigations, as in the field of the runtime analysis of meta-
heuristics, allow one to prove when and why such algorithms are able to solve certain
types of problems. This field of research has gained increasing interest during the
last decade and there are results for a wide range of meta-heuristic approaches
such as simulated annealing [39], evolutionary algorithms [10], and ant colony
optimization [28]. We refer the reader to the textbook of Neumann and Witt [29]
for a comprehensive presentation of this research area.

The rigorous treatment of these algorithms in a strict mathematical sense is with
no doubt desirable, but comes at the expense that one is usually only able to analyze
simplified algorithms on only restricted classes of problems. With this paper, we
follow a different approach. Our aim is to gain new theoretical insights into the
behavior of meta-heuristics by investigating statistical properties of hard and easy
instances of a given problem for a given algorithm. This relates to previous work
in continuous domains for which the extraction of problem properties that might
influence algorithm performance is an important and current focus of research,
denoted as exploratory landscape analysis [3, 26]. For our investigations on combi-
natorial meta-heuristics, we choose one of the most famous N P-hard combinatorial
optimization problems, namely the traveling salesperson problem (TSP). Given a set
of N cities and positive distances dij to travel from city i to city j, 1 ≤ i, j ≤ N and
i �= j, the task is to compute a tour of minimal traveled distance that visits each city
exactly once and returns to the origin.

In the general case (also known as the asymmetric TSP), the distances between
two cities might even be different, depending on the direction taken. Many subclasses
of the TSP can be defined depending on the constraints that the distances between
cities have to satisfy. For example, the distances only have to satisfy the triangle
inequality in the Metric TSP. The perhaps simplest N P-hard subclass of TSP is the
Euclidean TSP where the cities are points in the Euclidean plane and the distances
are the Euclidean distances between them. We will focus on the Euclidean TSP. It is
well known that there is a polynomial time approximation scheme (PTAS) for this
problem [2]. However, this algorithm is very slow, even for modest instance sizes.

A great number of heuristic approaches has been proposed for the TSP. Often
local search methods are preferred in practice. The most successful algorithms rely
on the well-known 2-opt swap operator, which removes two edges from a current
tour and connects the resulting two parts by two other edges such that a different
tour is obtained [16]. Despite the success of these algorithms for a wide range of TSP
instances, it is still hard to understand 2-opt from a theoretical point of view. In the
following we will denote the complete 2-opt heuristic by “2-opt algorithm” or simply
“2-opt” whereas a related swap of two edges is denoted as “2-opt swap”.

In the past, theoretical studies regarding 2-opt have investigated the approxima-
tion behavior as well as the time to reach a local optimum. Chandra et al. [7] have
studied the worst-case approximation ratio that 2-opt achieves for different classes of
TSP instances. Furthermore, they investigated the time that a local search algorithm
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based on 2-opt needs to reach a locally optimal solution. Englert et al. [12] have
shown that there are even instances for the Euclidean TSP where a deterministic
local search algorithm based on 2-opt would take exponential time to find a lo-
cally optimal solution. Furthermore, they have derived polynomial bounds on the
expected number of steps until 2-opt reaches a local optimum for random Euclidean
instances and proved that such a local optimum gives a good approximation for
the Euclidean TSP. These results also transfer to simple ant colony optimization
algorithms as shown in [20]. A parameterized analysis of evolutionary algorithms
for the Euclidean TSP using a mutation operator based on 2-opt has been recently
carried out in [37]. These results show that evolutionary algorithms are provably
successful if the number of cities that lie in the interior of the convex hull of the
given set of N cities is small.

Most previously mentioned investigations have in common that they either in-
vestigate the worst local optimum and compare it to a global optimal solution or
investigate the worst case time that such an algorithm needs to reach a locally optimal
solution. Although these studies provide interesting insights into the structure of
TSP instances they do not give much insights into what is actually going on in the
application of 2-opt based algorithms. In almost all cases the results obtained by
2-opt are much better than the actual worst-case guarantees given in these papers.
This motivates the studies carried out in this paper, which aim to get further insights
into the search behavior of 2-opt and to characterize hard and easy TSP instances
for 2-opt.

In general, meta-learning is a subfield of machine learning, where learning al-
gorithms are applied to meta-data about experiments. In this article, we take a
statistical meta-learning approach to gain new insights into which properties of a
TSP instance make it difficult or easy to solve for 2-opt. A general overview about
how to measure hardness of instances for combinatorial optimization problems is
given in [35]. By analyzing different features of TSP instances and their correlation
we point out how they influence the search behavior of local search algorithms based
on 2-opt. To generate hard or easy instances for the TSP we use an evolutionary
algorithm approach similar to the one of [34]. However, instead of defining hardness
by the number of 2-opt steps to reach a local optimum, we define hardness by
the approximation ratio that such an algorithm achieves for a given TSP instance
compared to the global optimal solution. This is motivated by classical algorithmic
studies for the TSP problem in the field of approximation algorithms.

In a preliminary conference version [25] of this article, we have presented our
initial approach to predict TSP problem hardness. Having generated instances that
lead to a bad or good approximation ratio, the features of these instances are
analyzed and classification rules are derived, which predict the type of an instance
(easy, hard) based on its feature levels. In addition, instances of moderate difficulty
in between the two extreme classes are generated by transforming hard instances
into easy instances based on convex combinations of both. We call this procedure
“morphing”.

In comparison to [25], we improve and extend our analyses as follows:

1. We will consider several modifications of our initially used EA. First, instances
are forced to cover the whole extent of the underlying plane. Second, the
rounding procedure is slightly altered and we investigate two different rounding
strategies, differing in the sequence of rounding and mutation.
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2. An improved point matching strategy compared to [25] ensures that points move
as little as possible during the transformation. Systematic changes of the feature
levels along this “path” are identified and used for a feature based prediction of
the difficulty of a TSP instance for 2-opt-based local search algorithms.

3. Furthermore, we extend our studies to different instance sizes, whereas the
analysis in [25] was restricted to a single instance size.

4. We further validate our feature set on TSPLIB instances.

The structure of the rest of this article is as follows. In Section 2, we give an
overview about different TSP solvers, features to characterize TSP instances and
indicators that reflect the difficulty of an instance for a given solver. Section 3
introduces an evolutionary algorithm for evolving TSP instances that are hard or
easy to approximate and carries out a feature based analysis of the hardness of
TSP instances. Finally, we finish with concluding remarks and an outlook on further
research perspectives in Section 4.

2 Local search and the traveling salesperson problem

As mentioned above, local search algorithms are frequently used to tackle the TSP.
They iteratively improve the current solution by searching for a better one in its
predefined neighborhood. The algorithm stops when there is no better solution in
the given neighborhood, or if a certain number of iterations has been reached.

Historically, 2-opt [8] was one of the first successful algorithms to solve larger
TSP instances. It is a local search algorithm whose neighborhood is defined by the
removal of two edges from the current tour. The resulting two parts of the tour
are then reconnected by two other edges to obtain another complete tour. A few
years later, this idea was extended to 3-opt [23] where three connections in a tour
are first deleted, and then the best possible reconnection of the network is taken
as a new solution. Lin and Kernighan [24] extended the underlying idea to more
complex neighborhoods by making the number of performed swaps by 2-opt and
3-opt adaptive. Nowadays, variants of these seminal algorithms represent the state-
of-the-art in heuristic TSP optimizers.

Among others, memetic algorithms and subpath ejection chain procedures have
shown to be competitive alternatives to algorithms based on 2-opt and 3-opt swaps,
with hybrid approaches still being investigated today. In the bio-inspired memetic
algorithms for the TSP problem (see [27] for an overview) information about
subtours is combined to form new tours via so-called “crossover operators”. Ad-
ditionally, tours are modified via “mutation operators”, to introduce new subtours.
The general idea behind the subpath ejection chain procedures is that in a first step
a dislocation is created that requires further change. In subsequent steps, the task is
to restore the system. It has been shown that the neighborhoods investigated by the
ejection chain procedures form supersets of those generated by the Lin-Kernighan
heuristic [14].

Contrary to the above-mentioned iterative and heuristic algorithms, Concorde [1]
is an exact algorithm that has been successfully applied to TSP instances with up to
85 900 vertices. It follows a branch-and-cut scheme [30], embedding the cutting-plane
algorithm within a branch-and-bound search. The branching steps create a search
tree, with the original problem as the root node. By traversing the tree it is possible



A novel feature-based approach to characterize algorithm performance

Algorithm 1 2-Opt algorithm

to establish that the leafs correspond to a set of subproblems that include every tour
for our TSP.

2.1 Characterization of TSP instances

In general, the theoretical assessment of problem difficulty of a TSP instance prior to
optimization is usually hard if not impossible. Thus, research has focussed on deriving
and extracting problem properties, which characterize and relate to the hardness of
TSP instances (e.g. [17, 21, 33, 34]). We refer to these properties as features in the
following and subsequently provide an overview. Note that features which are based
on knowledge of the optimal tour [18, 36] cannot be used to characterize an instance
a priori to optimization and are therefore not relevant in the context of this paper.

A natural and considered feature is the number of cities N of the given TSP
instance [17, 21, 33, 34]. In the following, the subset of features introduced in
[17, 21, 33, 34] which we incorporated into our study will be detailed. Almost all
mentioned features are included. However, due to the lack of details given in [21],
some of the discussed features had to be omitted. Furthermore, we present several
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new features we feel additionally relevant, i.e. features based on the minimum
spanning tree (MST) and the angle between neighboring cities.

The features can be classified into eight groups which are detailed in the following.
In total, 47 features are considered.

Distance Features: These are based on summary statistics of the edge cost distrib-
ution. Here, the lowest, highest, mean and median edge costs are considered. The
proportion of edges with distances shorter than the mean distance, the fraction
of distinct distances, i.e. different distance levels, and the standard deviation of
the distance matrix are included as well. The expected tour length for a random
tour, given by the sum of all edge costs multiplied by 2/(N − 1), completes the
list of suitable distance features.
Mode Features: Additional features [17] are the number of modes of the edge
cost distribution and related features such as the frequency and quantity of the
modes and the mean of the modal values. Enhancing the latter approach given
in [17] we include a feature for computing the number of modes of the edge cost
distribution [26].
Cluster Features: GDBSCAN [32] as recommended in [34] is used for clustering
where reachability distances of 0.01, 0.05 and 0.1 are chosen. Derived features
are the the number of clusters and the mean distances to the cluster centroids.
Nearest Neighbor Distance Features: Uniformity of an instance is reflected by
the minimum, maximum, mean, median, standard deviation and the coefficient
of variation of the normalized nearest-neighbor distances (nnd) of each node
[33, 34].
Centroid Features: The coordinates of the instance centroid together with the
minimum, mean and maximum distance of the nodes from the centroid.
MST Features: Statistics which characterize the depth and the distances of the
minimum spanning tree (MST). The minimum, mean, median, maximum and
the standard deviation of the depth and distance values of the MST as well as the
sum of the distances on the MST, which we normalize by diving it by the sum of
all pairwise distances.
Angle Features: This feature subset comprises statistics regarding the angles
between a node and its two nearest neighbor nodes, i.e. the minimum, mean,
median, maximum and the respective standard deviation.
Convex Hull Features: The area of the convex hull of the instance reflects the
“spread” of the instance in the plane. Additionally, the fraction of nodes which
define the convex hull is computed.

R [31] source code for the feature computation can be found online.1 Note that the
features have to be normalized appropriately in order to allow for a fair comparison
of features across instances of different sizes N. Ideally, all instances should be
normalized to the domain [0, 1]2 to get rid of scaling issues. However, the latter will
not be an issue for our experiments as we explicitly generate instances which fill the
[0, 1]2 plane.

In order to assess the difficulty of a given TSP instance, we will use the approxima-
tion ratio that an algorithm achieves for this instance as the optimization accuracy.

1http://www.statistik.tu-dortmund.de/compstat_supplementary_material.html

http://www.statistik.tu-dortmund.de/compstat_supplementary_material.html
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The approximation ratio is given by the relative error of the tour length resulting
from 2-opt compared to the optimal tour length and is a classical measure in the field
of approximation algorithms [38]. Based on the approximation ratio that the 2-opt
algorithm achieves,2 we will classify TSP instances either as easy or hard. Afterwards,
we will analyze the features of hard and easy instances.

3 Analysis of TSP problem difficulty

In this section, we analyze easy and hard TSP instances. We start by describing
the evolutionary algorithm that we used to generate these instances. Later on, we
characterize them using different features which we calculated and analyzed to
determine which features make a TSP instance difficult or easy to solve for 2-opt.

3.1 EA-based generation of easy and hard TSP instances

Our aim is to identify the features that are crucial for predicting the hardness
of instances for the 2-opt algorithm. For this a representative set of instances is
required which contains instances of varying degrees of difficulty. It turned out that
the construction of such a set is a nontrivial task. The generation of instances in
a random manner did not provide a sufficient spread with respect to the instance
hardness. The same is true for moderately sized instances contained in the TSPLIB,
i.e. lower than 1000 nodes, for which, in addition, the number of instances is not high
enough to provide an adequate basis for our analysis. Higher instance sizes were
excluded due to the large computational effort required for their analysis, especially
the computation of the optimal tours.

Therefore, two sets of instances are constructed in the [0, 1]2-plane, which focus
on reflecting the extreme levels of difficulty. An evolutionary algorithm (EA) is used
for this purpose (see Algorithms 2–5 for a description), which can be parameterized
such that its aim is to evolve instances that are either as easy or as hard as possible for
a given instance size. The approach is conceptually similar to [34] but focusses on ap-
proximation quality rather than on the number of swaps as in our view this indicator
more adequately reflects problem hardness. In addition, the EA concept consists of
a different mutation strategy. Initial studies showed that a second mutation strategy
was necessary. “Local mutation” was achieved by adding a small normal perturbation
to the location (normalMutation). “Global mutation” was performed by replacing
each coordinate of the city with a new uniform random value (uniformMutation).
This later step was performed with a very low probability. The two sequential
mutation strategies together enable small local as well as global structural changes
of the offspring resulting from the crossover operation. All parameters are given at
the end of this section.

In contrast to our previous work in [25], a rescaling of the generated instances
ensures the complete coverage of [0, 1]2 in that the minimum and maximum coordi-
nates are placed on the boundary of the instance space (see Fig. 1). Therefore the

2It is important to note that the ratio will be approximated by an empirical average over different
runs of the algorithms with different starting point.
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Algorithm 2 EA for evolving problem easy and hard TSP instances

Algorithm 3 Mating pool creation

area covered will not vary as much as in our previous work and instances become
comparable in this regard.

In addition, two different rounding schemes are investigated which differ in the
sequence of the rounding and normal mutation step. In the first case rounding
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Algorithm 4 Rescale instance

Algorithm 5 Round instance

Fig. 1 Examples. Left:
Rescaling of an instance
of size 25. The original
instance is reflected by
black dots. Right: Rounding
of an instance of size 25
to grid cell centers. The
rounded instance is
visualized by white dots
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is applied after both mutation steps are complete (!rnd, denoted as nrnd in the
following). After rescaling of the generated instance the points are rounded to
force the cities to lie on a predefined grid. This is advantageous for some features
which incorporate the proportion of distinct distances. Secondly, we consider normal
mutation after the sequence of uniform mutation, rescaling and rounding (rnd). This
strategy results in instances which resemble a grid structure but also include slight
perturbations of the latter as it for instance occurs in circuit board problems. The
rounding scheme conceptually differs from rounding to a predefined number of digits
as previously considered in that in the current approach the points are rounded to the
center of the grid cell they are placed in (see Fig. 1). By this means the probability
that cities are located outside the boundary after normal mutation of the rounded
points is very low. In these cases points are cut to the boundary of the plane.

The fitness function to be optimized is chosen as the approximation quality of
2-opt, estimated by the arithmetic mean of the tour lengths of a fixed number of 2-opt
runs, on a given instance divided by the optimal tour length which is calculated using
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Concorde [1]. In general other summary statistics instead of the arithmetic mean
could be used as well such as the maximum, minimum or median approximation
quality achieved. Note that randomness is only induced by varying the initial tour
whereas the 2-opt algorithm is deterministic in always choosing the edge replacement
resulting in the highest reduction of the current tour length. Depending on the type
of instance that is desired, the betterOf and bestOf operators are either chosen to
minimize or maximize the approximation quality.

We use a 1-elitism strategy such that only the individual with the current best
fitness value survives and will be contained in the next population. The rest of the
population is obtained by choosing two parents from the mating pool, applying
uniform crossover, uniform and normal mutation, rescaling and rounding in the
appropriate order and adding the offspring to the population. This procedure is
repeated until the population size is reached.

In the experiments, 100 instances each for the two instance classes (easy,
hard) with fixed instance sizes of 25, 50 and 100 are generated. The remain-
ing parameters are set as follows: popSize = 30, generations = 5000, time_limit =
24h, uniformMutationRate = 0.001, normalMutationRate = 0.01, cells = 100, and the
standard deviation of the normal distribution used in the normalMutation step equals
normalMutationSd = 0.025. The parameter levels were chosen based on initial ex-
periments. The number of 2-opt repetitions for calculating the approximation quality
is set to 500. Again this was a trade-off between evaluation speed and the noise level
of the fitness function.

3.2 Characterization of the generated instances

Table 1 gives an overview of the instance generation process, i.e. the mean ap-
proximation qualities and average number of generations the EA managed to
execute within the time limit. For all instance sizes, a sufficiently high performance
discrepancy between the two evolved sets of hard and easy instances is generated
while the absolute performance difference increases along with the instance size

Table 1 Overview of generated instances: Mean approximation quality and mean number of EA
generations within the time limit

Size Class Type Mean approximation Mean # of generations

quality

25 easy nrnd 1.00 5000.00

25 easy rnd 1.00 5000.00

25 hard nrnd 1.13 5000.00

25 hard rnd 1.13 5000.00

50 easy nrnd 1.00 3991.42

50 easy rnd 1.00 3295.77

50 hard nrnd 1.16 5000.00

50 hard rnd 1.16 5000.00

100 easy nrnd 1.03 454.93

100 easy rnd 1.03 453.74

100 hard nrnd 1.18 1194.59

100 hard rnd 1.18 1204.87
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Fig. 2 EA fitness in the course of the generations for all executed runs

(Fig. 2). For instance sizes 25 and 50, the EA even evolves instances which 2-opt
nearly manages to solve to optimality on average.

The average number of generations executed by the EA within the computing
budget reflects the rising computational complexity when enlarging the instance
size. While for the smallest instance size the maximum number of generations was
reached, this amount decreases substantially for the higher instance sizes. Inter-
estingly, the EA requires much higher computation times for generating the easy
instances than it is the case for the hard ones. While the number of swaps carried
out by 2-opt slightly increases in this situation (see discussion below), particularly
problem hardness seems to increase for Concorde as the algorithm takes up much
higher computation times than for the instances which are hard to approximate
for 2-opt. No differences can be detected concerning the sequence of rounding and
mutation.

In Fig. 3 exemplary EA instances of both classes are shown for the different
instance sizes and rounding schemes together with the corresponding optimal

25

nrnd

25

rnd

50

nrnd

50

rnd

100

nrnd

100

rnd

0

1

0

1

e
a

s
y

h
a

rd

0 1 0 1 0 1 0 1 0 1 0 1

Fig. 3 Examples of the evolved instances of both types (easy, hard) including the optimal tours
computed by Concorde for different instance sizes. Note that there is no discernable difference
between the rnd and nrnd type instances
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Fig. 4 Boxplots of the standard deviations of the tour length legs of the optimal tour, both for the
evolved easy and hard instances

tours computed by Concorde. The main visual observations can be summarized as
follows:

– The distances of the cities on the optimal tour appear to be more uniform for
the hard instances than it is the case for the easy ones. This is supported by Fig. 4
that shows boxplots of the standard deviations of the edge weights on the optimal
tour. There we see that respective standard deviations of the easy instances are
roughly twice as high than for the hard instances for instance sizes of 100 which
increases to a factor of three for the smallest instance size. Related to this context
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Fig. 5 Boxplots of the mean (top) and standard deviations (bottom) of the angle between adjacent
cities on the optimal tour
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it is observable that the easy instances tend to consist of many small clusters of
cities whereas this is not the case for the hard instances up to the same extent.

– Visually, the fraction of highly pointed angles within the class of easy instances
exceeds the respective proportion within the class of hard instances. Figure 5
shows mean angles between neighboring points on the optimal tour and the
corresponding standard deviations. The mean angles are significantly smaller for
the easy instances than within the class of hard ones while the opposite is true for
the respective standard deviations.

– The instance shapes for the smallest instance size structurally differ from the
respective ones regarding the higher instance sizes. This is especially the case for
the easy instances which exhibit an almost circular structure. Consequentially,
the area within the convex hull enclosed by the points is much higher for high
instance sizes than for smaller ones.

– U-shaped instances are prevalent within the class of generated hard instances
while the respective frequency increases with decreasing instance size.

– No significant structural differences between the considered rounding schemes
can be observed. Because of this we will focus on the rnd results for the rest of the
paper. The results for the nrnd do not differ. Both sets of instances are available
in the supplementary material.

Additionally, by analyzing the mean and standard deviation of the number of
swaps executed by 2-opt (see Fig. 6) the choice of choosing the approximation quality
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Fig. 6 Mean number of swaps (top) executed by 2-opt and standard deviations (bottom) for different
instance sizes



O. Mersmann et al.

instead of the number of swaps as suggested in [34] as a meaningful performance
indicator for 2-opt can be justified. It becomes obvious that there is no positive
correlation between the number swaps and problem hardness measured by approxi-
mation quality. On the contrary, the opposite trend can be observed. However, it is
questionable if this significant difference is really a relevant difference as the absolute
deviations in the number of swaps are very small. Therefore, at least for 2-opt, the
number of swaps is not an adequate indicator for algorithm performance.

3.3 Classification of instance hardness

A decision tree [6] is used to differentiate between the two instance classes. Indepen-
dent from the instance sizes and rounding schemes an almost perfect classification
of instances into the two classes based on only two features is possible. Figure 9
visualizes the values of two exemplary feature combinations which can be used for
this purpose. It becomes obvious that the classification task is almost trivial as the
instance classes could be separated in a quite satisfactory manner with one feature
already.

The corresponding classification rules are presented in Figs. 7 and 8 for rnd

together with the ten-fold cross-validated classification accuracies.
The first rule is perfectly in line with the exploratory observations of Section 3.2.

The mean angles between the cities on the optimal tour were found to be significantly
higher for the hard instances than the for the easy ones (see Fig. 5). This corresponds
to the classification rule which is based on the feature “angle_2nn_mean” measuring
the mean angle between the nodes and their two nearest neighbors. Secondly, the
easy instances exhibit a more uniform distribution of the tour length legs on the
optimal tour (see Fig. 4). This observation coincides with the characteristics of the
feature dist_max. The higher the maximum distance between two cities the lower is
the probability of a low standard deviation of the tour length legs.
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Fig. 7 Classification rules for rnd for the first feature combination given in Fig. 9. Mean classification
accuracy equals 0.968
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Fig. 8 Classification rules for rnd for the second feature combination given in Fig. 9. The cross-
validated accuracy of this rule is 0.975
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Fig. 9 Scatt1erplot of exemplary feature combinations which allow an accurate separation of easy
and hard instances

The second rule comprises two of the new features introduced in this paper. A
lower fraction of points on the convex hull of all points together with smaller mean
distance of the minimum spanning tree indicates a low instance hardness. In general
the rules are more accurate for the higher instances sizes than for instance size 25.

Summarizing, an accurate feature-based separation of the easy and hard instances
can be successfully achieved, even with various combinations of two features. Arising
from this, we will investigate in the next sections how instances of moderate difficulty
in between the evolved easy and hard instances can be generated and if an explicit
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prediction of the expected approximation quality of 2-opt on all instances is possible
based on the available features. This prediction problem in our view is much more
interesting as well as challenging than the classification task analyzed within this
section and will thus be investigated in more detail.

3.4 Morphing hard into easy instances

We are now in the position to separate easy and hard instances with the classification
rules presented in Section 3.3. In this section, instances in between, i.e. of moderate
difficulty, are considered as well. Starting from the result in [12] that a hard TSP
instance can be transformed into an easy one by slight variation of the node locations,
we studied the “transition” of hard to easy instances by morphing a single hard
instance into an easy instance by a convex combination of the points of both
instances, which generates an instance in between the original ones (Alg. 6).

Algorithm 6 Morphing

The point matching between the input instances is improved w.r.t. [25] in that
a greedy approach is used which successively selects the point pair for which the
pairwise Euclidean distance is minimal. Depending on the type of rounding scheme
used in the EA that generated the instances, a normal mutation step and successive
cutting to the boundary might be required after rescaling and rounding to ensure that
the newly constructed instance is of the desired instance type.

Figure 10 shows the positive effect of the greedy heuristic point matching strategy
in contrast to a random point matching as utilized in [25]. A simulation was con-

Fig. 10 Effect of heuristic vs.
random point matching
strategy. Boxplots of the sums
of all interpoint distances of
the random approach (distr)
relative to the heuristic ones
(disth) are given for the two
different rounding concepts
and varying instance sizes
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ducted in the following way: Two random instances are generated in the [0, 1]2-plane,
rescaled, rounded and (possibly) normally mutated afterwards to reflect the EA
rounding scheme which applies rounding before normal mutation (rnd). Afterwards,
the sum of interpoint distance after random point matching (distr) and greedy
heuristic point matching (disth) are calculated and divided by each other (distr /
disth). Results are shown for instance sizes {25, 50, 100} and both rounding schemes.
It becomes obvious that the interpoint distances resulting from the greedy approach
are much smaller than the respective ones of the random strategy. The latter distance
sums are on average roughly twice as high for the instance size 25 and increases
linearly to a factor of four for instance size 100. The effects are visually identical for
both rounding concepts. For the instance sizes we consider here, no randomly picked
matching was ever better than the matching returned by the greedy algorithm.

One might argue that the greedy point matching should be improved further.
One obvious idea is to rotate the instances such that they align “better”. This would
amount to a normalization w.r.t. rotation of all instances, a desirable feature because
the length of the optimal tour as well as the approximation quality are invariant
under rotation because both only depend on the edge weights which are invariant
under rotation. To normalize the instances we calculated the covariance matrix of
the points of a TSP instance and rotated the points around their centroid such that
the main axis, i.e. the eigenvector corresponding to the largest eigenvalue is parallel
to the X axis. This results in two possible rotational angles. We opted to rotate by the
angle which lead to the point configuration which had more more points to the right
of and above the centroid. Performing this normalization followed by a greedy point
matching did not increase the quality of the matching (the total distance travelled
by each point during the morphing does not improve on average). This is illustrated
in Fig. 11. We therefore opted to not normlize instances. In future studies it might
be a logical next step to try and integrate this form of normalization into the EA
generating the instances.

Morphing examples are shown in Fig. 12. Based on the initial instances (α = 1

and α = 0), instances emerge from each other with decreasing α. Clearly, the ad-
vantageous effect of the improved point matching becomes visible as the transitions
of the morphed instances are much smoother than in the former case of random
point matching. Furthermore, in case of random point matching instances tend to
concentrate on the center part of the [0, 1]2 - plane.

Fig. 11 Comparison of
morphing quality of
rotationally normalized and
unnormalized instances.
Normalization does not lead
to a significant improvement
in the quality of the point
matching and subsequent
morphing
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Fig. 12 Example: Morphing of one instance into a different instance for different α-levels of the
convex combination (nrnd) with heuristic greedy (above) and random point matching (below).
Optimal tours are visualized in grey

The morphing strategy is applied to all possible combinations of single hard
and easy instances of the two evolved instance sets using 6 levels of α, i.e. α ∈
{0, 0.2, 0.4, ..., 1}. Each generated instance is characterized by the levels of the fea-
tures discussed in Section 2.1. Thus, the changes of the feature levels with increasing
α can be studied which is of interest as it should lead to an understanding of the
influence of the different features on the approximation quality.

Figures 13, 14, 15, 16 and 17 show the approximation quality for the instances
of all morphing sequences for the various α levels in the top subfigure. Starting
from a hard instance on the left side of each individual plot (α = 0) the findings
of [12] are confirmed. The approximation quality of 2-opt quickly increases with
slight increases of α. Additionally, the feature levels of the generated instances are
visualized arranged by feature groups. We concentrate on the subset of data which
is based on rounding before the normal mutation step as the presented observations
coincide for both rounding schemes.

Obviously, many features do not show any systematic relationship with the
approximation quality for all considered instance sizes, e.g. most features related
to the centroid, the clustering as well as the modes of the edge cost distribution.
Interestingly, some features exhibit different tendencies for the smallest and highest
instance size, e.g. the features reflecting the mean and minimum distance to the
centroid in Fig. 13. This is due to the different structural shapes of small and large
instance classes, more specifically the almost circular structure of the easy instances
for an instance size of 25 (see Fig. 3). The same reasoning holds for the features
associated with the mean and median distances and the standard deviation of the
distance matrix. Exceptional behavior of the feature levels occurs for the features
related to the MST depth (mean, median, max and sd) for which a systematic
nonlinear decrease can be observed only for the instance size 100. In most cases the
change of the feature in relation to α is similar for all instance sizes, what does change
is the variance of the feature.
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Fig. 13 Angle (top, based on 2 nearest neighbors) and Centroid Features (bottom): Approximation
quality and feature values for different α levels of all conducted morphing experiments
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Fig. 14 Convex Hull (top) and Mode (bottom) features: Approximation quality and feature values
for different α levels of all conducted morphing experiments

However, systematic nonlinear relationships with the approximation quality can
be detected for the mean and median distances on the MST as well as the standard
deviation (Fig. 16), the maximum distance between the cities and the respective
standard deviation (sd) (Fig. 15) and the coefficient of variation of nearest neighbor
distances (Fig. 17). Additional promising features in Fig. 13 are the fraction of points
on the convex hull, the area of the convex hull, and the mean angle between adjacent
cities as well as the maximum distance to the centroid in Fig. 14. Naturally, the
features included in the two exemplary classification rules above form a subset of
the mentioned relevant features.

3.5 Feature-based prediction of TSP problem hardness

In order to get a more accurate picture of the relationship between the approxi-
mation quality and the features of the full data set including all morphed instances
a Multivariate Adaptive Regression Splines (MARS) [13] model is constructed in
order to directly predict the expected approximation quality of 2-opt on a given
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Fig. 15 Distance (top) and Cluster (bottom) features: Approximation quality and feature values
for different α levels of all conducted morphing experiments. The annotations “01pct”, “05pct” and
“10pct” identify different levels of the reachability distance as a parameter of GDBSCAN [32] used
for clustering
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Fig. 16 MST features: Approximation quality and feature values for different α levels of all
conducted morphing experiments
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Fig. 17 Nearest neighbor distance features: Approximation quality and feature values for different
α levels of all conducted morphing experiments

instance based on the candidate features. As before in the classification experiment,
the regression model is again validated by a ten-fold cross-validation procedure.

We used MARS with second degree interaction effects to model the relationship
between the approximation quality and the calculated instance features. Other
modeling approaches, such as k-nearest neighbors and linear models, were also
considered but some initial experiments on a subset of the data showed that MARS
provided competitive results and scaled well to the full dataset. The final model is
shown in Table 2. We achieved a root mean squared error (RMSE) of 0.0170 for rnd

and 0.0165 for nrnd. This compares favorably to a simple model that always predicts
the mean (RMSE for rnd equals 0.0512 and for nrnd 0.0516) which we outperform
by a factor of 3. In other words, given the features of a TSP instance, we expect to
predict, on average, the approximation quality of a 2-opt solution to within ±1.6 % of
the true approximation ratio. In the following, we concentrate our analysis on rnd as
the results almost coincide. We also present a scatterplot of the true approximation
quality values vs. their predictions (from the cross-validation) in Fig. 18 to show how
predictive accuracy varies across the whole range of problem hardness.
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Table 2 Results of the MARS model for rnd

Spline Coefficient

(Intercept) 1.133

h(mst_dists_sd-0.0369208) −0.716

h(0.0369208-mst_dists_sd) 1.707

h(angle_2nn_mean-1.45864) 0.100

h(1.45864-angle_2nn_mean) 0.012

h(chull_points_on_hull-0.28) −0.012

h(0.28-chull_points_on_hull) −0.147

h(mst_depth_max-12) 0.005

h(12-mst_depth_max) 0.001

h(distance_max-1.26151) −0.199

h(1.26151-distance_max) 0.039

h(cluster_10pct_mean_distance_to_centroid-0.496846) −0.788

h(0.496846-cluster_10pct_mean_distance_to_centroid) −0.003

h(angle_2nn_mean-1.45864)*h(distance_mean-0.606019) −0.795

h(angle_2nn_mean-1.45864)*h(0.606019-distance_mean) −0.561

h(mst_depth_median-12) −0.018

h(12-mst_depth_median) 0.002

h(distance_sd-0.307304) −0.458

h(0.307304-distance_sd) 0.695

h(centroid_max_distance_to_centroid-0.72554)*h(1.26151-distance_max) 22.418

h(0.72554-centroid_max_distance_to_centroid)*h(1.26151-distance_max) −0.718

h(0.28-chull_points_on_hull)*h(mst_dists_mean-0.0671864) 1.737

h(0.28-chull_points_on_hull)*h(0.0671864-mst_dists_mean) −15.553

h(distance_mean_tour_length-56.3844) 0.005

h(56.3844-distance_mean_tour_length) −0.002

h(mst_dists_mean-0.105423) −0.224

h(0.105423-mst_dists_mean) −1.681

h(centroid_min_distance_to_centroid-0.314769)*h(mst_depth_max-12) 0.089

h(0.314769-centroid_min_distance_to_centroid)*h(mst_depth_max-12) −0.003

h(angle_2nn_mean-1.45864)*h(angle_2nn_median-2.16409) −0.006

h(angle_2nn_mean-1.45864)*h(2.16409-angle_2nn_median) −0.100

h(angle_2nn_mean-1.81252)*h(mst_depth_max-12) −0.013

h(1.81252-angle_2nn_mean)*h(mst_depth_max-12) −0.003

h(mst_dists_sd-0.0369208)*h(mst_dists_sum-0.0178643) 170.696

h(distance_sd-0.274633)*h(12-mst_depth_median) 0.075

h(mst_depth_sd-11.632) 0.011

h(11.632-mst_depth_sd) 0.025

h(mst_depth_mean-18.8) 0.011

h(18.8-mst_depth_mean) −0.017

h(angle_2nn_mean-1.82054)*h(0.105423-mst_dists_mean) 6.850

h(1.82054-angle_2nn_mean)*h(0.105423-mst_dists_mean) 0.699

h(distance_max-1.26151)*h(mst_dists_sd-0.0495085) 3.614

h(distance_max-1.26151)*h(0.0495085-mst_dists_sd) 5.079

h(mst_depth_max-12)*h(mst_dists_mean-0.0829785) 0.066

h(mst_depth_max-12)*h(0.0829785-mst_dists_mean) 0.082

Because MARS models are highly non-linear, it is hard to visualize them. In
Fig. 19 nine features which are frequently used in the splines of the model are
visualized. The top of the figure shows a scatter plot of the feature against the
approximation quality.
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Fig. 18 Scatterplot for true approximation quality values vs. predictions for rnd. Predictions are from
ten-fold cross-validation

The color of each point represents the error the model makes when predicting this
point and gives us some insight into where the model fits the data well and were it
deviates significantly. The only real structure to be seen in the plots is a small cluster
of red points with an approximation quality of about 1.15 that is visible in every panel
of the plot. This shows that our model fits the data fairly well. The bottom part of the
figure shows a variant of a partial dependency plot. Instead of averaging over all
observations as in the partial dependency plot, we use a weighted average, where we
give observations that are close to the feature value a higher weight - we call this the
weighted partial dependency plot. That is, for a feature x with value x∗, we calculate

f (x∗) =
1

∑N
i=1

wi(x∗)

n∑

i=1

wi(x∗) ∗ m((x∗, di \ x))

where di denotes the features of the i-th instance, wi(x∗) the weight assigned to the
i-th observation and m((x∗, di \ x)) the predicted approximation quality for the i-th
feature vector if we set feature x to x∗. We chose to use a Gaussian weighting function

wi(x∗) = αφ(xi − x∗)

where α is set to a fourth of the standard deviation of the feature and φ denotes
the density function of the standard normal distribution. We see that the average
response of the model fits the point clouds quite well.

We further studied whether we could handle the regression problem with a
substantially smaller feature set in order to simplify our model. For this purpose
we performed a sequential forward search, which iteratively adds the best feature
w.r.t. the RMSE. As regression model we again used MARS with second order
interaction effects. Such a forward search is a simple feature selection wrapper as
introduced in [19]. In this procedure we perform an outer resampling loop (here
10-fold cross-validation) to create training and test sets. For each training set we
perform the feature selection by forward search. For each training set and feature
selection run the outer training set is resampled again (here simple hold-out with 2/3
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Fig. 19 MARS model: Nine most frequently used features for rnd. Top: Residual scatter plot,
Bottom: Weighted partial dependency plot
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Table 3 Results of the MARS
model with feature selection
by forward search

Feature list RMSE

Empty model 0.05113

+ mst_dists_sd 0.03440

+ angle_2nn_mean 0.02515

+ mst_dists_mean 0.02240

+ mst_depth_median 0.02036

for training and 1/3 for testing) in a so-called inner loop. The RMSE of each feature
set is measured and greedily optimized according to this inner resampling. We stop

the selection when the performance in RMSE does not improve by at least
√

5 · 10−5.
The outer resampling ensures unbiased performance results and the whole procedure
is sometimes called nested resampling [4].

The final results are 10 potentially different feature sets, but in our case we always
end up with the four features displayed in Table 3, which are also always selected
in the same order. We also display the (mean) RMSE for the feature sets during
the search on the inner test sets (the numbers are averaged across all 10 feature
selections). The unbiased RMSE in the outer cross-validation is 0.02037.

From the results we gain further insights into which features reduce the RMSE
the most and that we can build an acceptable model with only four features. But it
must still be noted that we perform substantially worse than selecting the full model.
The reader should be aware of the fact that a MARS model already performs an
internal feature selection which is somewhat similar to our approach, but faster. This
last step was mainly undertaken to study in further detail how well we can predict
the approximation quality with a model with a really low number of features.

3.6 Feature validation on TSPLIB

In order to further validate our proposed feature set, we use it to predict the
approximation quality of 2-opt on the 65 TSPLIB instances listed in Table 4 (mainly

Table 4 Considered
TSPLIB instances

a280.tsp fl417.tsp kroB100.tsp pr299.tsp

att48.tsp fri26.tsp kroB150.tsp pr439.tsp

bayg29.tsp gil262.tsp kroB200.tsp pr76.tsp

bays29.tsp gr120.tsp kroC100.tsp rat195.tsp

berlin52.tsp gr137.tsp kroD100.tsp rat99.tsp

bier127.tsp gr17.tsp kroE100.tsp rd100.tsp

brazil58.tsp gr202.tsp lin105.tsp rd400.tsp

brg180.tsp gr21.tsp lin318.tsp st70.tsp

burma14.tsp gr229.tsp linhp318.tsp swiss42.tsp

ch130.tsp gr24.tsp pcb442.tsp ts225.tsp

ch150.tsp gr431.tsp pr107.tsp tsp225.tsp

d198.tsp gr48.tsp pr124.tsp u159.tsp

d493.tsp gr96.tsp pr136.tsp ulysses16.tsp

dantzig42.tsp hk48.tsp pr144.tsp ulysses22.tsp

eil101.tsp kroA100.tsp pr152.tsp

eil51.tsp kroA150.tsp pr226.tsp

eil76.tsp kroA200.tsp pr264.tsp
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Fig. 20 Histogram of 2-opt
approximation quality on
TSPLIB instances
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the ones with less than 500 cities where we could either directly access or infer 2D
city coordinates).

All instances have been rescaled to [0, 1]2 and the approximation quality has
been calculated exactly as before. Figure 20 shows a histogram of the approximation
quality distribution.

We now use a random regression forest [5] to predict the approximation quality
on these instances based on our features (a MARS model works, too, but less well;
we did not use a random forest in the previous section because of the large number
of observations and resulting memory and time problems). Because of the very
low number of observations we validate this by performing leave-one-out cross-
validation. This results in an RMSE of 0.0138, compared to an RMSE of 0.0249 if
we always predicted the mean value, which is both on a comparable scale as the
analysis in the previous section.

Finally, we fit the forest on all 65 instances, compute the variable importance
(measured by the the mean increase in node purity w.r.t. the underlying regression
trees, for details see [5]) and plot the five most influential features in Fig 21.

Fig. 21 Variable importance
of five most influential
features of random
regression forest
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4 Summary and outlook

In this paper we investigated concepts to predict TSP problem hardness for 2-opt
based local search strategies on the basis of experimental features that characterize
the properties of a TSP instance. A crucial aspect was the generation of a repre-
sentative instance set as a basis for the analysis. This turned out to be far from
straightforward. Therefore, it was only possible to generate very hard and very easy
instances using sophisticated (evolutionary) strategies. Summarizing, we managed to
generate classes of easy and hard instances of different sizes for which we are able
to predict the correct instance class based on the corresponding feature levels with
only marginal errors. Several feature combinations, which are cheap to compute even
for large instances, could be identified as key features for differentiating between
hard and easy instances, and the results are supported by exploratory analysis of the
evolved instances and the respective optimal tours. However, it should be noted that
most probably not the whole space of possible hard instances is covered by using our
evolutionary method, i.e. probably only a subset of possible characteristics or feature
combinations that make a problem hard for 2-opt can be identified by the applied
methodology.

Instances of moderate difficulty were constructed by morphing hard into easy
instances where the effects of the transition on the corresponding feature levels could
be studied. A MARS model was successfully applied to predict the approximation
quality of 2-opt independent from the instance size based on the features of the
generated instances with very high accuracy. We strongly believe that it should be
straight forward to apply the same methodology to other algorithms and use these
models to derive a strategy for the algorithm selection problem in the context of
the TSP.

Moreover, we investigated two different rounding schemes within the evolution-
ary algorithm for instance generation which either result in instances exhibiting
points on a regular grid or slightly perturbed points. However, the experimental
results did not show any significant differences between the different concepts.

The analysis offers promising perspectives for further research, specifically a
systematic comparison to other local and global search as well as hybrid solvers with
respect to the influence of the feature levels of an instance on the performance of
the respective algorithms. The investigation of much higher instances sizes would be
very interesting as well. However, it has to be kept in mind that the computational
effort intensely increases with increasing instance size as the optimum solution, e.g.
computable via Concorde, is required to calculate the approximation quality of 2-opt.

Finally, it is open how representative the generated instances are for real-world
TSP instances. We did try to directly predict the TSPLIB approximation quality with
the models obtained from our synthetic instances, but this did not work out very well,
possibly

Instead we successfully validated the usefulness of the feature set directly on
TSPLIB. Therefore, it is very desirable to collect and create a much larger pool of
small to medium sized, real-world, TSP instances for comparison experiments. In
general, more work needs to be done here.

There is also the question of how well these models can extrapolate to much larger
instance sizes. This would again be a desirable property in the context of algorithm
selection for very large instances for which it is not feasible to calculate the global
optimal tour.
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In closing we would like to mention that all source code used in these experiments
is available online (see Footnote 1) for anyone to use and extend. We will also
publish an already extended R package under the name of tspmeta on the R package
server CRAN, which we will further improve to enable feature-based analysis of TSP
instances.
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