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ABSTRACT Online dictionary learning (ODL) is an emerging and efficient dictionary learning algorithm,

which can extract fault features information of fault signals in most occasions. However, the typical ODL

algorithm fails to consider the interference of noise and the structural features of the fault signals, which leads

to the fault features of weak fault signals that are difficult to extract. For that, a novel feature enhancement

method based on an improved constraint model of an ODL (ICM-ODL) algorithm has been proposed in

this paper. For the stage of dictionary learning, the elastic-net constraint is used to promote the anti-noise

performance of the dictionary atoms. For the stage of signals sparse coding, the l2,1 norm constraint is added

to learn the structural features of fault signals. In addition, a variational mode decomposition algorithm

is used to reduce the impact of noise on the signal initially. Taking the weak fault signals of bearing as

examples for analysis, the results show that the feature enhancement of the weak fault signals is fulfilled by

using the ICM-ODL algorithm. Compared with the typical ODL method, the ICM-ODL algorithm can not

only improves the anti-noise performance of the dictionary atoms, but also removes the noise compositions

of the reconstructed signal significantly.

INDEX TERMS Online dictionary learning, sparse representation, elastic-net, l2,1 norm, feature

enhancement.

I. INTRODUCTION

The health of the rotating machinery directly affects the

operation of the industrial production system [1], [2]. Once

the rotating machinery fail, they will cause serious economic

losses and even casualties [3], [4]. Bearings have an impor-

tant influence on the performance and efficiency of rotating

machinery, about 40% of rotating machinery fault events are

caused by bearing faults [5]. Therefore, there is necessity

in both social and economic value for condition monitoring

and early fault diagnosis of bearings [6], [7]. A notable fea-

ture of bearings early fault features is that the impact com-

ponent is weak and concealed in interference components

such as noise, which leads to fault features are difficult to

be extracted [8], [9]. In the past few decades, weak fault

The associate editor coordinating the review of this manuscript and
approving it for publication was Chuan Li.

diagnosis methods have attracted widespread attention in the

academic community and researchers have proposed many

ways to extract weak fault features. Li [10] et al. proposed

an adaptive stochastic resonance method based on coupled

bistable system, which has good band pass filtering features.

Therefore, it is possible to enhance the target signal while

suppressing low frequency and high frequency interference

information, which making some excellent work for rolling

element bearings weak fault diagnosis. Zhang et al. [11] pro-

posed a weak feature enhancement method based on empir-

ical wavelet transform (EWT) and an improved adaptive

bistable stochastic resonance (IABSR). First, EWT is used

to decompose the signal and achieve low-band fault feature

enhancement. Then, the component containing the main fault

information is processed by IABSR to remove residual noise.

Finally, fault features are identified in the Fast Fourier Trans-

form (FFT) spectrum. Chen et al. [12] used a convolution
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restricted Boltzmann machine model combined with the

shift-invariant features of vibration information to propose a

signal reconstruction method for adaptive and unsupervised

feature learning, which can effectively suppresses random

noise in early faults stage. The above methods succeeded

in weak fault features enhancement, but there are still some

issues that need to be solved. For example, prior knowledge is

difficult to get and the algorithm is computationally intensive.

In recent years, as one of the effective methods for extracting

weak fault features under strong background noise, sparse

representation has been widely used in fault diagnosis of

bearings [13], [14], which is almost independent of prior

knowledge. Simultaneously, the significance of signal sparse

representation lies in that a small number of non-zero values

can be used to preserve the impact features in the original

signal, simplifying the solution process of signal fault fea-

tures enhancement [15]. Therefore, the sparse representation

method has the potential ability to reduce useless components

in the original signal and achieve weak fault diagnosis.

Ren et al. [1] proposed a sparse representation method

based on Majorzation-Minimization algorithm and com-

pleted the feature enhancement of bearing and gear fault

signals under the premise of using the unit matrix as a dic-

tionary. Cui et al. [13] established a new dictionary model

based on the features and mechanism of rolling bearing

faults, and combined with matching pursuit algorithm to

achieve the features enhancement. In recent years, dictio-

nary learning algorithms have also become a major research

direction in the field of sparse representation. In the stage

of dictionary learning, the dictionary atoms are updated by

learning the feature information of target signal adaptively,

combined with the corresponding sparse coding algorithm,

the features of the target signal can be extracted, which

has higher value of engineering application [16], [17]. The

method of directions (MOD) is one of the classical dictio-

nary learning algorithms, which continuously updates the

dictionary during the training stage to reduce the residual of

the sparse representation and satisfy the convergence condi-

tions. However, the algorithm updates the entire dictionary in

every iteration, which will reduce the efficiency of dictionary

learning stage [18]–[20]. Subsequently, the K-singular value

decomposition (K-SVD) algorithm was proposed to solve

this problem, however, although the K-SVD algorithm can

update only one column of atoms in once update, the signal

SVD process is quite time consuming. It is also inefficient to

process signal with a large amount of data [21]–[23]. In recent

years, an emerging online dictionary learning algorithm has

received extensive attention from scholars, which, currently,

is mainly used in the field of image processing [24]–[26]. The

algorithm can not only update one column of atoms in once

update, but also use a simple operation of a numerical value or

matrix to update the dictionary [27]. Therefore, this algorithm

can updates the dictionary with higher efficiency and has the

potential ability to acquire fault features of bearing.

The VMD algorithm is used to reduce the impact of noise

on the signal initially [28], it can be used as a good foundation

for the ODL method to extract fault features. However, when

the typical ODL algorithm is combined with the VMD algo-

rithm for fault feature enhancement, the dictionary atoms

are susceptible to the interference by noise during dictionary

learning stage, resulting in false atoms without impact com-

ponents is produced. Simultaneously, the sparse coding stage

lacks the ability to learn signal structure information, so that

a large amount of noise composition is still retained in signal

after sparse coding stage. All of these caused the typical

ODL algorithm cannot effectively fulfill weak fault feature

enhancement of bearings. In view of the above problems, this

paper adds elastic-net constraints in the dictionary learning

stage of the typical ODL algorithm, and block coordinate

descent method optimized by pathwise coordinate is used

to update the dictionary. Therefore, the improved dictionary

learning stage can reduce the interference degree of noise

on the dictionary atoms, meanwhile, ensuring the dictionary

update efficiency. In the sparse coding stage, it is observed

that the l2,1 norm has the ability to sparse signals between

groups, which matches the block sparse structure of the

bearings fault signals [29]. Therefore, this paper proposed

ICM-ODL algorithm, and combined with VMD algorithm to

complete the feature extraction of bearing weak faults.

The main work of this paper is organized as follows,

the theoretical background of typical ODL algorithm is

introduced and a new ICM-ODL algorithm is proposed in

Section II. In Section III, the weak fault enhancement model

based on ICM-ODL algorithm is introduced. Simulation and

experiment verification are carried out in Section IV, and

the performance of typical ODL algorithm and ICM-ODL

algorithm is discussed. The final conclusion is reflected in

the Section V.

II. THEORETICAL BACKGROUND

A. BASIC IDEA OF THE TYPICAL ODL

1) DICTIONARY LEARNING STAGE

The constraint model of the typical ODL algorithm in

dictionary learning step can be expressed by:

Dt = argmin
1

t

t
∑

n=1

1

2
‖Yn − Dαn‖22 + λ ‖αn‖1

= argmin
1

t
(
1

2
Tr(DTDAt )− Tr(DTBt )) (1)

where:

At ← At−1 + αtα
T
t

Bt ← Bt−1 + xtαTt (2)

and then update the j-th column to optimize for (1)

uj ←
1

Ajj
(bj − Daj)+ dj

dj ←
1

max(‖uj‖2, 1)
uj (3)

where Tr is represents the transpose of the matrix, subscript

t represents the number of iteration, λ ‖αn‖1 is the constraint
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used in the sparse encoding stage, refer to equation (1) results,

λ ‖αn‖1 is no practical significance in the dictionary update

stage, Ajj is the diagonal element of the matrix A, aj, bj and

dj is the j column of matrix A, B and dictionary Dt , respec-

tively. Since no effective constraint is added in the dictionary

learning stage, When the fault is weak, the learned dictionary

atoms are easily affected by noise, and false atoms without

impact components is generated, which is not conducive to

learn the impact components of the signal.

2) SPARSE CODING STAGE

The constraint model of the typical ODL algorithm in sparse

representation step can be expressed by:

αt = argmin
α∈RM

1

2
‖Yt − Dt−1α‖22 + λ ‖α‖1 (4)

where the first term in the formula is the fitting item, the sec-

ond term is the penalty item. Yt is the resulting residual signal

after t iterations, Dt−1 ∈ RN×K is learning dictionary after

t − 1 iterations, αt is sparse representation coefficient after t

iterations, ‖A‖2 =
√

tr(AHA) is the frobenius norm of the

matrix, λ ∈ [0, 1] is a parameter that adjusts the degree

of sparsity, the larger value of λ, the more value of zero in

the sparse representation coefficient and the fewer selected

original signal features.

FIGURE 1. Schematic diagram of three signal sparse modes.
(a) Inner-group sparse; (b) Inter-group sparse; (c) Inter & inner-group
sparse.

Define three nouns in this chapter: The ‘‘intra-group spar-

sity’’ means the number of non-zero coefficients generated

by feature selection within each groups. The ‘‘inter-group

sparsity’’ means the number of non-zero groups generated

by feature selection between groups. The ‘‘Inter-group and

intra-group sparsity’’ means the number of non-zero coef-

ficients generated by feature selection within each non-zero

group which generated by feature selection between groups.

These three cases are shown in (a), (b) and (c) of Fig 1.

The dictionary update and sparse coding stage of the ODL

algorithm are alternated. That is fixed dictionary Dt to solves

the sparse coefficient αt+1, and then updates the dictionary

Dt+1 with the sparse coefficient αi+1. In this process, if the

constraintmodel of the typical ODL algorithm is used to solve

the problem, in each column of the signals will all contain

non-zero sparse coefficient, that is, the information in each

column of signals is retained [30], only have ‘‘intra-group

sparsity’’ characteristics.

B. PROPOSED ALGORITHM OF ICM-ODL

1) DICTIONARY LEARNING STAGE AFTER

ADDING ELASTIC-NET CONSTRAINT

Since the typical ODL method does not have a constraint

on the dictionary learning stage, when applied it to the

extraction of weak fault signal from bearings, the dictionary

atoms obtained by learning usually contain noise compo-

nents, which is not conducive to extract the signal features.

Hence, this section introduces elastic-net constraints in the

dictionary learning stage to reduce the interference of noise

components on dictionary atoms.

The dictionary learning stage of ODL algorithm with

elastic-net constraints is as follows:

uj ←
1

Ajj
(bj − Daj)+ dj

dj ← argmin ‖uj − d‖22 s.t. ‖d‖22 +
γ

2
‖d‖1 ≤ ε (5)

and then update the j-th column dj using the following

equations:

dj←











uj ‖uj‖1 +
γ

2
‖uj‖22 ≤ ε

sign(uj)(uj − η)+

1+ ηγ
‖uj‖1 +

γ

2
‖uj‖22 > ε

(6)

where parameter η is defined as follows: First define a

set E ← {1, . . . ,K }, K is the number of columns of

dictionary D. Then pick k ∈ E at random, and divide

E into two parts U =
{

j ∈ E s.t. |uj| ≥ |uk |
}

and G =
{

j ∈ E s.t. |uj| < |uk |
}

, define µ ← 0; ρ ← 0;1ρ ←
|U | ;1µ←

∑

j∈U

∣

∣uj
∣

∣+ γ
2

∣

∣uj
∣

∣

2
. Update µ, ρ with the follow-

ing equation (7) until E become an empty set.


























if µ+1µ− (ρ +1ρ)

(

1+
γ

2
|uk |

)

|uk |

< ε (1+γ |uk |)2 µ← µ+1µ; ρ ← 1ρ; E ← G

if µ+1µ− (ρ +1ρ)

(

1+
γ

2
|uk |

)

|uk |

≥ ε (1+ γ |uk |)2 E ← U\{k}
(7)

Finally, η ← −b+
√
b2−4ac
2a

, where, a ← γ 2ε + γ
2
ρ, b ←

2γ ε + ρ, c← ε − µ.

2) SPARSE CODING STAGE AFTER ADDING

l2,1 NORM CONSTRAINT

The bearing fault signal has a block structure features. When

the bearing fails, the fault signal is divided into equally

length blocks, and only a few blocks contain the fault impact

features component, and the other blocks are noise or other
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useless components. So based on the block structure features

of the bearing fault signal, this paper proposes new constraints

for the sparse coding and the dictionary update step of ODL

algorithm. The new sparse coding model constraint is as

follows:

αt = argmin
α∈RM

1

2
‖Yt − Dt−1α‖22 + λ1 ‖α‖1 + λ2

∥

∥

∥
αT

∥

∥

∥

2,1

(8)

where,
∥

∥αT
∥

∥

2,1
=

M
∑

j=1

√

K
∑

i=1
α2
i,j =

M
∑

j=1

∥

∥αj
∥

∥

2
is the l2,1 norm

of the sparse coefficient (i is the row of matrix α, j is the

column of matrix α), which role is to promote the sparsity

between columns and columns. Let λ = λ1 + λ2 is the

regularization parameter, β = λ1/(λ1 + λ2) is group sparse

effect parameter, equation (8) can be written as follows:

αt = argmin
α∈RM

1

2
‖Yt − Dt−1α‖22

+ λ



β ‖α‖1 + (1− β)

M
∑

j=1

∥

∥αj
∥

∥

2



 (9)

where, β ∈ (0, 1), Since the equation (9) is strictly convex,

so when solving αj it can be represented by a subgradients

equation:

DTt−1(Yt − Dt−1αj) = (1− β)λu+ βλvi (10)

where u and v are the subgradients of
∥

∥αj
∥

∥

2
and

∥

∥αj
∥

∥

1
, use

αij to represent the i-th variable in the j-th group, then:

u =

{

αj/
∥

∥αj
∥

∥

2
αj 6= 0

∈ {u : ‖u‖2 ≤ 1} αj = 0
(11)

vi =

{

sign
(

αij

)

αij 6= 0

∈
{

vi :
∥

∥vi
∥

∥

1
≤ 1

}

αij = 0
(12)

Solving by simple algebra with equation (10), (11) and (12),

then αj = 0 if
∥

∥

∥
sign(DTt−1rj)(|D

T
t−1rj| − βλ)+

∥

∥

∥

2
≤ (1− β)λ (13)

equation (13) is a criterion for determining whether the sparse

coefficient of signal is all zero, where rj is a part of residual

of Yt , sign(D
T
t−1rj)(|D

T
t−1rj| − βλ)+ is coordinate-wise soft

threshold operator.

rj = Yt −
M

∑

l=1,l 6=j
Dt−1αl (14)

when solving αij equation (9) can be represented by a

subgradients equation:

DiTt−1(Yt − Dt−1αj) = (1− β)λ
αij

‖αj‖2
+ βλvi (15)

then αij = 0 if

|DiTt−1r
i
j | ≤ βλ (16)

where r ij = rj −
K
∑

k=1,k 6=i
Dkt−1αj, D

k
t−1 is the k-th column

ofDt−1, α
k
l is the l-th column and k-th row of α, equation (16)

is a criterion for determining whether the sparse coefficient of

signal is zero.

Therefore, the sparse coefficients solved by the improved

sparse model are not only have intra-group sparsity, but also

have inter-group sparsity. In other words, it can produce a

more sparse solution and filter out redundant components

such as noise, so that the features of weak faults are got better

enhancement.

FIGURE 2. Fault feature enhancement strategy.

III. FAULT FEATURE ENHANCEMENT STRATEGY

USING ICM-ODL ALGORITHM

As previously explained, it is reasonable to remove redundant

components from the data and enhance the weak features

by sparse representation, in view of the problem that it is

difficult to extract the weak fault features effectively. There-

fore, this paper investigates the bearing fault enhancement

strategy based on ICM-ODL algorithm. The flow chart is

shown in Fig 2. The process is as follows: the VMD algorithm

is selected as the preprocessing of the signal. Considering that

the correlation coefficient can reflect the extent of the original

signal information contained in the IMF components, and the
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kurtosis can reflect the strength of the impact component

energy in the IMF components. So that selecting correlation

coefficient and kurtosis as parameters to select the optimal

component.

The correlation coefficient and kurtosis formula is as

follows:

r〈uk ,Y 〉 =
Cov(uk ,Y )√
Var(uk )Var(Y )

(17)

where uk is IMF components, Y is original signal, Cov(A, B)

is the covariance of A and B, Var(B) is variance of B.

Kur =
1

Q

N
∑

i=1

(

uk − ū
σt

)4

(18)

where ū is the averaged value of IMF components, Q is the

length of IMF components, σt is standard deviation.

Inspired by structural sparse and constrained dictionary,

the convex optimization objective function of sparse coding

and dictionary update stage are designed respectively. In the

dictionary update stage, the interference of the noise com-

ponent to the dictionary atom can be reduced. In the sparse

coding stage, the obtained reconstructed signal can have both

intra-group and inter-group sparsity, further reducing data

redundancy and improve the identifiability of fault impact

components. Finally, envelope analysis is used to extract fault

features. In this study, the outer-race and inter-race faults of

rolling bearings are conducted to verify the effectiveness of

the proposed method. The comparison experiments show that

the performance of the ICM-ODL algorithm is better than the

typical ODL algorithm.

The specific implementation steps of the fault feature

enhancement model as seen below:

(1) Using the rotating machinery fault test bench to collect

the fault signal, the VMD method is used to transform

the fault signal to obtain several IMF components.

(2) Selecting the optimal component by correlation anal-

ysis and kurtosis criterion, when two parameters of

one component simultaneously obtain the largest, this

component is the optimal component.

(3) Learning the feature information of the optimal com-

ponent based on the ICM-ODL algorithm. First, fix the

initial dictionary and use LARS algorithm to achieve

sparse coding. Then use the sparse coefficient obtained

by sparse coding stage as the input of the dictionary

update stage, use equation (6) and (7) to update a col-

umn of the dictionary and replace the initial dictionary

with the updated dictionary, repeat the above process

until the number of iterations is reached. Finally, a dic-

tionary that can accurately matches the fault impact

features is obtained.

(4) Reconstructing the signal use the learned dictionary

and sparse coefficients.

(5) Envelope spectrum analysis of the reconstructed signal,

extract the fault features frequency, and judge the types

of fault signals.

IV. APPLICATION CASES

A. SIMULATION ANALYSIS AND DISCUSSION

In order to verify the enhancement effect of the proposed

method on the impact features, The simulation experiments

are carried out in this section. A simulation signal consisting

of periodic transient impact and random noise components is

constructed. The simulation signal expression is as follows:

y (tn) = A (tn) e
−2π fnξ(tn−kτ)

× sin [2π fn × (tn − kτ)+80]+ v (t) (19)

where n, k are integers, A (tn) = 1 is the amplitude of n-th

impact in the signal, fn = 3000Hz is the natural frequency,

ξ = 0.1 is attenuation damping coefficient, 80 = 5rad is the

initial phase angle. In order to get enough fault information,

the sampling time is set to 0.4 seconds. τ = 0.05s is the

impact time interval, therefore, the fault features frequency

of the constructed simulation signal is 20 Hz, the sampling

frequency is 20000Hz. v (t) is the white noise signal which

mainly used to simulate background noise, which param-

eter value depends on SNR, and the SNR is defined as

follows:

SNR = 10× log (Ps/Pn) (20)

FIGURE 3. Time domain waveform. (a) Simulation signal; (b) optimal IMF
component.

TABLE 1. Kurtosis values and correlation coefficients of the IMF
components.

Fig. 3(a) shows the time domain waveform of simulation

signal after adding −5dB noise and normalization. Decom-

posing the time domain signal using VMD to get 14 IMF

components ui and calculate the kurtosis value and correla-

tion coefficient of each ui are shown in Table 1. The kurtosis

value and the correlation coefficient of the optimal compo-

nent are the largest, so u5 is selected as the optimal IMF

component, its time domain waveform is shown in Fig. 3(b).
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FIGURE 4. Feature enhancement results by typical ODL algorithm (left)
and ICM-ODL algorithm (right). (a),(b) waveforms of dictionary atoms;
(c),(d) time domain waveform of reconstructed signal; (e),(f) envelope
spectrum of reconstructed signal.

Using the typical ODL algorithm to learn the feature infor-

mation of the optimal component. The random dictionary is

selected as the initial dictionary, the number of iterations is set

to 400, and in order to make the reconstructed signal as sparse

as possible, setting parameters λ = 1. Set the dictionary atom

length to 200, the dictionary atom length should be larger than

the length of one impact in the signal. At the same time, the

reduction of the dictionary dimension is beneficial to improve

the efficiency of dictionary learning. The learned dictionary

atoms are shown in Fig. 4(a), obviously the dictionary atoms

not only contains the periodic sinusoidal component, but also

contains the noise component. Sparse coding and reconstruc-

tion of optimal components using LARS algorithm, a recon-

structed signal as shown in Fig. 4(c) is obtained, it is easy to

see that there is lots of noise components remain in the time

domain waveform of the reconstructed signal. The result of

the envelope spectrum analysis of the reconstructed signal is

shown in Fig. 4(e), the fault feature frequency and its higher

harmonics can’t be accurately extracted.

Using the ICM-ODL dictionary learning algorithm to learn

the feature information of the optimal component. The initial

dictionary also uses random dictionary, and the number of

iterations is set to 400, in order to make the reconstructed sig-

nal as sparse as possible, setting parameters λ = 1, β = 0.5,

γ = 1, ε = 0.5. The learned dictionary atoms are shown

in Fig. 4(b), obviously the waveforms of dictionary atoms are

consistent with the periodic sinusoidal component of the sim-

ulated signal and contains impact features. The reconstructed

signal is shown in Fig. 4(d), the fault impact component is

already evident in the time domain waveform of the recon-

structed signal. The result of the envelope spectrum analysis

of the reconstructed signal is shown in Fig. 4(f). The fault

features frequency and its higher harmonics can be accurately

extracted.

FIGURE 5. Experiment system. (a) Experimental table; (b) inner-race fault
of bearing; (c) outer-race fault of bearing.

FIGURE 6. Time domain waveform. (a) Bearing outer-race fault signal;
(b) optimal IMF component.

B. EXPERIMENTAL VERIFICATION AND DISCUSSION

1) EXPERIMENTAL PLATFORM

In order to verify the ability of the proposed method to deal

with the actual weak faults, in this section, the roller bearing

is taken as the research object, and the rolling mechanical

fault simulation experimental platform shown in Fig. 5(a)

was built. The test bench consists of a motor, a cylin-

drical roller bearing and acceleration sensor composition.

An acceleration sensor was installed at the bearing housing

CH1 to collect the vibration signal. The fault bearing adopts

NTN-N204 cylindrical roller bearing, and an indentation

with the width of 0.5mm and the depth of 0.15mm are cut

by the wire cutting method in the inner-race and outer-race of

the bearing. During this experiment, the operate speed was

1300r/min and the sampling frequency was 100KHz. The

fault features frequencies of the outer-race and inner-race

of the bearing are calculated to be 86.32Hz and 145.84Hz

respectively.

2) DETECTION OF THE BEARING FAULT IN THE OUTER-RACE

Fig. 6(a) is a time-domain waveform of the bearing outer-

race fault signal after normalization. Because the fault size is

small, the vibration energy is weak, so the impact components

in the signal are submerged by other interference components

such as noise. Then use the VMD and typical ODL algorithm

to process the outer ring fault signal. Parameters selection are
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TABLE 2. Kurtosis values and correlation coefficients of the IMF
components.

FIGURE 7. Feature enhancement results by typical ODL algorithm (left)
and ICM-ODL algorithm (right). (a),(b) waveforms of dictionary atoms;
(c),(d) time domain waveform of reconstructed signal; (e),(f) envelope
spectrum of reconstructed signal.

as same as simulation analysis. The optimal IMF component

selection results are shown in Table. 2 and Fig. 6(b). The

waveforms of dictionary atoms can be seen from Fig. 7(a)

that the dictionary atoms are greatly affected by noise and

the impact features are not obvious. The reconstructed signal

is shown in Fig. 7(c), it can be seen that there is also lots of

noise components in the reconstructed signal. The result of

the envelope spectrum analysis of the reconstructed signal is

shown in Fig. 7(e), the fault features frequency and its higher

harmonics can’t be accurately extracted.

When using the ICM-ODL algorithm to learn the feature

information of the optimal component u8, and parameters

selection are as same as simulation analysis. The waveforms

of dictionary atoms can be seen from Fig. 7(b) that the impact

features in the dictionary atoms are obvious. The fault impact

components are already evident in the time domain waveform

of the reconstructed signal that shown in Fig. 7(d). The result

of the envelope spectrum analysis of the reconstructed signal

is shown in Fig. 7(f), the fault features frequency and its

higher harmonics can be accurately extracted.

TABLE 3. Kurtosis values and correlation coefficients of the IMF
components.

FIGURE 8. Time domain waveform. (a) Bearing inner-race fault signal;
(b) optimal IMF component.

FIGURE 9. Feature enhancement results by typical ODL algorithm (left)
and ICM-ODL algorithm (right). (a),(b) waveforms of dictionary atoms;
(c),(d) time domain waveform of reconstructed signal; (e),(f) envelope
spectrum of reconstructed signal.

3) DETECTION OF THE BEARING FAULT IN THE INNER-RACE

In order to prove the commonality of this method, the exper-

imental verification of the bearing inner-race fault signal is

added, and parameters selection are as same as simulation

analysis. It can be seen from Fig. 9(a),(c),(e) that when the

bearing inner-race fault signal is processed by the typical

ODL method, the fault feature frequency is not effectively

extracted.

It can be seen from Fig. 9(b), (d), (f) that when the bear-

ing inner-race fault signal is processed by the ICM- ODL

method. The fault feature frequency is extracted effectively,
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TABLE 4. Time-consuming of MOD, K-SVD, ODL and ICM-ODL
algorithms (100 tsets and averaged).

where 21.36Hz is the rotational frequency of the faulty bear-

ing and the part marked with a red circle are side-band fre-

quencies, the reason is that the fault frequency is modulated

by the rotational frequency.

4) EFFICIENCY COMPARISON

In this section, the data processing efficiency of MOD,

K-SVD, ODL and ICM-ODL algorithms are compared.

These four kinds of algorithms are used to process the outer-

race fault signal with 40,000 data points, and the number of

iterations are all set to 400. the time-consuming averaged

of 100 tests is shown in Table 4, it can be seen that the

ICM-ODL and the ODL algorithm have higher data process-

ing efficiency than the MOD and K-SVD algorithms.

V. CONCLUSION

In this study, a fault features enhancement method based on

ICM-ODL algorithm is proposed. This method adds the l2,1
norm constraint in the sparse coding stage, so that the struc-

tural information of the bearing fault signal can be learned.

For the stage of dictionary learning, the elastic network

constraint is added to enhance the anti-noise performance

of the dictionary atoms. Compared with the typical ODL

method, the ICM-ODL method proposed in this paper has

the following advantages: The structural information of the

bearing fault signal is incorporated into the sparse coding

stage, so that the inter-group sparsity of impact components

is promoted. At the same time, the increase of the anti-noise

performance of the dictionary atomsmakes the impact feature

easier to extract. Therefore the ICM-ODLmethod can remove

the redundant information of the data and enhance the fault

features effectively. To verify the validity of the ICM-ODL

method, simulated and experimental signal based on bearings

fault are analyzed. It can be seen from the results that the

typical ODL algorithm has limited ability when it is applied

to the enhancement of bearing weak fault features. As an

improvement, the ICM-ODL algorithm retains the advan-

tages of data processing efficiency of typical ODL algorithm.

Simultaneously the ICM-ODL algorithm can capture and

enhance the transient impact features of weak signal, and the

fault characteristic frequency can be directly extracted from

the feature-enhanced signal by using an envelope spectrum

analysis method.
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