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Abstract: This paper presents a novel surveillance system aimed at the detection and classification of
threats in the vicinity of a long gas pipeline. The sensing system is based on phase-sensitive optical
time domain reflectometry (φ-OTDR) technology for signal acquisition and pattern recognition
strategies for threat identification. The proposal incorporates contextual information at the feature
level and applies a system combination strategy for pattern classification. The contextual information
at the feature level is based on the tandem approach (using feature representations produced by
discriminatively-trained multi-layer perceptrons) by employing feature vectors that spread different
temporal contexts. The system combination strategy is based on a posterior combination of likelihoods
computed from different pattern classification processes. The system operates in two different modes:
(1) machine + activity identification, which recognizes the activity being carried out by a certain
machine, and (2) threat detection, aimed at detecting threats no matter what the real activity being
conducted is. In comparison with a previous system based on the same rigorous experimental setup,
the results show that the system combination from the contextual feature information improves
the results for each individual class in both operational modes, as well as the overall classification
accuracy, with statistically-significant improvements.

Keywords: distributed acoustic sensing; fiber optic systems; φ-OTDR; pipeline integrity threat
monitoring; feature-level contextual information; system combination

1. Introduction

Fiber optic distributed acoustic sensing (DAS) with phase-sensitive optical time-domain
reflectometer (φ-OTDR) technology has been shown good performance for long perimeter
monitorization aiming at detecting intruders on the ground [1–5] or vibration in general [6–14].
Current pipeline integrity prevention systems combine DAS technology and pattern recognition
systems (PRS) for continuous monitoring of potential threats to the pipeline integrity [15–22].

In a previous work [22], we presented the first published report on a pipeline integrity threat
detection and identification system that employs DAS + PRS technology, which was evaluated on
realistic field data and whose results are based on a rigorous experimental setup and an objective
evaluation procedure with standard and clearly-defined metrics (the original system was developed
under a GERG (The European Gas Research Group)-supported project titled PIT-STOP (Early Detection
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of Pipeline Integrity Threats using a SmarT Fiber-OPtic Surveillance System)). In [22], we did
a thorough revision of all of the previous published works in this area, showing their main limitations
related to the pattern classification design: classification results were not presented; there was a lack
of rigorous and realistic experimental conditions (database building, signal acquisition in limited
distances); or they were aimed at a small number of classes (see [22] for more details).

More recently, new works on this topic have been published: In [19], there is again a lack of
realistic experimental conditions since all of the signals corresponding to the same event are recorded
in the same fiber position (hence, biasing the system to recognize the position instead of the real event);
the sensed area covers up to 20 km (which reduces its application in realistic fiber deployments);
and only five classes are employed. In [21], the sensing area spreads 24 km, and the real experiments
were conducted at a fixed distance of 13 km away from the sensor (which we demonstrated in [22]
was a major issue when facing realistic environments), dealing with only three classes. In addition,
the number of tested signals in both works is small, with no additional details regarding the actual
recording durations. Therefore, we can say that, again, these new systems do not fully address
a realistic experimental setup that can assess the suitability of their proposals for realistic real-time
monitoring of long pipelines.

The database used for the experiments in our previous work [22], which is composed of more
than 1700 acoustic signals (about 10 h of recordings), addresses all of these issues: different events
were recorded and tested in different positions (covering different soil conditions) and different days
(covering different environmental conditions) along a 40-km pipeline. This, along with the adoption of
a rigorous experimental procedure, allow us to state that the results are realistic enough to consider
that similar performance can be obtained in field conditions.

With respect to the pattern recognition systems, one of the successful strategies used to improve
their performance rates is adding contextual information [23]. For example, speech recognition
systems obtain significant performance gains by incorporating context-dependent acoustic model
information [24,25], or augmented features extracted from consecutive feature vectors (so-called first-
and second-order derivatives [26]). Image recognition systems also obtain significant improvements
by incorporating contextual information within the final classification rule from multiple objects that
appear in the image [27].

In the field of fiber optic sensing, contextual information has also been employed for temperature
measurement [28,29]. Our previous work [22] addressed the contextual information in a limited extent,
since the short-time fast Fourier transform (ST-FFT) employed in the feature extraction spreads only
one second (this was the optimal window size after an intensive experimentation with shorter and
longer window sizes for the ST-FFT, all of them leading to lower system performance). Wavelets have
also been employed previously to detect vibrations in distributed acoustic sensing systems, hence
addressing contextual information to some extent, as well [30]. Both approaches show a strategy based
on adding sample-level contextual information, which means that the original signal is processed
taking into account each sample context. However, the contextual information is usually applied within
pattern classification systems at the feature level [31–34], once the high dimensionality present in the
input signal is reduced to a more discriminative set of features, which is more relevant for classification.

Another successful strategy to improve the performance of pattern recognition systems relies on
system combination. This is based on the fact that complementary errors are provided by different
pattern classification processes. The combination based on sum, product, average or maximum
rules [35–37], majority voting [35,37] or more advanced techniques, such as logistic regression [38],
Dempster-Shafer theory of evidence [37] and neural networks [36,37,39], have been applied to pattern
recognition systems in different fields such as image recognition, speaker verification, handwritten
recognition and speech recognition, showing significant performance gains.
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Motivation and Organization of the Paper

The pipeline integrity threat detection and identification system presented in previous
works [15–22,40,41] did not make use of feature-level contextual information, nor did it exploit the
possibility of combining results from different pattern recognition systems. Given the potential of both
strategies, we propose to apply them on DAS + PRS technology for pipeline integrity threat detection
and identification from two different perspectives:

• Incorporating feature-level contextual information in an intelligent way, adapting the so-called
tandem approach widely used in speech recognition [42] to enhance the feature vector of the
baseline system.

• Combining the outputs of different pattern classification processes, each of them using
a combination of frequency-based and tandem features, exploiting different temporal ranges of
contextual information.

In this paper, we present (to the best of our knowledge) the first published report that incorporates
contextual information at the feature level and system combination in a DAS + PRS-based pipeline
integrity threat detection and identification system, rigorously evaluated on realistic field data, showing
significant and consistent improvements over our previous work [22].

The rest of the paper is organized as follows: The baseline system is briefly reviewed in Section 2,
and Section 3 describes the novel pipeline integrity threat detection system. The experimental
procedure is presented in Section 4, and the experimental results are discussed in Section 5. Finally,
the conclusions are drawn in Section 6 along with some lines for future work.

2. Baseline System

2.1. Sensing System

The DAS system we used is a commercially available φ-OTDR-based sensor (named FINDAS)
manufactured and distributed by FOCUS S.L. (Madrid, Spain) [43].

For interested readers, a full theoretical revision of the sensing principle and a detailed description
of the experimental setup used in the FINDAS sensor can be found in [44], but we provide here
a short summary of the sensing strategy used. The φ-OTDR makes use of Rayleigh scattering, an
elastic scattering (with no frequency shift) of light, which originates from density fluctuations in
the medium, to measure changes in the state of a fiber. In the FINDAS sensor employed, highly
coherent optical pulses with a central wavelength near 1550 nm are injected into the optical fiber.
The back-reflected signal from the fiber is then recorded, so that the interference pattern resultant from
Rayleigh backscattering (φ-OTDR signal) is monitored at the same fiber input. By mapping the flight
time of the light in the fiber, the φ-OTDR signal received at a certain time is associated with a fiber
position. If vibrations occur at a certain position of the fiber, the relative positions of the Rayleigh
scattering centers will be altered, and the φ-OTDR signal will be locally changed, thus allowing for
distributed acoustic sensing [44].

The FINDAS has an (optical) spatial resolution of five meters (readout resolution of one meter)
and a typical sensing range of up to 45 km, using standard single-mode fiber (SMF). A sampling
frequency of fs = 1085 Hz was used for signal acquisition. A detailed description of the FINDAS
technology can be found in [44].

2.2. Pattern Recognition System

The baseline PRS was based on Gaussian mixture models (GMMs) and conducted classification
in two different modes:

1. The machine + activity identification mode identifies the machine and the activity that the
machine is conducting along the pipeline.
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2. The threat detection mode directly identifies if the activity is an actual threat for the pipeline
or not.

The whole system integrated three main stages, as shown in Figure 1:

• Feature extraction, which reduces the high-dimensionality of the signals acquired with the DAS
system to a more informative and discriminative set of features.

• Feature vector normalization, which compensates for variabilities in the signal acquisition process
and the sensed locations.

• Pattern classification, which classifies the acoustic signal into a set of predefined NC classes
(using a set of signal models, GMMs, previously trained from a labeled signal database).

Figure 1. Baseline version of the system architecture [22].

This system obtained promising results taking into account the ambitious experimental setup
(i.e., recordings in a real industrial deployment). However, the absolute performance rate in
machine + activity classification (45.15%, far better than the 12.5% chance rate for NC = 8 classes) is
still not high enough for a practical system in field operations. Even though the threat/non-threat
classification rates were much better (80% of threat detection and 40% of false alarms), strategies to
improve both rates are necessary.

The initial performance target that the GERG partners fixed to consider the system deployment in
the field was over 80% for the threat detection rate and below 50% for the false alarm rate, so that these
targets are actually achieved by the current proposal. With respect to the performance target for the
machine + activity identification rates, the GERG partners did not impose any specific requirements,
as the crucial aspect for real-world deployment is accurate threat detection. Considering the difficulty
of the task (with eight different classes), identification rates in the range of 70%–80% are reasonable to
start with.

3. Novel Pipeline Integrity Threat Detection System

The proposal of the novel pipeline integrity threat detection system is presented in Figure 2.
First, the input acoustic signal is sent to a feature extraction module, where the energy corresponding
to P frequency bands is calculated for the considered bandwidth f ∈ [ f0, fBW ], with f0 and fBW being
the initial and final frequencies respectively, and fBW ≤ fs

2 . This builds NP-dimensional feature vectors
(NP = 100). The feature normalization employed in this work is the sensitivity-based normalization
described in Section III.B.2 of [22], where each coefficient of those feature vectors is normalized by the
energy above the considered bandwidth. This was necessary due to the strong differences in the signals
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acquired in different sensing positions, which relate to the different soil conditions, the mechanical
coupling of the fiber to the pipe enclosure, the machinery distance, the non-linear transduction function
of a φ-OTDR-based sensor, the exponential decay of the amplitude of the measured signals along
the fiber, etc. (see [22] for more details). The pattern classification module employs a GMM-based
approach to classify each feature vector into the most likely class (machine + activity pair in the
machine + activity identification mode that deals with NC = 8 classes, and threat/non-threat in the
threat detection mode that deals with NC = 2 classes). This employs the a posteriori maximum
probability criterion to assign the given feature vector the class with the highest probability given
by the corresponding GMM. The additional blocks, the contextual feature extraction (that also needs
a new previous training stage) and the decision combination are new with respect to our previous
work [22] and are explained in more detail next.

Figure 2. Novel pipeline integrity threat detection system architecture. Modules in bold typeface are
the new ones with respect to [22].

3.1. Contextual Feature Extraction

The contextual feature extraction is based on the tandem approach used to compute the
so-called tandem features in speech recognition tasks [45–47]. This module takes the normalized
frequency-based feature vectors as input and produces tandem feature vectors as output.

A multi-layer perceptron (MLP) is employed to integrate the feature-level contextual information.
This MLP has three layers, as shown in Figure 3: an input layer that consists of NP ·Wsize feature vector
values, where Wsize is the number of feature vectors used as contextual information (for an acoustic
frame being analyzed at time t, the MLP will use the Wsize/2 feature vectors before t and the Wsize/2
feature vectors after t, along with the feature vector generated for time t), a hidden layer, whose
number of units is selected based on preliminary experiments, and an output layer, with the number
of units equal to the number of classes involved in the system modes (eight in the machine + activity
identification mode and two in the threat detection mode).

Specifically, three MLPs will be used to model the behavior of short, medium and long temporal
contexts, using Wshort, Wmedium and Wlong feature temporal window sizes, respectively. The objective is
effectively dealing with different signal behaviors that cope with short, medium and long temporal
contexts, so that a wider range of activities can be better learned by the system. In our implementation,
the time lengths of each temporal context are 5 s, 12.5 s and 20 s, corresponding to the short,
medium and long temporal contexts, respectively. These lengths were chosen based on the length of
a single behavior within different activities. For example, for stable activities, such as moving, long
temporal windows are more suitable to model a single behavior. However, for more difficult activities
(hitting or scrapping that include several behaviors), shorter temporal windows are preferable so
that the temporal windows used for modeling better cope with generating a robust model for
a single behavior.
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Figure 3. Architecture of the three-layer MLP employed in the contextual feature extraction module.

Figure 4 shows the detailed architecture of the contextual feature extraction module and its
connection to the GMM-based pattern classification modules.

Figure 4. Detailed architecture of the contextual feature extraction module and its connection to the
GMM-based pattern classification modules.
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The MLP models required for each temporal context (referred to as MLPS, MLPM and MLPL

in Figure 4) are trained by the MLP training module in Figure 2. The standard back-propagation
algorithm [48] is employed to learn the MLP weights (i.e., connections between all of the units of the
input and hidden layers and connections between all of the units of the hidden and output layers,
as shown in Figure 3). Therefore, three different sets of weights are learned (one for each temporal
context), which are used next to obtain the posterior probability vectors.

The contextual feature extraction involves two different stages, which are applied to each of the
different temporal contexts:

3.1.1. Posterior Probability Vector Computation

For each set of normalized feature vectors and using the weights computed during MLP training,
the MLP is employed to calculate a posterior probability for each class to be identified. This process
is similar to using the MLP for classification. However, instead of assigning a raw class label to each
normalized feature vector, the MLP outputs (consisting of one posterior probability per class, as shown
in Figure 3) are used as new features. This builds a set of NC-dimensional posterior probability vectors
per MLP (i.e., per temporal context), as shown in Figure 4.

3.1.2. Tandem Feature Vector Building

This stage concatenates the original NP-dimensional feature vectors (those generated by the
feature normalization module) and the NC-dimensional posterior probability vectors computed by the
MLPs. Therefore, (NP + NC)-dimensional tandem feature vectors are built (in our implementation,
NP + NC = 108 for the machine + activity identification mode and NP + NC = 102 for the threat
detection mode). These are fed into three different pattern classification processes (one for each
temporal context), which generate a likelihood value for each of the NC classes, as shown in Figure 4.
It must be noted that the GMM training is also carried out from these tandem feature vectors.

For MLP training, posterior probability vector computation and tandem feature vector building,
the ICSI QuickNet toolkit [49] has been employed.

3.2. Decision Combination

Given the three pattern classification processes conducted on the tandem feature vectors that
cover different temporal contexts and in order to exploit their complementarity when dealing with
different activities, a way to combine their outputs is necessary. In this work, we have evaluated
three methods to carry out a likelihood-based combination: sum, product and maximum, which are
presented next:

3.2.1. Sum Method

For any frame (i.e., feature vector), the likelihood assigned to each class ci is given by:

l(ci) =
N

∑
j=1

lj(ci), (1)

where N is the number of classification processes and lj(ci) is the likelihood assigned to class ci in the
classification process j.

This sum method is typically better adapted for cases in which each classifier performs
different [50].
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3.2.2. Product Method

For any frame, the likelihood assigned to each class ci is given by:

l(ci) =
N

∏
j=1

lj(ci). (2)

This product method is typically better adapted for systems where the feature sets are
independent [51].

3.2.3. Maximum Method

For any frame, the likelihood assigned to each class ci is given by:

l(ci) =
N

max
j=1

lj(ci). (3)

This maximum method is typically better adapted for systems where the performance of each
individual classifier is similar [50].

For all of the combination methods, the class that is finally assigned to each frame as the recognized
one is given by the maximum a posteriori criterion:

ĉ = argmax
i

{l(ci)}. (4)

The combination approach can be applied to all of the classification processes, or to a selection of
them, so that a fruitful experimentation can be carried out.

4. Experimental Procedure

Our experimental setup is basically the same as that described in Section IV of [22]. We provide
here the fundamental details, referring the reader to the original paper for further details.

4.1. Database Description

For comparison purposes, we employed the same database as in our previous work [22], whose
content is summarized in Table 1.

Table 1. Experimental database. ”Big excavator” is a 5-ton Kubota KX161-3. ”Small excavator” is
a 1.5-ton Kubota KX41-3V. From [22]. LOC, location.

Machine Activity
Duration (in Seconds)

Threat/Non-Threat
LOC1 LOC2 LOC3 LOC4 LOC5 LOC6 Total

Big
excavator

Moving along the ground 1100 1100 3540 1740 1620 4160 13,260 Non-threat

Hitting the ground 120 140 240 220 80 260 1060 Threat

Scrapping the ground 460 460 920 620 200 580 3240 Threat

Small
excavator

Moving along the ground 600 500 1700 820 820 1660 6100 Non-threat

Hitting the ground 200 180 220 220 80 240 1140 Threat

Scrapping the ground 420 340 780 360 180 520 2600 Threat

Pneumatic
hammer

Compacting ground 660 0 580 1320 0 1320 3880 Non-threat

Plate
compactor

Compacting ground 740 0 740 1240 0 1680 4400 Non-threat
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As described in [22], an active gas transmission pipeline operated by Fluxys Belgium S.A. was
used for the database acquisition, thus operating in a real scenario. The pipeline is made from
steel, has a diameter of one meter and is one inch thick. Activities nearby the pipeline were
sensed by monitoring an optical fiber cable installed about 0.5 m from the pipeline and parallel
to it (the fiber cable installation was done at the same time of the pipeline construction). The pipeline
and the associated optical fiber are buried, and the pipeline is pressurized at 100 bars (being an active
one, operating in normal conditions). The fiber depth varies between 0.3 and two meters, and since
it does not follow a tight parallel path along the pipeline and in some points, there are fiber rolls for
maintenance purposes, a calibration procedure between fiber distance and geographical location was
carried out for precise location labeling.

The selected activities cover realistic situations (involving possible threats and harmless ones)
that could typically occur nearby pipeline locations. All of them were carefully selected by the GERG
partners within the PIT-STOP project and represented those activities that could provide the best
assessment of the system capabilities for real-world deployment. In particular, the staff at Fluxys
Belgium S.A. (the gas carrier company in this country) was responsible for the proposal of the activities
to be carried out for evaluation.

On the one hand, the dangerous activities (hitting and scrapping by small and big excavators)
allowed the system to be tested when a real threat for the pipeline occurs (as is the usual situation
before a critical pipeline “touch” happens).

On the other hand, the non-threat activities were chosen based on their high occurrence rate near
pipelines (movements of different machinery and non-dangerous activities performed by pneumatic
hammer and plate compactor machines).

The FINDAS sensor is connected at one end of the fiber that runs in parallel to the inspected
pipeline. The different locations (LOC1, LOC2, LOC3, LOC4, LOC5 and LOC6) cover different pipeline
“reference positions” selected at high distances from the sensing equipment (being at 22.24, 22.49, 23.75,
27.43, 27.53 and 34.27 km far from the FINDAS box, respectively) to evaluate the system in conditions
close to the actual sensing limits and to ensure feature variabilities in terms of soil characteristics and
weather conditions (see [22] for more details).

The machines used for the recordings of the different machine + activity pairs started their activity
at the center of the so-called “machine operation area” (see Figure 5 for a visual reference). This area
was located at distances between zero meters (on top of the fiber) and up to 50 m from the so-called
“reference position” right above the pipeline (as described in [22] in the recording protocol for each
location, the reference position was chosen manually as the closest to the center of the operation area
with good sensitivity, by real-time monitoring of the fiber response). The “hitting” and “scrapping”
activities were recorded five times in different positions within the machine operation area (the
first position was located in the center of the area, and the other four were located at ±25 m and
±50 m from this center, with the direction depending on the available space around the operation
area). The “movement” and “compacting” activities spread around ±25 m from the center of the
operation area. These two activities were recorded in two different ways: the first one comprises
both movement and compacting actions when the machine is carrying out the activity parallel to the
pipeline, the second one with the activity carried out perpendicular to the pipeline. This allowed us
to generate different acoustic patterns corresponding to both ways, hence obtaining a more varied
database. From this “reference position”, the signals were captured from the optical fiber in a ±200-m
interval (see Figure 5), with one-meter spacing, thus generating 400 acoustic traces for each recorded
activity. This 400-m interval was selected to ensure that we had a wide enough range of fiber responses
to be used in the training and evaluation procedures.

Although the distance of the acoustic source (the machine performing the given activity) to the
optical fiber has an impact on the signal-to-noise ratio (SNR), the high sensitivity of the sensing system
within the limits of the selected “machine operation area” for each location makes the SNR good
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enough to cover realistic and practical situations. Moreover, the trained signal models are also able to
cope with this variability due to the acoustic source distance to the pipeline.

4.2. System Configuration

Regarding the feature extraction, the relevant parameters are as follows: The acoustic frame size
was set to one second; the acoustic frame shift was set to five milliseconds; the number of FFT points
was set to 8192; the number of frequency bands (i.e., the original feature vector size) was set to 100;
and the initial and final frequencies corresponding to the analyzed bandwidth were set to 1 Hz and
100 Hz, respectively.

The highest energy meter selection in our previous work has been selected for signal
representation, due to its better performance over the reference position (see Figure 5) [22]. Therefore,
each acoustic frame used either for training or evaluation (MLP in the contextual feature extraction and
GMM in the pattern classification) corresponds to the highest energy meter between those acquired
by FINDAS.

LOC6

Machinery
operation area

Reference 

position (RP)

200 m
eters recorded

from
 RP at this side 

200 m
eters recorded

from
 RP at this side 

Recorded fiber segment 

Fiber

Pipeline

Figure 5. Recording scenario: real example at LOC6, taken from [22].

For the contextual feature extraction, 100 units have been used in the hidden layer for MLP training
and posterior probability vector computation for the machine + activity identification mode and three
units for the threat detection mode. These values were chosen based on their best performance in
preliminary experiments.

For pattern classification, a single GMM component has been used to model each class in
both modes.

The use of the sensitivity-based normalization and the bandwidth limited to 100 Hz are explicitly
designed to also help in dealing with the noise in the raw data. The normalization aids in equalizing
noise effects compensating for variabilities in the signal acquisition process and the sensed location
(as background noise can vary for different locations due to the proximity of road, factories, etc.),
and the bandwidth limitation avoids considering noisy signals where no relevant information is
to be found. Furthermore, while variations in the fiber temperature could introduce noise in the
measurements, these typically occur at much lower frequencies than the processed acoustic signals,
so that they do not constitute a relevant issue in our proposal. Nevertheless, even though the raw
signals have a high level of noise (as shown in the sample signal spectrograms shown in Figure 2
of [22]), each machine + activity pair exhibits, in general, a reasonably consistent spectral behavior,
hence allowing for the use of pattern classification strategies that can efficiently extract this consistent
behavior. A full experimental and theoretical description of the optical noise characteristic of the DAS
technology using a similar setup, which defines the background noise of the raw data, can be found
in [44].
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4.3. Evaluation Strategy

The evaluation strategy was carefully and rigorously designed to maximize the statistical
significance of the results and to provide a wide variety in the design of the training and
evaluation subsets.

With this objective, the robust and widely-adopted leave-one-out cross-validation (CV)
strategy [52] was selected to carry out the experiments. The criteria to split the full database into
training and evaluation subsets match with the recorded data location criteria. Since data were recorded
in six different locations, the CV strategy comprises six folds, where the data recorded in all of the
locations except one were used for training (including MLP training and posterior probability vector
computation for the contextual feature extraction and GMM training for the pattern classification),
and the evaluation was done on data of the unused location (thus ensuring full independence between
the training and evaluation subsets). Classification is again conducted on a frame-by-frame basis.

Using the data from the same locations for MLP training and posterior probability vector
computation in the contextual feature extraction could lead to overfitting problems, since a subset of the
data employed for MLP training is also used to compute the posterior probability values of the tandem
feature vectors employed for training the pattern classification module. To evaluate this drawback,
we ran a full set of experiments in which different locations for MLP training and posterior probability
vector computation were employed, and similar results are obtained, which clearly indicates that no
overfitting occurs.

4.4. Evaluation Metrics

As in our previous work [22] and for comparison purposes, the classification accuracy has been
the main metric to evaluate the system performance both for the machine + activity identification
and threat detection modes. In addition, we will also show the class classification accuracy for the
machine + activity identification mode and the threat detection rate and false alarm rate for the threat
detection mode. Finally, to provide a full picture of the classification performance, we will also show
the confusion matrix (i.e., a table that shows the percentage of evaluation frames of a given class that
are classified as any of the considered classes) for the machine + activity identification mode. Statistical
validation of the results will be provided to assess the statistical significance of the results.

5. Experimental Results

5.1. Preliminary Experiments

A preliminary set of experiments was run to show the potential effectiveness of (1) using contextual
information and (2) combining different contextual information sources in the whole system.

This set of experiments takes the 100-dimensional normalized feature vectors as input for the
MLP and conducts classification. For MLP-based classification, we simply assign the class with
the highest posterior probability as the recognized class with which we can evaluate the system
performance. The different temporal contexts (short, medium and long) are employed for MLP
training and classification, and the obtained results are presented in Table 2.

From Table 2, it is clearly seen that, even though the overall accuracy improves when increasing
the temporal context, the optimal temporal context (short, medium or long) is different for each
machine + activity pair (the best rates are shown in bold). For example, for the big excavator
moving, the baseline performance is 49.1%, and this increases to 63.3%, 72.9% and 82.5% when
using progressively longer temporal contexts (short, medium and long, respectively). On the other
hand, for the small excavator hitting, increasing the temporal context leads to systematic performance
degradation from the 13.8% obtained in the baseline to 10.7%, 8.8% and 7.0% for progressively longer
temporal contexts.
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These results indicate that different temporal contexts model the feature space in a different way,
so that employing and combining different window sizes could bring further improvements to the
whole system performance (thus, motivating our combination approach). In addition, the MLP does
not seem to be suitable to replace the GMM for classification. Despite the best overall performance
obtained with the long-length window size, there are some classes whose performance is worse than
that of the baseline (hitting and scrapping activities with the small excavator and hitting activity with
the big excavator, which include multiple behaviors and have less training data). Therefore, this
motivates the use of the MLP to produce a tandem feature vector and to maintain the GMM-based
pattern classification system.

Table 2. MLP classification accuracy for the machine + activity identification mode for every class with
various window sizes with the best result for each class in bold font. ”Acc.” is the overall classification
accuracy, with the best result in bold font. ”Mov.” stands for moving; ”Hit.” stands for hitting; ”Scrap.”
stands for scrapping; and ”Compact.” stands for compacting.

Window Size

Machine + Activity Identification

Big Excavator Small Excavator Pneumatic Hammer Plate Compactor
Acc.

Mov. Hit. Scrap. Mov. Hit. Scrap. Compact. Compact.

Baseline [22] 49.1% 20.1% 26.0% 50.5% 13.8% 30.2% 71.8% 39.5% 45.2%
Short 63.3% 13.0% 31.5% 54.8% 10.7% 26.5% 73.9% 57.3% 53.5%

Medium 72.9% 12.1% 35.4% 63.8% 8.8% 28.3% 76.9% 51.3% 58.6%
Long 82.5% 12.3% 34.5% 62.5% 7.0% 28.1% 82.2% 46.2% 61.8%

5.2. Contextual Feature Extraction

We analyze the performance of the contextual feature extraction module from the tandem feature
vectors that are built from different window sizes. To do so, a GMM-based pattern classification
process is carried out for each of the proposed temporal contexts (short, medium and long), as shown
in Figure 4, and results are presented in Table 3.

At first sight, for the machine + activity identification mode, the average system performance
compared with the baseline (column Acc. in Table 3) seems to improve to a great extent
(57.8% − 45.2% = 12.6% absolute improvement). Paired t-tests [53] show that this improvement
is statistically significant for any window size over the baseline (p < 10−32). However, looking at the
individual class performance, this improvement is not that clear. There are classes for which very
similar or even slightly worse performance is obtained with the tandem feature vectors (e.g., small
excavator doing hitting (13.8% for the baseline system and 13.4% for the tandem system) and scrapping
(30.2% for the baseline system and 30.3% for the tandem system)), and the best performance for each
class largely depends on the window size.

The large improvement obtained with the tandem feature vectors is for the classes for which
more data are available. For example, the moving activity from the big excavator improves the 49.1%
baseline performance to 74.4% for the tandem system, and from the small , the improvement goes
from the 50.5% baseline performance to 62.0%. Furthermore, large improvements are observed for the
plate compactor (from 39.5% to 54.0%) and the pneumatic hammer (from 71.8% to 81.1%). The fact that
more data are available for these classes is biasing the performance calculation, but we also have to
consider the effect on the classes with lower performance. The high performance classes, which tend to
have a more stable behavior, get much more benefit from the feature-level contextual information than
classes that represent different acoustic behaviors (i.e., hitting and scrapping activities). The greater
amount of training data of those classes also contributes to this, since a more robust GMM is trained.
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Table 3. Contextual feature extraction module results. Class classification accuracy and overall
classification accuracy for the machine + activity identification mode and the threat detection rate
(TDR), false alarm rate (FAR) and overall classification accuracy for the threat detection mode, with
the best results in bold font. ”Acc.”, ”Mov.”, ”Hit.”, ”Scrap.” and ”Compact.” denote the same as in
Table 2.

Window Size

Machine + Activity Identification Threat Detection

Big Excavator Small Excavator Pneumatic Hammer Plate Compactor
Acc. TDR FAR Acc.

Mov. Hit. Scrap. Mov. Hit. Scrap. Compact. Compact.

Baseline [22] 49.1% 20.1% 26.0% 50.5% 13.8% 30.2% 71.8% 39.5% 45.2% 80.7% 40.3% 64.3%
Short 60.6% 17.0% 32.0% 55.9% 11.6% 27.8% 75.6% 54.0% 52.8% 78.9% 36.3% 67.1%

Medium 66.1% 19.0% 36.9% 62.0% 10.8% 30.3% 75.9% 49.7% 56.0% 76.6% 32.3% 69.7%
Long 74.4% 21.5% 30.2% 59.2% 13.4% 28.5% 81.1% 43.4% 57.8% 71.6% 31.2% 69.4%

On the contrary, for classes with different acoustic behaviors during the execution (hitting and
scrapping), integrating these multiple behaviors could lead to less robust GMMs, so that the final
performance for these classes is similar or even worse than that of the baseline. For example, for the
small excavator hitting, there is a performance degradation from the baseline 13.8% to 13.4%. The only
exception for this observation is the improvement obtained for the big excavator doing scrapping
(36.9% versus 26.0% of the baseline), which may be due to the greater amount of training data available,
so that a more robust GMM is built.

This suggests that using feature-level contextual information in isolation is not enough to obtain
the best performance in the whole system for classes for which different acoustic behaviors are observed
and the amount of data used to train the GMM is limited.

For the threat detection mode, it can be seen that incorporating feature-level contextual
information also provides an improvement in the overall classification accuracy over the baseline
(69.7% − 64.3% = 5.4% absolute improvement). Paired t-tests show that this improvement is
statistically significant for any window size (p < 10−24) over the baseline. However, by inspecting the
threat detection rate and the false alarm rate, it can be seen that both figures decrease compared with
those of the baseline, which makes it more difficult to derive a clear conclusion.

From these results, we can state that decision combination is necessary to take advantage of the
complementary classification errors obtained for each temporal context.

5.3. Decision Combination

Decision combination employs different combinations of temporal contexts (in pairs or all of
them) to make the final decision for each frame. Results are shown in Table 4 for the machine + activity
identification mode and the threat detection mode. To ease the analysis, the results for the sum method
are not shown, as they are almost identical to those obtained with the product method. Additionally,
the cells with worse results than the baseline have an orange background and the green background
cells indicate the selected systems for the machine + activity identification and threat detection modes.
As can be seen, almost all of the results obtained with the decision combination improve those of
the baseline.
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Table 4. Decision combination results. Class classification accuracy and overall classification accuracy
for the machine + activity identification mode and the threat detection rate (TDR), false alarm rate
(FAR) and overall classification accuracy for the threat detection mode with the best results in bold
font. For combination, ”Prod” is the product method, and ”Max” is the maximum method. ”S” denotes
short window size; ”M” denotes medium window size; and ”L” denotes long window size. ”Acc.”,
”Mov.”, ”Hit.”, ”Scrap.” and ”Compact.” denote the same as in Table 2.

Method

Machine + Activity Identification Threat Detection

Big Excavator Small Excavator Pneumatic Hammer Plate Compactor
Acc. TDR FAR Acc.

Mov. Hit. Scrap. Mov. Hit. Scrap. Compact. Compact.

Baseline [22] 49.1% 20.1% 26.0% 50.5% 13.8% 30.2% 71.8% 39.5% 45.15% 80.7% 40.3% 64.26%

Prod

S-M 59.9% 19.4% 36.3% 60.4% 13.0% 33.8% 75.8% 44.4% 53.06% 76.8% 33.2% 69.10%
S-L 64.3% 23.7% 32.1% 57.7% 18.0% 31.1% 80.4% 40.1% 53.91% 74.9% 33.7% 68.25%
M-L 66.1% 22.2% 33.7% 57.9% 14.3% 36.6% 78.4% 41.3% 54.92% 73.9% 32.0% 69.32%

S-M-L 61.5% 24.0% 34.0% 57.6% 15.0% 36.9% 78.2% 39.8% 53.09% 75.0% 33.2% 68.68%

Max

S-M 67.3% 17.3% 36.9% 64.2% 9.7% 27.2% 79.5% 56.6% 57.75% 81.0% 36.2% 67.66%
S-L 76.8% 17.2% 32.1% 62.9% 10.9% 29.4% 81.1% 50.0% 60.20% 79.7% 35.0% 68.29%
M-L 76.6% 14.8% 34.2% 64.1% 11.5% 29.2% 80.1% 49.9% 60.33% 78.4% 33.4% 69.24%

S-M-L 77.0% 14.5% 34.0% 65.0% 10.0% 27.8% 81.7% 51.4% 60.82% 81.1% 35.4% 68.34%

5.3.1. Machine + Activity Identification Mode

For the machine + activity identification mode, the combination of any window size with
any combination method outperforms the overall classification accuracy of the baseline to a great
extent (52.91% − 45.15% = 7.76% minimum absolute improvement, which means a 17% relative
improvement). Paired t-tests show that this improvement is statistically significant for all of the cases
(p < 10−30).

For sum and product methods, consistent performance gains are obtained for all of the classes
in general. The sum method is expected to work well when each individual classifier performs quite
different [50], as is our case (see Table 3). The product method is also expected to derive a robust
combination when the feature sets are independent [51]. Different temporal contexts model the feature
space in a different way so that the feature set for every class can be considered as independent.

For hitting and scrapping activities, which possess multiple behaviors and have less training
data, the performance obtained with the maximum method is much worse than that of the baseline
(for example, for the small excavator hitting, the 13.8% baseline gets as low as 9.7%). This can be due to
two reasons: (1) the maximum method does not integrate information of different classification
processes (only the best likelihood is selected), which for multi-class classification problems is
important, and (2) this method provides gains when the performance of the individual classifiers is
close, which is not our case (see Table 3). The only exception is again for the big excavator doing
scrapping, for which performance gains are obtained for each combination method (from the 26.0%
baseline performance up to 36.3% with the product method and 36.9% with the maximum method).
This may be again due to the availability of more training data, which results in a more robust GMM.

Our selection proposal is the product-based combination from medium and long temporal
window sizes, since this presents the best overall accuracy with consistent improvements for each
individual class.

Table 5 shows the corresponding confusion matrix of this combination, where we have removed
the values below chance (1/8 = 12.5%) to ease the visualization and analysis and where we have
used color information as a visual aid. In general, it is clearly seen that the diagonal contains the
greatest figures for each class (with at least 9% absolute better accuracy compared to the second most
recognized one, i.e., 33.74%−24.64% = 9.10% in the big excavator doing scrapping), except for the
hitting activity. For the big excavator, this is confused with the moving and scrapping activities. On the
one hand, the big excavator doing hitting has less training data, which can cause that the classification
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process prefers the GMM for which more training data are available. On the other hand, scrapping
also includes hitting when the shovel contacts the ground, which is also causing confusion in the
small excavator. The classes with the lowest performances correspond to the hitting and scrapping
activities, which are also confused with each other. On the one hand, these are the classes with less
training data, which derives a less robust GMM. In addition, hitting and scrapping activities present
different acoustic behaviors (moving up the shovel, moving it down, hitting, scrapping, moving, etc.),
which may degrade the GMM, since just a single GMM component is used for modeling (increasing
the number of GMM components does not provide any gain, probably due to the small amount of
training data for these classes).

Table 5. Confusion matrix of the product combination method from medium and long window sizes
for the machine + activity identification mode. Classification accuracy is shown in each cell. The values
between brackets represent the number of frames that are classified as the recognized class or that
belong to the real class.

Recognized Class

Big Excavator Small Excavator
Pneumatic
Hammer

Plate
Compactor

[236845]
Moving

[40432]
Hitting

[81899]
Scrapping

[94597]
Moving

[61857]
Hitting

[91389]
Scrapping

[77049]
Compacting

[56292]
Compacting

R
e
a
l

cl
a
ss

Big
excavator

[275145] Moving 66.09

[21995] Hitting 30.60 22.15 19.21
[67230] Scrapping 24.64 33.74 18.39

Small
excavator

[126575] Moving 57.91 16.92
[23655] Hitting 17.03 14.01 14.32 29.55
[53950] Scrapping 15.55 12.62 36.57

Pneumatic hammer [80510] Compacting 78.38
Plate Compactor [91300] Compacting 14.24 16.29 41.28

It is also important to note the significant improvements in the identification rates with respect to
the baseline system, as shown in Table 6. The relative performance improvement between the baseline
and novel systems range from 4.48% up to 37.74%, with an average value of 21.30%, which clearly
validates the strategy used towards improving the overall performance.

Table 6. Machine + activity identification mode rate comparison between the baseline and novel

systems. Relative improvement is calculated as 100 · (novelaccuracy−baselineaccuracy)
baselineaccuracy

.

Big Excavator Small Excavator Pneumatic Hammer Plate Compactor
Averages

Moving Hitting Scrapping Moving Hitting Scrapping Compacting Compacting

Baseline 49.05% 20.11% 26.03% 50.50% 13.78% 30.22% 71.84% 39.51% 45.15%
Novel 66.09% 22.15% 33.74% 57.9% 14.32% 36.57% 78.38% 41.28% 54.92%

Relative improvement 34.74% 10.14% 29.62% 12.89% 3.92% 21.01% 9.10% 4.48% 21.30%

5.3.2. Threat Detection Mode

For the threat detection mode, the overall classification accuracy shows a similar trend. All of
the method combinations for any window size significantly outperform the baseline (p < 10−26 for
a paired t-test).

Combining all of the temporal window sizes with the maximum method outperforms the baseline
both for the threat detection rate (from the 80.7% baseline performance up to 81.1%, which implies a
relative improvement of 0.5%) and the false alarm rate (from the 40.3% baseline performance down
to 35.4%, which implies a relative improvement of 12%). These improvements are significant for
the threat detection rate (p < 10−5) and for the false alarm rate (p < 10−28). By integrating all of
the window sizes in a small classification task (two classes: threat/non-threat), the feature space is
modeled in such a different way that the pattern classification makes different and complementary
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errors, so that the final performance gets improved in the maximum method, for which the classifier
with the highest likelihood makes the final decision.

6. Conclusions and Future Work

This paper has presented a novel approach for a pipeline integrity threat detection system
that employs a φ-OTDR fiber optic-based sensing system for data acquisition by adding feature-level
contextual information and system combination in the pattern recognition stage. The proposal achieves
consistent and significant improvements that were verified in a machine + activity identification task,
where the machine and the activity carried out must be known, and in a threat detection task, where
just the occurrence of a threat for the pipeline has to be known.

Feature-level contextual information in isolation has been shown to perform well for
machine + activity pairs that possess a stable behavior and for which enough training data are available.
Adding the decision combination from different pattern recognition processes that run on different
contextual information window sizes has been shown to outperform the overall classification accuracy
and the class classification accuracy for both tasks.

Although the results presented in this paper have improved those of the baseline to a great
extent (about 21% relative to the machine + activity identification mode and 12% relative to the
false alarm rate with a slight improvement of 0.5% relative to the threat detection rate for the threat
detection mode), there is still much work to do. For classes for which different behaviors exist and the
amount of training data is low, the improvements obtained are not as high as for the rest of the classes.
Therefore, future work should focus on these low-performance classes by, for example developing
new strategies that will also extend our system to make use of contextual information in the spatial
domain (that is by using the acoustic traces from nearby sensed positions, which should experience
similar disturbances simultaneously).
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