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Abstract: The accuracy of the conventional finite element (FE) approximation for the analysis of
acoustic propagation is always characterized by an intractable numerical dispersion error. With the
aim of enhancing the performance of the FE approximation for acoustics, a coupled FE-Meshfree
numerical method based on triangular elements is proposed in this work. In the proposed new
triangular element, the required local numerical approximation is built using point interpolation
mesh-free techniques with polynomial-radial basis functions, and the original linear shape functions
from the classical FE approximation are employed to satisfy the condition of partition of unity.
Consequently, this coupled FE-Meshfree numerical method possesses simultaneously the strengths
of the conventional FE approximation and the meshfree numerical techniques. From a number of
representative numerical experiments of acoustic propagation, it is shown that in acoustic analysis,
better numerical performance can be achieved by suppressing the numerical dispersion error by the
proposed FE-Meshfree approximation in comparison with the FE approximation. More importantly,
it also shows better numerical features in terms of convergence rate and computational efficiency
than the original FE approach; hence, it is a very good alternative numerical approach to the existing
methods in computational acoustics fields.

Keywords: meshfree numerical approximation; finite element approximation; dispersion error;
acoustic problems; numerical method
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1. Introduction

Acoustic propagation problems usually play a very important role in many branches
of engineering applications. Analytical approaches can only solve relatively simple acoustic
problems and usually have obvious limitations in handling relatively complicated acoustic
propagations in which very complex geometric shapes are always involved. Therefore, nu-
merical methods are the main approach to tackling complex acoustic propagation problems
in practical engineering computations [1,2].

One dominant numerical approach for acoustic propagation analysis is the tradi-
tional finite element (FE) approach [3,4]. In comparison with other existing numerical
techniques (such as the finite difference method [5–8], the finite volume method [9], and the
mesh-free collocation method [10–13]), the classical FE approximation in solving acoustic
problems, which is usually governed by the Helmholtz equation, has several obvious
advantages [14,15]. Firstly, the mathematical background of the FE approximation is quite
firm in handling various partial differential equations, and various boundary conditions
(BCs) (including the Dirichlet BCs and Neumann BCs) can be properly imposed. Secondly,
owing to the local feature of the FE approximation, the constructed system matrices for the
governing equation are always sparse and banded; hence, the practical computation pro-
cess can be significantly speeded up, and the required memory space can also be markedly
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reduced. Additionally, the acoustic propagation in nonhomogeneous media can be directly
handled by the FE approximation, and the coupling of the acoustic propagation with other
complex structures can be realized naturally. Nevertheless, the FE approach still possesses
several inherent drawbacks in acoustic analysis. One important issue is the numerical dis-
persion error, which is essentially a particularity of the Helmholtz equation and generally
cannot be totally removed [15]. Due to this issue, the conventional FE approach is usually
limited to solving acoustic problems in a relatively low frequency range. For the purpose
of controlling the numerical dispersion error, in the computation process we have to adopt
the mesh size according to the computed frequency values, such that sufficient elements
are employed to discretize one wavelength. With this approach, the required computation
expenses will increase dramatically when the computed frequency gets higher.

Actually, the numerical error of the FE solutions for acoustics is mainly made up of two
different components, namely the error component from the pollution effects (or dispersion
effects in several literatures) and the numerical interpolation error component [16,17].
The concept of interpolation error in acoustic problems is similar to that in standard
elasticity and thermal problems [18,19]. This error component will converge at the same
rate as the decrease in the average mesh size or nodal space in the local region. The
FEM researchers usually believe that this error can be suppressed if the used acoustic
wave resolution n (n = λ/h, in which λ is the wavelength and h is the average nodal
space) is sufficiently large to approximate the solution. However, the behavior of the
error component from the dispersion effects is identified to be much more complex; it
is actually global in nature, and it could degrade the quality of the numerical solutions
everywhere in the considered problem domain [19]. Although the acoustic wave resolution
n is large enough, the dispersion error will never vanish. In order to effectively address
the numerical error issue, many improved and modified FE approximations (such as the
smoothed FEM [20–25], generalized FEM [26,27] and enriched FEM [28–30]) have been
developed, and quite tremendous progress has been achieved. However, the numerical
dispersion error can still not be totally removed [31–35].

In addition to the classical FE approximation approach, boundary element and
boundary-based techniques are also effective numerical approaches for acoustic prop-
agation analysis [36–40]. Compared to the FE approach, only the boundary discretization
is needed in these boundary-based methods, and the considered problem in d–dimensions
can be reduced to a d − 1 dimensional problem [41–49], hence the scale of the constructed
system matrix equation is clearly smaller than that in the FE approach. However, these ob-
tained system matrices are always dense and non-sparse; hence, the storage and treatment
of these system matrices are not as easy as in the FE approach.

Compared to classical FEM, mesh-free approaches are relatively new numerical tech-
niques for solving acoustic problems [50–52]. The earliest concept of mesh-free technique
is the well-known smooth particle hydrodynamics (SPH), which was first proposed by
Lucy et al. [53] to handle astrophysics and fluid dynamics. In the subsequent few decades,
several famous mesh-free methods have emerged in modern computational mechanics
with considerable success [54,55]. Due to the relatively high degree of accuracy property
and independence of the mesh grid, mesh-free numerical techniques have been extensively
used for practical engineering computation [54,56,57].

In recent years, mesh-free methods have also been exploited to tackle acoustic prob-
lems. Suleau and Bouillard used the element-free Galerkin (EFG) method to solve acoustic
wave propagation problems [58]. The numerical results show that the behaviors of the
EFG in handling acoustics are quite similar to those of the standard FEM, while the EFG
results are much better. Later, Sulear et al. performed the dispersion analysis of the EFG
method for acoustics in two dimensions [59]. It is found that it is possible to immensely
reduce the pollution error and to obtain fairly good solutions compared to the solutions
from FEM as long as the related parameters are carefully chosen. Wenterodt and Estorff
focused on using the radial point interpolation technique to study the pollution error issue
in acoustic computation [60]. Likewise, a significant reduction of the pollution effects could



Mathematics 2023, 11, 2475 3 of 21

be achieved, and extremely good numerical solutions could be obtained. In summary,
though the mesh-free method is indeed effective in controlling the pollution error, it also
has its own disadvantages [61–63]. To effectively control the pollution error, too many extra
parameters are usually required to be carefully determined; it might be a little difficult
for the inexperienced researcher. In addition, several mesh-free techniques usually have
difficulties imposing the essential boundary condition [54,64].

The main objective of this work is to introduce a coupled “FE-Meshfree” numerical
technique based on ordinary triangular meshes for the analysis of acoustic wave propa-
gation problems. In the proposed new triangular element, the required local numerical
approximation is built using point interpolation mesh-free techniques with polynomial-
radial basis functions, and the original linear shape functions from the classical FE ap-
proximation are employed to satisfy the condition of partition of unity. Owing to the fact
that the meshfree techniques usually have relatively high computation precision and the
FE approach is easy to carry out, this coupled FE-Meshfree numerical method possesses
simultaneously the strengths of the conventional FE approximation and the meshfree nu-
merical techniques. From a number of representative numerical experiments of acoustic
propagation, it is shown that in acoustic analysis, better numerical performance can be
achieved by suppressing the numerical dispersion error by the proposed FE-Meshfree
approximation in comparison with the FE approximation.

2. Weak Form Formulation for Time-Harmonic Acoustics

Assuming that the problem domain Ω is filled with a homogeneous acoustic medium.
Γ is the problem domain boundary, and c is the acoustic speed in the medium. With the
assumption of small perturbations, the governing equation for acoustic propagation can be
obtained as [3,65,66]

∇2P− 1
c2

∂2P
∂t2 = 0, (1)

in which P and t respectively denote the unknown acoustic pressure field and time.
If the considered acoustic propagation is time-harmonic, we have

P = p exp(jωt), (2)

in which p is amplitude of the acoustic pressure distribution, ω denotes the angular
frequency.

The time variable t in Equation (1) can be eliminated by using Equation (2), and then
the governing differential equation becomes

∇2 p + k2 p = 0, (3)

where k = ω/c is the wave number.
In addition, the following equation should also be satisfied for acoustic propagation:

∇p + jρωv = 0, (4)

in which ∇p is the acoustic pressure gradient, v is acoustic particle velocity, ρ denotes the
acoustic medium density.

When the appropriate boundary conditions (BCs) are applied, the above-described
acoustic problem can be completely defined. For acoustic analysis, the boundary Γ usually
consists of three different types, namely

Γ = ΓD ∪ ΓN ∪ ΓR, (5)

in which ΓD, ΓN and ΓR are respectively the Dirichlet, Neumann, and Robin BCs.
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The three types of BC are described by the following equations:
p = p onΓD

vn = v onΓN

∇p = −jρωAn p onΓR

, (6)

In which p and v denote the prescribed pressure and velocity on the corresponding
boundaries, vn is the normal particle velocity, and An is the admittance coefficient.

With the conventional Galerkin method and applying the above-mentioned three BCs,
the standard weak form for acoustic problems can be written as [65,66]

−
∫

Ω
∇N·∇NpdΩ+k2

∫
Ω

N·NpdΩ− iρω
∫

ΓN

N·vndΓ− jρωAn

∫
ΓR

N·NpdΓ = 0, (7)

where N is the defined nodal interpolation functions.
The considered field variable could be approximated in terms of the corresponding

nodal values and interpolation functions in the standard FE analysis.

p = ∑ Ni pi = Np, (8)

Using Equation (8), we can arrive at the matrix equation,[
K− k2M + jρωC

]
[p] = −jρω[F], (9)

where K, M and C represent the system stiffness, mass, and damping matrices.
K =

∫
Ω(∇N)T(∇N)dΩ

M =
∫

Ω NTNdΩ
C =

∫
ΓR

AnNTNdΓ
F =

∫
ΓN

NTvndΓ

, (10)

3. Construction of the Coupled “FE-Meshfree” Numerical Approximation

In constructing the present “FE-Meshfree” numerical approximation, the partition of
unity (PU) condition is used, and the conventional FE interpolation functions are directly
used as the required non-negative weight functions. Based on the PU condition, we have

∑ wi(x) = 1, (11)

in which wi(x) stands for the weight function for node i.
Then the global numerical approximation uh(x) in the proposed “FE-Meshfree” frame-

work can be constructed as

uh(x) =
n

∑
i=1

wi(x)ui(x), (12)

in which n is the number of involved nodes and ui(x) denotes the constructed local numer-
ical approximation for node i.

From Equation (12), it is seen that the main difference between the present numerical
approximation and the FE approximation is the local numerical approximation for each
node. In the FE approach, the nodal unknowns are directly used as the local approximation,
while in the proposed method, the newly constructed local numerical approximation
is used. In this work, the required local numerical approximation is built using mesh-
free techniques.

Actually, various numerical techniques can be utilized to build the required local
numerical approximation. Due to the Kronecker-delta function property and relatively
high computation precision, the polynomial-radial base functions in the mesh-free point
interpolation method with radial base functions (RPIM) are employed to form the local
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nodal numerical approximation. Here the nodal interpolation function in the RPIM is first
introduced briefly.

If there are m field nodes in the defined support domain for node i, the required local
nodal numerical approximation is constructed by [54]

u(x) =
m

∑
i=1

Ri(x)ai +
3

∑
j=1

qj(x)bj = RT(x)a + qT(x)b, (13)

in which ai and bj are the associated unknown interpolation coefficients, Ri(x) and qj(x)
are respectively the radial and polynomial base functions.

In this work, we only use the linear polynomial base functions in two-dimensional
space, namely

q =
[
1 x y

]
, (14)

The employed multi-quadric radial base functions have the following form:
RT(x) =

[
R1(x) R2(x) R3(x) . . . Rn(x)

]
Ri(x) =

[
r2

i + (αcdc)
2
]q

ri =
√
(x− xi)

2 + (y− yi)
2

, (15)

in which dc is the node space of the used node distribution, αc and q are two important
parameters that can be determined from Ref. [51].

If the numerical approximation in Equation (13) is satisfied for all m field nodes in the
support domain, we have

u(x) =
m

∑
i=1

Ri(x)ai +
3

∑
j=1

pj(x)bj = Ra + Qb, (16)

R =


R1(r1) R2(r1) · · · Rn(r1)
R1(r2) R2(r2) · · · Rn(r2)

...
...

. . .
...

R1(rm) R2(rm) · · · Rm(rm)


m×m

, (17)

Q =

P1(x1) P2(x1) · · · Pm(x1)
P1(x2) P2(x2) · · · Pm(x2)
P1(x3) P2(x3) · · · Pm(x3)

, (18)

From Ref. [54], it is known that the determination of the unknown interpolation
coefficients a and b also requires the following restrictions:

m

∑
i=1

qj(xi)ai = 0, j = 1, 2, 3, (19)

Then the numerical approximation in Equation (16) can finally be written by
uh(x) = RT(x)a + qT(x)b =

[
RT(x)Sa + QT(x)Sb

]
us = Φ(x)u

Sa =
(
R−1 −R−1QSb

)
Sb =

[
QTR−1Q

]
QTR−1

, (20)

in which Φ(x) is the constructed polynomial-radial node shape function in the RPIM.
In the present coupled “FE-Meshfree” triangular element, the required numerical

approximation is constructed by using composite nodal interpolation functions, which
are formed by combining the conventional FE and RPIM interpolation functions [67–70].
The former is designed to fulfill the PU condition, and the latter is employed to build the
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required local nodal approximation; hence, the abbreviation Trig3-RPIM is used to denote
this coupled “FE-Meshfree” triangular element. To clearly show the formulation of the
present Trig3-RPIM element, the support domains for each node and element are defined
here (see Figure 1). The node support contains all elements sharing the mutual node, and
the element support denotes the domains containing all the associated node supports.

Figure 1. The node and element supports in the Trig3-RPIM element are: (a) the node support;
(b) the element support.

By combining Equations (12) and (13), for the element containing M field nodes, the
constructed numerical approximation for this Trig3-RPIM is expressed as

p(x) = N(Φp) = (NΦ)p = Ψp
Ψ = [ψ1, ψ2 , . . . , ψM] = N︸︷︷︸

1×3

Φ︸︷︷︸
3×M

p = [p1, p2 , . . . , pM]

, (21)

where Ψ represents the constructed composite interpolation functions for this Trig3-RPIM
element.

For the node arrangement in Figure 1, the purple region represents the local node
support Ω1 = {1, 2, 3, 10, 12, 11, 9} for node 1. Similarly, the node supports for node 2 and
node 3 are Ω2 = {2, 4, 5, 3, 1, 9, 7} and Ω3 = {3, 5, 6, 8, 10, 1, 2}, respectively. In Equation (21),
the global numerical approximation is given by

p(x) = N1 p1(x) + N2 p2(x) + N3 p3(x), (22)

Following the formulation of the original RPIM approximation [54,71], the local nu-
merical approximation is expressed by

p1(x) = Φ1
1 p1 + Φ1

2 p2 + Φ1
3 p3 + Φ1

10 p10 + Φ1
12 p12 + Φ1

11 p11 + Φ1
9 p9

p2(x) = Φ2
2 p2 + Φ2

4 p4 + Φ2
5 p5 + Φ2

3 p3 + Φ2
1 p1 + Φ2

9 p9 + Φ2
7 p7

p3(x) = Φ3
3 p3 + Φ3

5 p5 + Φ3
6 p6 + Φ3

8 p8 + Φ3
10 p10 + Φ3

1 p1 + Φ3
2 p2

, (23)
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in which pi denotes nodal acoustic pressure and Φj
i stands for the corresponding nodal

shape function based on the RPIM formulation.
Then the interpolation function matrix Φ in Equation (21) can be expressed by

Φ =

 Φ1
1 Φ1

2 Φ1
3 0 0 0 0 0 Φ1

9 Φ1
10 Φ1

11 Φ1
12

Φ2
1 Φ2

2 Φ2
3 Φ2

4 Φ2
5 0 Φ2

7 0 Φ2
9 0 0 0

Φ3
1 Φ3

2 Φ3
3 0 Φ3

5 Φ3
6 0 Φ3

8 0 Φ3
10 0 0

, (24)

Finally, the composite interpolation matrix Ψ can be expressed by

Ψ = NΦ =

N1
N2
N3

T Φ1
1 Φ1

2 Φ1
3 0 0 0 0 0 Φ1

9 Φ1
10 Φ1

11 Φ1
12

Φ2
1 Φ2

2 Φ2
3 Φ2

4 Φ2
5 0 Φ2

7 0 Φ2
9 0 0 0

Φ3
1 Φ3

2 Φ3
3 0 Φ3

5 Φ3
6 0 Φ3

8 0 Φ3
10 0 0

, (25)

From the above formulation, the complete numerical approximation of the present
Finite element-Meshfree can be written by

p(x) = Ψp = NΦp

=

 N1
N2
N3

T Φ1
1 Φ1

2 Φ1
3 0 0 0 0 0 Φ1

9 Φ1
10 Φ1

11 Φ1
12

Φ2
1 Φ2

2 Φ2
3 Φ2

4 Φ2
5 0 Φ2

7 0 Φ2
9 0 0 0

Φ3
1 Φ3

2 Φ3
3 0 Φ3

5 Φ3
6 0 Φ3

8 0 Φ3
10 0 0




p1
p2
...

p12

 (26)

In the Cartesian coordinate system, the derivatives of Ψ for triangular element can be
directly obtained by {

Ψ,x = N,xΦ + NΦ,x
Ψ,y = N,yΦ + NΦ,y

, (27)

The size of the derivatives Ψ,x and Ψ,y is 3×M. After obtaining the related derivatives
of the interpolation functions, the related system matrices can be calculated directly. It
should be noted that the Gauss integration rule is still used for numerical integration in the
present method, which is very similar to the traditional FE scheme.

With the above formulations, the discrete governing equations for acoustic propagation
problems using the present Finite element-meshfree approximation can be expressed by[

K− k2M + jρωC
]
[p] = −jρω

[
F
]
, (28)

in which K, M, C, and F denote the corresponding system matrices and nodal vectors
obtained by the present Finite element-Meshfree method.

K =
∫

Ω(∇Ψ)T(∇Ψ)dΩ =
∫

Ω[∇(NΦ)]T [∇(NΦ)]dΩ
M =

∫
Ω ΨTΨdΩ =

∫
Ω(NΦ)T(NΦ)dΩ

C =
∫

ΓR
AnΨTΨdΓ =

∫
ΓR

An(NΦ)T(NΦ)dΓ
F =

∫
ΓN

ΨTvndΓ =
∫

ΓN
(NΦ)TvndΓ

, (29)

From Equations (10) and (29), it is seen that in the present method, the standard finite
element nodal shape function N is replaced by the composite nodal shape function Ψ,
which is actually a combination of the standard finite element nodal shape function N and
the RPIM mesh-free nodal shape function Φ.

The comparisons of the influencing domain and interpolation functions for one node in
the traditional FEM-T3 and the proposed Trig3-RPIM are given in Figure 2. We can observe
that if a larger influencing domain is used in the Trig3-RPIM compared to the FEM-T3,
then more field nodes will be involved in constructing the numerical approximation. We
can also see that the present Trig3-RPIM has smoother nodal interpolation functions than
the FEM-T3 due to the fact that a higher-order numerical approximation can be achieved
in this Trig3-RPIM. Therefore, it is quite reasonable to expect that the coupled numerical



Mathematics 2023, 11, 2475 8 of 21

approximation in this Trig3-RPIM element is more suitable to approximate the acoustic
wave propagation problems and that less numerical error can be obtained compared to the
traditional FE approach.

Figure 2. The influencing domain and interpolation functions for one node in different elements:
(a) in the linear FEM-T3 element; (b) in the present Trig3-RPIM element.

It is important to note that the composite nodal interpolations employed here also
have the Kronecker-delta function property. This good numerical feature is acquired by
the fact that the RPIM has this important numerical feature. A brief proof of this is given
as follows:

Based on Equation (21), for a conventional triangular element, the constructed com-
posite nodal interpolations are written by

Ψ =
[
N1 N2 N3

]φ1
1 φ1

2 φ1
3 · · · φ1

M
φ2

1 φ2
2 φ2

3 · · · φ2
M

φ3
1 φ3

2 φ3
3 · · · φ3

M

, (30)

If node 1 has the coordinate values (x, y) = (x1, y1), the values of the interpolation
function at node 1 can be calculated as follows:

Ψ =
[
1 0 0

][
1 0 0 · · · 0

]
at node 1, (31)

Equation (28) means that

Ψ︸︷︷︸
1×M

=
[
1 0 0 · · · 0

]
at node 1, (32)
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Using the similar way, for nodes 2 and 3, we have
Ψ︸︷︷︸

1×M

=
[

1 0 0 · · · 0
]

at node 2

Ψ︸︷︷︸
1×M

=
[

0 1 0 · · · 0
]

at node 3
, (33)

From the above formulation, it is seen that the Kronecker-delta function property is
indeed maintained by the present composite nodal interpolation functions, which make it
quite easy to apply the essential boundary conditions.

4. Numerical Examples

Several typical acoustic wave propagation problems are solved with various numerical
techniques in this section to test the behaviors of the present Trig3-RPIM element. In
addition to the traditional FEM-T3, edge-based smoothed FEM (ES-FEM) [65] and RPIM
(ES-RPIM) [72] have also been used here for a clear comparison and discussion. We can
observe that the proposed Trig3-RPIM element works well for the acoustic propagation
problem; meanwhile, it also has stronger abilities than other mentioned methods in terms of
computation efficiency and convergence rate. To effectively evaluate the obtained numerical
solutions, the following error estimator is defined:

en =

√∫
Ω
(ve − vh)

T(ve − vh)dΩ, (34)

where ve and vh are the exact and numerical acoustic particle velocities, and the overbar
means the complex conjugate values.

The global relative error indicator is defined by

η =

√√√√∫Ω (ve − vh)
T(ve − vh)dΩ∫

Ω vTvedΩ
, (35)

4.1. Acoustic Propagation in a 2D Tube

As shown in Figure 3, the acoustic wave propagation in a 2D tube is solved here. The
tube is filled with water (acoustic wave speed c = 1500 m/s and fluid density ρ = 1000 kg/m3).
The geometry configuration of this 2D tube is width b = 0.1 m and length l = 1 m. The
Neumann BC with vn = 1 m/s is applied to the left side, and the other sides are assumed to
be completely rigid. The employed mesh pattern for this considered problem is shown in
Figure 4. The exact acoustic particle velocity and pressure are given by p = −jρcvn

cos[k(1−x)]
sin(k)

v = vn
vn sin[k(1−x)]

sin(k)

, (36)

Figure 3. The 2D tube was filled with water.

Figure 4. The employed mesh pattern for the 2D tube.
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In addition, the eigenfrequencies of this problem are given by

f =
c
2

√(m
l

)2
+
(n

b

)2
m, n = 0, 1, 2, 3 · · · , (37)

4.1.1. Computation Accuracy Study

We first showed the pressure distributions at disparate frequency values along the
x-axis using various methods (see Figure 5). We note that all the methods used can basically
produce fairly good results when the frequency value f = 2000 Hz. If the frequency value
becomes higher (f = 4000 Hz and f = 7000 Hz), all the numerical solutions will gradually
depart from the analytical solutions. However, it clearly appears that the present Trig3-
RPIM can provide the most accurate solutions. This is because the high-order numerical
approximation can be constructed by the Trig3-RPIM, hence the potential numerical errors
can be largely suppressed.

Figure 5. Cont.
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Figure 5. The calculated pressure results from disparate methods for the 2D tube.

Furthermore, the acoustic eigenfrequency analysis of this 2D tube is also carried out
here. Table 1 lists the first fifteen eigenfrequency values obtained from disparate methods.
From the results in the table, it is found that all the employed methods can provide relatively
accurate eigenfrequency values for the low-mode orders. Due to the numerical error issue,
the computation accuracy for the eigenfrequency value will degenerate quickly when the
mode order becomes higher. Nevertheless, the Trig3-RPIM can stand out clearly among
all the numerical methods, and the most accurate eigenfrequency values can be predicted,
particularly when the mode order is relatively high. The above observations mean that the
Trig3-RPIM clearly surpasses the other methods in dealing with the acoustic propagation
problems.
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Table 1. The first fifteen eigenfrequency values of the 2D tube.

Mode Exact
(Hz)

Trig3-RPIM
(Hz)

Trig3-RPIM
Error(%)

FEM-T3
(Hz)

FEM-T3
Error(%)

ES-FEM
(Hz)

ES-FEM
Error(%)

1 750.00 749.99 0.00 750.12 0.02 750.06 0.01
2 1500.00 1499.77 0.02 1500.99 0.07 1500.74 0.05
3 2250.00 2249.23 0.03 2253.33 0.15 2252.69 0.12
4 3000.00 2998.18 0.06 3007.90 0.26 3006.53 0.22
5 3750.00 3746.49 0.09 3765.44 0.41 3762.87 0.34
6 4500.00 4494.02 0.13 4526.69 0.59 4522.28 0.50
7 5250.00 5240.67 0.18 5292.41 0.81 5285.36 0.67
8 6000.00 5986.34 0.23 6063.35 1.06 6052.65 0.88
9 6750.00 6730.99 0.28 6840.26 1.34 6824.65 1.11
10 7500.00 7474.57 0.34 7623.90 1.65 7601.81 1.36
11 7500.00 7547.38 0.63 7623.90 1.65 7622.74 1.64
12 7537.40 7584.21 0.62 7670.71 1.77 7663.63 1.67
13 7648.50 7693.12 0.58 7798.25 1.96 7786.83 1.81
14 7830.20 7871.27 0.52 7999.93 2.17 7988.40 2.02
15 8077.70 8113.91 0.45 8295.81 2.70 8263.10 2.30

4.1.2. Convergence Rate Study

This sub-section aims at testing the convergence rate of the Trig3-RPIM in acoustic
analysis. When the frequency value f = 2000 Hz, the obtained global numerical error
results from disparate methods using varying mesh patterns are plotted in Figure 6. We
can see that the Trig3-RPIM can not only converge faster than the FEM-T3, but also behave
better than the ES-FEM and ES-RPIM. These findings indicate that the proposed Trig3-
RPIM also has better numerical performance than the other employed methods in terms of
convergence properties.

Figure 6. Convergence properties of disparate methods in acoustic computation.

4.1.3. Computational Efficiency Study

The computation accuracy and convergence rate studies have been carried out in
previous sections, and it is seen that the Trig3-RPIM indeed has excellent performance
compared to other methods. However, whether it still behaves better in terms of computa-
tional efficiency is still not very clear. This sub-section aims at examining the computational
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efficiency of the Trig3-RPIM in acoustic analysis. Here the varying mesh pattern with
disparate element sizes is again employed, and the frequency value f = 4400 Hz.

Figure 7 shows the CPU time, which is employed to denote the computational efforts,
against the global error indicator from disparate methods. We can see that the required
CPU time will increase if the refined meshes are employed. Meanwhile, the present Trig3-
RPIM seems to be significantly more expensive than the other methods employed with a
totally identical mesh pattern. These findings reveal that the relatively high computation
accuracy and fast convergence rate of the Trig3-RPIM are not free of any expenses. It is
not difficult to understand this because there are mainly two factors contributing to the
expensiveness of the Trig3-RPIM. One reason is that more expensive numerical integration
should be carried out because higher-order numerical approximation is always involved in
this Trig3-RPIM element. Another reason is that in this Trig3-RPIM, the half-bandwidth of
the system matrices is always much larger than that in other methods because more field
nodes will be involved in constructing the system matrices. Therefore, more memory space
is needed to store the system matrices, and more computational efforts will be required to
implement the related matrix inversion process. However, it is quite interesting to note that
the Trig3-RPIM is actually a winner compared to other methods when we take computation
accuracy into consideration because less CPU time is required when the Trig3-RPIM is
used for acoustic computation for the identical computation accuracy. This indicates that
the Trig3-RPIM also has higher computational efficiency than the other methods used in
acoustic analysis. This attractive numerical feature will further strengthen the application
prospects of the proposed Trig3-RPIM for solving acoustic wave propagation problems.

Figure 7. Comparisons of the computational efficiency of disparate methods in acoustic analysis.

4.2. Acoustic Propagation in a Square Domain

Here we consider a 2D square domain (length L = 1 m, acoustic medium density
=1.25 kg/m3, and acoustic wave speed c = 340 m/s) with Robin BC (see Figure 8). The
Dirichlet BC with pressure p = 1 Pa is applied at the bottom left corner. Figure 9 gives the
employed mesh pattern with regular (structured mesh) and irregular (unstructured mesh)
node distributions for this problem. Likewise, it is not difficult to obtain the corresponding
exact solution, which is given by

p = cos[k(x cos β + y sin β)] + j sin[k(x cos β + y sin β)], (38)

in which β represents the angle of acoustic wave propagation.
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Figure 8. The 2D acoustic square cavity.

Figure 9. The employed node distribution for the 2D cavity is: (a) the structured mesh; (b) the
unstructured mesh.

Firstly, we examine the performance of different methods by investigating their sensi-
tivity to the geometry distortion of the used mesh. To achieve this objective, both structured
and unstructured meshes with a completely identical total node number, as shown in
Figure 9, are used for numerical computation. For the frequency value f = 380 Hz and
acoustic wave propagation angle β = 45◦, Figure 10 shows the calculated acoustic pres-
sure distribution along the diagonal line of the problem domain. It is observed that the
linear FEM-T3 solutions are notably affected by the unstructured mesh; both ES-FEM and
ES-RPIM have considerable abilities in tackling the mesh distortion, and the corresponding
numerical solutions are clearly more accurate than the FEM-T3. Nevertheless, it is very
interesting to see that the Trig3-RPIM solutions are closest to the exact ones, and almost
identical solutions are produced when the structured and unstructured meshes are utilized.
These findings indicate that the Trig3-RPIM is basically immune from mesh distortion,
which is a distinct advantage over the other methods in acoustic computation. This is
probably because the local numerical approximation in the Trig3-RPIM is constructed using
mesh-free techniques.
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Figure 10. The calculated acoustic pressure distributions for the acoustic square domain.

Furthermore, the numerical errors of different methods in tackling this 2D acoustic
problem are studied by using regular meshes with different element sizes. The numerical
error results are plotted in Figure 11. For the convenience of discussion, k3h2 = 1 and
kh = 1 are also shown in Figure 11. It is quite easy to find that the numerical errors are
quite small when k3h2 < 1, the relatively low frequency values are considered. In addition,
the numerical errors will generally become large very quickly when the relatively high
frequency range is considered (kh > 1). However, the Trig3-RPIM can generate the lowest
numerical errors among all numerical methods. This means that the Trig3-RPIM is indeed
superior to other methods for handling numerical errors.
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Figure 11. The global relative errors of disparate methods versus the wave number for the 2D square
acoustic cavity.

4.3. Acoustic Propagation in a 2D Car

Finally, a more realistic and practical acoustic propagation problem is considered.
As plotted in Figure 12, a 2D car passenger compartment is studied here. Note that the
major noise in the car comes from the engine, the Neumann BC with vn = 0.01 m/s is
applied at the front of the car. The considered acoustic fluid medium is air, and the
absorbing material with an admittance coefficient of An = 0.00144 m/(Pa·s) is fixed on the
roof. The element size of the mesh used for this problem is h = 0.1 m. For two disparate
frequency values, f = 340 Hz and f = 680 Hz, the calculated acoustic pressure distribution
from different methods is plotted in Figures 13 and 14. The reference solutions are obtained
using extremely fine mesh. Likewise, the similar findings that have been found in the
above numerical examples can again be obtained here, namely that the Trig3-RPIM indeed
surpasses the FEM-T3 in solving acoustic propagation problems and that more accurate
numerical solutions can be generated.

Figure 12. The geometry and shape of a 2D car passenger compartment.
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Figure 13. The calculated pressure results for the 2D car using different elements at frequency
f = 340 Hz are: (a) FEM-T3; (b) Trig3-RPIM; (c) Reference solution.
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Figure 14. The calculated pressure results for the 2D car using different elements at frequency
f = 680 Hz are: (a) FEM-T3; (b) Trig3-RPIM; (c) Reference solution.

5. Concluding Remarks

The present work focuses on presenting a coupled FE-Meshfree Trig3-RPIM element
for solving acoustic propagation problems. Both the concepts of the standard FEM and
the meshfree techniques are used to construct the present Trig3-RPIM, and it is proved to
simultaneously have the strengths of the conventional FE approximation and the meshfree
techniques.

A detailed formulation of the present Trig3-RPIM element is given, and we also show
that the Trig3-RPIM has the important Kronecker-delta function property. A number of
numerical examples are given to test the present Trig3-RPIM in acoustic computation. It
is observed that the Trig3-RPIM is more expensive numerically than the other methods
with the identical mesh because the composite nodal shape functions are employed and
the high-order numerical approximation is constructed. However, the Trig3-RPIM still
surpasses the other methods in terms of computation efficiency and convergence properties.
More importantly, the Trig3-RPIM shows stronger abilities than the other methods in
suppressing the numerical error in acoustic computation. Due to these excellent numerical
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features, the Trig3-RPIM is a good alternative to the existing methods for solving practical
acoustic problems.
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