
A novel firing rule for training Kohonen self-

organising maps
D. T. Pham & A. B. Chan

Manufacturing Engineering Centre, School of Engineering,

University of Wales Cardiff, P.O. Box 688, Queen's Buildings,

Newport Road, Cardiff CF2 3TE, Great Britain

Email: PhamDT@cardiff.ac.uk ChanAB@cardiff.ac.uk

Abstract

Statistical Process Control Charts can exhibit six principal types of patterns:

Normal, Cyclic, Increasing Trend, Decreasing Trend, Upward Shift and

Downward Shift. All except Normal patterns indicate abnormalities in the

process that must be corrected. Accurate and speedy detection of such patterns is

important to achieving tight control of the process and ensuring good product

quality. This paper describes an implementation of the Kohonen self-organising

map which employs the Euclidean Distance as the firing rule for control chart

pattern recognition. First, the structure of the network is outlined and the

equations which govern its dynamics are given. Then the learning mechanism of

the network is explained. The effects of different combinations of network

parameters on classification accuracy are discussed. A novel firing rule for the

Kohonen self-organising map is proposed. This rule involves component-by-

component comparison between the input pattern and the established class

templates. When an input vector is presented, it is compared with the class

templates in all the neurons in turn. The neuron containing the class template that

best matches the input vector will subsequently fire. This approach is intended to

enhance the generalisation capability and accuracy of the Kohonen self-

organising map. The paper gives a comparison of the results obtained using the

Euclidean Distance and the proposed firing rule.

 Transactions on Information and Communications Technologies vol 20, © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

1 Introduction

Control charts are employed in Statistical Process Control (SPC) to assess

whether a process is functioning correctly. A control chart can exhibit six

main types of patterns: Normal, Cyclic, Increasing Trend, Decreasing

Trend, Upward Shift and Downward Shift [1-2]. Figures 1a-f depict these

6 pattern types. Correct identification of these patterns is important to

achieving early detection of potential problems and maintaining the

quality of the process under observation.

Figure 1: Main types of control chart patterns.

 When the Kohonen self-organising map was first proposed, it was

intended to be a simplified construction for explaining the ability of the

human brain to form a model of its complicated environment. Despite

this initial intention, the Kohonen self-organising map has since been

employed to solve a variety of classification problems. This is due to the

fact that in forming a miniature model of a much larger input space, a

Kohonen self-organising map compresses similar feature vectors from the

Sample Mean

Process Mean

Sample No.

Sample Mean

Process Mean

Sample No.

Sample Mean

Process Mean

Sample No.

Sample Mean

Process Mean

Sample No.

Sample Mean

Process Mean

Sample No.

Sample Mean

Process Mean

Sample No.

(a) Normal control chart
pattern.

(b) Cyclic control chart
pattern.

(c) Increasing Trend control chart
pattern.

(d) Decreasing Trend control chart
pattern.

(e) Upward Shift control chart
pattern.

(f) Downward Shift control chart
pattern

 Transactions on Information and Communications Technologies vol 20, © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

input space into one single neuron. This clustering capability qualifies the

Kohonen self-organising map as a classifier as well as a memory model.

 In this paper, the results of applying the Kohonen self-organising map

to control chart pattern recognition are detailed. Two different firing rules

have been used in the training of the maps created for this specific

problem. They are the the Euclidean Distance firing rule and a novel

firing rule which involves comparisons of corresponding individual

components in the input vector and the class templates. The ways in

which these firing rules work are explained and a comparison of their

performances is made. The optimal network parameter combination for

each of the two firing rules is determined from the simulation results.

2 Training and testing of a Kohonen self-
organising map

It is apparent that memory plays an important role in human intelligence.

Most of the intellectual activities performed by man like reasoning and

planning do involve the process of extracting useful and relevant

information from memory. If artificial neural networks were to achieve

brain-like functionality, the question as to how a memory unit can be

implemented in the form of an artificial neural network must be

addressed. The Kohonen self-organising map was proposed as a

simplified answer. It does not purport to explain all the complexities

associated with human memory. Rather, it is meant to demonstrate that it

is possible to devise an artificial memory model which carries some

important characteristics in common with human memory.

2.1 Background

The Kohonen self-organising map is inspired by the phenomenon that 2-

dimensional somatosensory maps are formed on the surface of the human

brain in response to senses from different parts of the human body and

that different parts of the visual field are projected onto a surface in the

visual cortex [3]. The major capability of the Kohonen self-organising

map is that it can self-organise to preserve the topology of the training

data set [4]. Usually the training data set of a Kohonen self-organising

map has much more data than contained in the map. In effect, after the

training has stabilised, the Kohonen self-organising map becomes a

miniature model of its much larger training data set.

 Since the Kohonen self-organising map requires no external control

signals, only the input signals, it is regarded as an unsupervised neural

 Transactions on Information and Communications Technologies vol 20, © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

network paradigm.

 The topology-preserving ability of the Kohonen self-organising map is

achieved by implementing a training procedure where the neurons

residing close to the firing neuron are updated as well as the firing

neuron. Gradually, the neurons in a neighbourhood will develop similar

weights. Experiments performed by Kohonen have shown that this simple

updating scheme does lead to topology preservation and, in most cases,

stability [5].

 The updating of neurons close to the firing neuron follows the pattern

of the Mexican hat function (shown in Figure 2) which can be observed

in biological neural networks [5][6]. Figure 2 depicts that the magnitude

of the stimulation that a firing neuron sends to its neighbours reduces as

the physical distance between the neighbouring neuron and the firing

neuron grows. Within a distance range, the stimulation actually is an

inhibitory one. Computer simulations showed that applying an input

constantly to a network implementing the Mexican hat function will

cause the output of a particular neuron in the network to peak above the

others after a certain period [5][6]. This demonstrates the ability of the

network to produce a localised response when a particular input is

applied.

Figure 2: The Mexican hat function.

Excitation level

Distance from

the firingneuron

 Transactions on Information and Communications Technologies vol 20, © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

 As mentioned above, although the Kohonen self-organising map was

designed as a simple tool to form a miniature topology-preserving model

of its training data set, it is possible to apply it as a classifier in some

cases. This is because, in the course of training, similar input vectors are

clustered into the same neurons. However, the classification capability of

the Kohonen self-organising map is coincidental rather than intentional.

Apart from classification, this clustering property is also sometimes

utilised for the purpose of data compression.

2.2 Training procedure

In this section, the firing rule used will not be defined explicitly. It will be

denoted by a general function. This is because the main purpose of this

section (section 2) is to outline the training and test procedures used in

the computer simulations reported in this paper. The two different

specific firing rules will be introduced in sections 3 and 4.
 Because all the simulated maps discussed in this paper are 2-

dimensional, the training and test procedures described here apply only to

2-dimensional maps which are most commonly adopted. A typical 2-

dimensional Kohonen self-organising map is like the one shown in

Figure 3. The number of rows is denoted by M and the number of

columns by N. Any neuron in the map has co-ordinates, (i, j), with the top

left corner defined as (0,0). Each neuron contains a weight vector wij

which has the same dimensionality as any input vector x. For example, if

x = [x1, x2, x3,⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅, xk]
T
 then wij = [w1, w2, w3,⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅, wk]

T
, i.e.

both of them have k elements. Before training begins, all the neuron

weights are initialised with random numbers. Then, each weight vector

will be normalised using the following equation:

$ /w w wij ij ij= (1)

where

||wij|| =
i

2

i=1

k

w∑ (2)

 Transactions on Information and Communications Technologies vol 20, © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

The same normalisation process will also be applied to all training

vectors as follows:

$ /x x x= (3)

||x|| =
i

2

i=1

k

x∑ (4)

Figure 3: A typical Kohonen self-organising map.

(0, 0)

(i, j)

N = 6

M = 5

wij = [w1, w2, w3,., wk]

(i, j)

neuron weights

T

 Transactions on Information and Communications Technologies vol 20, © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

 When an input vector $x is presented, a firing rule will decide which

neuron in the map should fire. This firing rule can be represented by a

general function F($x) which returns the co-ordinates, (i, j), of the firing

neuron. This firing neuron and the other neurons which lie within its

specified neighbourhood will be updated with the following equation:

$ () $ () [$ $ ()]w w x wij ij ijt t t+ = + −1 α (5)

The updating parameter α determines the magnitude by which the weight

vector is modified towards the input vector $x . For practical reasons, α
should be smaller than 1. If α equals 1, the weights in the neurons will

oscillate excessively, being set to any new vector presented; on the other

hand, if α is larger than 1, it will cause the weights of the firing neuron to

“over-learn” the input vector more than necessary in order for them to

cover the difference. This could result in the firing neuron losing

information acquired from input vectors that previously fired it. It is

apparent that α must be larger than 0 if any training is going to take effect

upon the weights in the neurons. Thus, it can be expressed that

1 > α > 0 (6)

 To ensure stability in a Kohonen self-organising map, it is essential

that α decreases during training. This follows the logic that the more

iterations the map has undergone, the less the neuron weights need

modifying. One iteration is defined to be one complete presentation of the

training data set to the map. The total number of iterations is determined

by the user before the training commences.

 There are two common ways in which α reduces: it can decrease

either linearly or exponentially with respect to the number of iterations

that have taken place. These two ways are illustrated in Figure 4. In both

schemes, α starts off with a value close to 1 and gradually decreases to 0.

The interpretation of this is that the neuron weights are updated

drastically initially and updating activities become minimal towards the

end of training, thus ensuring the overall stability of the map. Both

schemes have been adopted in this work.

 Transactions on Information and Communications Technologies vol 20, © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

Figure 4: Two types of α decays.

 Apart from neuron (i, j) returned by the firing rule F($x), the other

neurons, which lie within a specific neighbourhood of (i, j), will also be

updated according to equation (5). The simulated Kohonen self-

organising maps in this work were trained with two different types of

neighbourhood schemes: a fixed 3×3 neighbourhood throughout the

0
iterations

0
iterations

a) Linear decay

b) Exponential decay

α

α

1

1

 Transactions on Information and Communications Technologies vol 20, © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

training session or a neighbourhood which would shrink in the course of

training starting with a size of 5×5. Figure 5 illustrates these two

schemes. For the second neighbourhood scheme (see Figure 5b),

throughout the first quarter of the user-specified iterations, the

neighbourhood size is 5×5. Then, for the middle two-quarters of the

iterations, the neighbourhood size is reduced to 3×3. Eventually, for the

last quarter of the iterations, it becomes 1×1 (that is, it consists of only

the firing neuron).

Figure 5: Two different neighbourhood updating schemes.

Throughout the training cycle

a) The 3×3 neighbourhood updating scheme

For the first quarter
of training iterations

For the middle two quarters
of training iterations

For the last quarter of training iterations

b) The 5×5 neighbourhood updating scheme

The firing neuron

The neurons updated along with the firing neuron

 Transactions on Information and Communications Technologies vol 20, © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

2.3 Test procedure

When training is accomplished, the resulting Kohonen self-organising

map should have achieved the same topological order as that in the

training data set. Before it can be used as a classifier for the test data set,

its neurons have to be labelled to represent different classes. This is done

using the training data set.

 The way in which a neuron is labelled is as follows. Suppose that there

are only 3 classes for both the training and the test data sets and that they

are named Class A, Class B and Class C. To decide which class is

represented by a neuron (i, j) in the map, all the training vectors which

have been clustered into this particular neuron will have to be considered.

The class which has the majority among all the training vectors classified

into neuron (i, j) will become the class label for it. For example, if 70% of

the training vectors classified into neuron (i, j) belong to Class A, 20% to

Class B and 10% to Class C, then neuron (i, j) will represent Class A.

Consequently, all the vectors not belonging to Class A but classified into

neuron (i, j) will be regarded as mis-classified. Once all the neurons in the

map have been labelled in this manner, testing can proceed. Any test

vector belonging to Class A that fires neuron (i, j) will be counted as a

correct classification; any other vectors belonging to other classes that

trigger this neuron will be regarded as mis-classifications.

3 Euclidean Distance firing rule

3.1 Firing rule

Euclidean Distance is a measure of the physical distance between two

position vectors in n-dimensional space. It is widely employed in

clustering algorithms for unsupervised learning classification techniques.

In the case of a Kohonen self-organising map, when an input vector x̂ =

[x1, x2, x3,⋅ ⋅ ⋅ ⋅ ⋅, xk] is presented, its Euclidean Distance to the weight

vector
ij

ŵ = [w1, w2, w3, ⋅ ⋅ ⋅ ⋅ ⋅ ⋅, wk] of neuron (i, j) can be calculated

using the following equation:

Eucli($x , $w ij) = ()2

i=1

k

i ix w−∑ (7)

 Transactions on Information and Communications Technologies vol 20, © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

 When an input vector $x is presented, the same operation will be

performed with the weight vectors of all neurons in the Kohonen self-

organising map. The neuron having the shortest Euclidean Distance from

the input vector will be the firing neuron. It and its neighbours will be

updated in the training process in accordance with equation (5).

3.2 Classification results

Table 1 records the simulation results for Kohonen self-organising maps

trained with the Euclidean Distance firing rule. Map 19 had the best

performance (96.42%). It was a 10×10 map trained with an exponentially

decaying α and a shrinking neighbourhood. The total number of

iterations specified was 10. The best among the 7×7 maps was Map 10

(91.62%). This also used an exponentially decaying α and took 10

iterations to train. However, for Map 10 a fixed neighbourhood was

employed rather than a shrinking one. The difference in performance

between Map 10 and Map 19 is 4.8%.

 The overall average accuracy of the 7×7 maps was 85.26% and that of

the 10×10 maps was 93.02%. This considerable difference can be

attributed to the particularly poor performance of Map 3 which reduced

the overall average accuracy of the 7×7 maps.

 The maps trained with a linearly decaying α had an overall average

accuracy of 88.16% compared with the 90.12% for those trained with an

exponentially decaying α.

 The fixed neighbourhood produced an overall average accuracy of

89.86%. On the other hand, the shrinking neighbourhood scheme gave

88.43%. The difference in this case is not very significant.

 Those maps trained in 10 iterations did in general perform better than

those trained in 30 and 50 iterations. The respective overall accuracies for

these different numbers of iterations are 90.68%, 88.30% and 88.45%.

 Transactions on Information and Communications Technologies vol 20, © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

4 A novel firing rule

4.1 Firing rule

The proposed firing rule involves an element-by-element comparison

between the input vector and the weight vectors of a Kohonen self-

organising map. When an input vector x = [x1, x2, x3,⋅ ⋅ , xi,⋅ ⋅ ⋅, xk]
T
 is

presented to a Kohonen self-organising network, it will be compared with

the weight vector Wij = [w1, w2, w3, ⋅ ⋅, wi, ⋅ ⋅ ⋅ ⋅, wk]
T
 of neuron (i, j) in a

component-to-component manner. For every corresponding pair of

components (xi, wi) the following decision concerning xi will be made:

IF

i i

i

x w
w

−
≤ β

THEN
x i IS REGARDED AS A SUCCESSFUL COMPONENT

ELSE

x i IS REGARDED AS A FAILED COMPONENT

β, a user-supplied coefficient between 0 and 1, determines the range

within which xi is permitted to vary from wi before it is considered to be a

failed component. For example, if β is set as 0.2 and wi is equal to 1, xi

can be any value between 0.8 to 1.2 (inclusive) without being rejected as

a failed component. After all the components in x have been checked

according to this procedure, the total number of successful components in

x will be recorded for neuron (i, j). The same procedure is performed on

all the neurons in the Kohonen self-organising map. Finally, the neuron

with the maximum number of successful components in x will be the

firing neuron.

4.2 Classification results

Table 2 shows the simulation results for Kohonen self-organising maps

trained with the proposed firing rule. For each map, β was set to 0.2. The

best classification accuracy was achieved by Map 23 which had

dimensions 10×10. It was trained with an exponentially decreasing α and

a fixed neighbourhood scheme in 30 iterations. The average accuracy,

98.15%, of Map 23 is significantly better than the best performing 7×7

map, Map 10, which had an average accuracy of 92.42%.

 Transactions on Information and Communications Technologies vol 20, © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

 The overall average accuracy of the 7×7 maps, 84.48%, is

considerably lower than that of the 10×10 maps (93.74%). In terms of the

updating parameter α, the linearly decaying strategy appears to be

inferior to the exponentially decaying alternative because the overall

average accuracy of all the maps adopting a linearly decaying α is

86.70% compared to 91.53% of those using the exponentially decaying

α. The fixed neighbourhood scheme seems to be as efficient as the

shrinking neighbourhood scheme since their average accuracies are

nearly equal (88.66% and 89.56% respectively). The overall average

accuracy of all the maps trained in 10 iterations is 90.50%. This is higher

than the accuracy of those trained in 30 iterations (88.30%) and 50

iterations (88.54%).

 Tables 3 and 4 are included to show the effect on the network

performance when β is altered. Theoretically, high accuracy can be

produced by keeping β at a low value. This is because a low valued β
means a stricter classification criterion. The input pattern must resemble

the class template to a large extent before it is classified as a member of

that class. This assumption is demonstrated by the results in Table 4. The

best performing map in Table 3, where β=0.1, has an average accuracy of

98.53% which is higher than that of Map 23 in Table 2 (98.15%). Table 4

shows that when β was set to 0.3, which meant each component was

allowed to vary within the range of ± 30% of its counterpart in the class

template, the classification criterion became too lax. This resulted in

generally low classification accuracy.

5 Conclusions

In terms of the best performing map, Map 23 in Table 2, trained with the

proposed firing rule with β = 0.2, was better than the maps trained with

the Euclidean Distance firing rule.

 Whether α followed a linear decay function or an exponential decay

function was of limited importance with the Euclidean Distance firing

rule. However, the overall average accuracy was increased by almost 5%

when an exponential decay function was adopted with the proposed firing

rule.

 As for neighbourhood schemes, having a fixed neighbourhood size

throughout or having a shrinking one did not affect the average overall

accuracy greatly. It can be reasonably assumed that for the control chart

pattern recognition problem, these two neighbourhood updating schemes

would always yield very similar results.

 From the results of using the two different firing rules, it can be

 Transactions on Information and Communications Technologies vol 20, © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

claimed that for the control chart pattern recognition problem, it is not

helpful to use a large number of iterations. The best performing maps,

trained with the Euclidean Distance firing rule were trained in 10

iterations. Although the best performing map trained with the proposed

firing rule required 30 iterations, the second-best map (Map 19 in Table

2), having been trained in 10 iterations, only had 0.14% less accuracy.

 In this paper, classification results have shown that the proposed firing

rule is superior to the Euclidean Distance firing rule. For good

classification accuracy, it is necessary to choose β with a suitably low

value.

References

[1] Pham, D. T. and Oztemel, E. (1996). Intelligent Quality Systems.

Springer-Verlag, London.

[2] Pham, D. T. and Chan, A. B. (1997). Control Chart Pattern

Recognition Using a New Type of Self-Organising Neural Network.

Technical Report, University of Wales, Cardiff, Britain.

[3] Knudsen, E. I., du Lac, S. and Esterly, S. D. (1987).

“Computational maps in the brain.” Annual Review of

Neuroscienve, 10:41-65.

[4] Kohonen, T. (1987). “Representation of sensory information in

self-organising feature maps, and relation of these maps to

distributed memory networks.” Optical and Hybrid Computing.

Szu (Ed.), SPIE Vol. 634, Bellingham.

[5] Kohonen, T. (1982). “Self-organised formation of topologically

correct feature maps.” Biological Cybernetics 43, 59-69.

[6] Kohonen, T. (1988). “An introduction to neural computing,”

Neural Networks, 1, 3-16.

 Transactions on Information and Communications Technologies vol 20, © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

Table 1. The Euclidean Distance firing rule simulation results.

Map dimensions Updating parameter Neighbourhood option Number of Classification accuracy

Map x-dim y-dim linear exponential fixed shrinking iterations trn.dat (%) tes.dat (%) average (%)

1 7 ♦ ♦ 10 83.22 84.24 83.73
2 7 7 ♦ ♦ 30 79.40 84.24 81.82
3 7 7 ♦ ♦ 50 79.67 78.94 79.31
4 7 7 ♦ ♦ 10 86.23 87.27 86.75
5 7 7 ♦ ♦ 30 81.58 90.30 85.94
6 7 7 ♦ ♦ 50 82.95 81.97 82.46
7 7 7 ♦ ♦ 10 87.49 87.42 87.46
8 7 7 ♦ ♦ 30 84.75 86.67 85.71
9 7 7 ♦ ♦ 50 88.58 85.00 86.79
10 7 7 ♦ ♦ 10 92.96 90.27 91.62
11 7 7 ♦ ♦ 30 84.24 83.48 83.86
12 7 7 ♦ ♦ 50 88.85 86.52 87.69
13 10 10 ♦ ♦ 10 94.25 95.87 95.06
14 10 10 ♦ ♦ 30 91.15 94.85 93.00
15 10 10 ♦ ♦ 50 93.33 92.58 92.96
16 10 10 ♦ ♦ 10 90.60 92.12 91.36
17 10 10 ♦ ♦ 30 94.15 95.61 94.88
18 10 10 ♦ ♦ 50 89.51 91.82 90.67
19 10 10 ♦ ♦ 10 95.97 96.87 96.42
20 10 10 ♦ ♦ 30 86.50 85.01 85.76
21 10 10 ♦ ♦ 50 90.60 95.64 93.12
22 10 10 ♦ ♦ 10 92.98 93.15 93.07
23 10 10 ♦ ♦ 30 95.25 95.61 95.43
24 10 10 ♦ ♦ 50 95.79 93.33 94.56

x-dim: the x dimension of the Kohonen self-organising map

y_dim: the y dimension of the Kohonen self-organising map
trn.dat: classification results using the training data set as inputs

tes.dat: classification results using the test data set as inputs

average: the average classification results using the training and test data set

training data set: 366 vectors; test data set: 132 vectors

 Transactions on Information and Communications Technologies vol 20, © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

Table 2. Simulation results for the proposed firing rule when β=0.2.

β = 0.2

Map dimensions Updating parameter Neighbourhood option Number of Classification accuracy

Map x-dim y-dim linear exponential fixed shrinking iterations trn.dat (%) tes.dat (%) average (%)

1 7 7 ♦ ♦ 10 80.60 82.58 81.59
2 7 7 ♦ ♦ 30 82.24 81.82 82.03
3 7 7 ♦ ♦ 50 78.42 84.09 81.26
4 7 7 ♦ ♦ 10 82.79 83.33 83.04
5 7 7 ♦ ♦ 30 78.96 80.30 79.63
6 7 7 ♦ ♦ 50 80.60 78.03 79.32
7 7 7 ♦ ♦ 10 91.26 92.42 91.84
8 7 7 ♦ ♦ 30 82.79 81.06 81.93
9 7 7 ♦ ♦ 50 84.43 87.12 85.78

10 7 7 ♦ ♦ 10 93.17 91.67 92.42
11 7 7 ♦ ♦ 30 84.75 85.15 84.95
12 7 7 ♦ ♦ 50 89.07 90.91 89.99
13 10 10 ♦ ♦ 10 96.17 93.94 95.06
14 10 10 ♦ ♦ 30 92.62 92.94 92.78
15 10 10 ♦ ♦ 50 92.35 93.94 93.15
16 10 10 ♦ ♦ 10 89.62 92.42 91.02
17 10 10 ♦ ♦ 30 91.26 91.67 91.47
18 10 10 ♦ ♦ 50 89.89 90.15 90.02
19 10 10 ♦ ♦ 10 97.54 98.48 98.01
20 10 10 ♦ ♦ 30 96.21 94.70 95.46
21 10 10 ♦ ♦ 50 95.36 96.21 95.79
22 10 10 ♦ ♦ 10 90.77 91.21 90.99
23 10 10 ♦ ♦ 30 97.81 98.48 98.15
24 10 10 ♦ ♦ 50 92.44 93.60 93.02

x-dim: the x dimension of the Kohonen self-organising map

y_dim: the y dimension of the Kohonen self-organising map
trn.dat: classification results using the training data set as inputs

tes.dat: classification results using the test data set as inputs

average: the average classification results using the training and test data sets

training data set: 366 vectors; test data set: 132 vectors

 Transactions on Information and Communications Technologies vol 20, © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

Table 3. Simulations results for the proposed firing rule when β=0.1.

β = 0.1

Map dimensions Updating parameter Neighbourhood option Number of Classification accuracy

Map x-dim y-dim linear exponentia

l

fixed shrinking iterations trn.dat (%) tes.dat (%) average (%)

1 7 7 ♦ ♦ 10 84.97 81.06 83.01

2 7 7 ♦ ♦ 30 84.97 88.64 86.81
3 7 7 ♦ ♦ 50 84.97 86.36 85.67
4 7 7 ♦ ♦ 10 86.89 92.42 89.66
5 7 7 ♦ ♦ 30 82.79 84.07 83.43
6 7 7 ♦ ♦ 50 88.80 84.85 86.83
7 7 7 ♦ ♦ 10 90.71 92.42 91.57
8 7 7 ♦ ♦ 30 87.98 89.39 88.69
9 7 7 ♦ ♦ 50 84.70 87.12 85.91
10 7 7 ♦ ♦ 10 93.99 93.18 93.59
11 7 7 ♦ ♦ 30 88.52 87.88 88.20
12 7 7 ♦ ♦ 50 94.54 93.94 94.24
13 10 10 ♦ ♦ 10 95.90 96.21 96.06
14 10 10 ♦ ♦ 30 96.72 93.84 95.28
15 10 10 ♦ ♦ 50 93.17 96.21 94.69
16 10 10 ♦ ♦ 10 94.81 97.73 96.27
17 10 10 ♦ ♦ 30 93.17 96.21 94.69
18 10 10 ♦ ♦ 50 93.72 94.70 94.21
19 10 10 ♦ ♦ 10 97.81 99.24 98.53
20 10 10 ♦ ♦ 30 93.99 94.70 94.35
21 10 10 ♦ ♦ 50 92.35 93.18 92.77
22 10 10 ♦ ♦ 10 96.45 96.97 96.71
23 10 10 ♦ ♦ 30 95.90 96.97 96.44
24 10 10 ♦ ♦ 50 91.67 93.22 92.45

x-dim: the x dimension of the Kohonen self-organising map

y_dim: the y dimension of the Kohonen self-organising map

trn.dat: classification results using the training data set as inputs

tes.dat: classification results using the test data set as inputs

average: the average classification results using the training and test data sets

training data set: 366 vectors; test data set: 132 vectors

 Transactions on Information and Communications Technologies vol 20, © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

Table 4. Simulation results for the proposed firing rule when β= 0.3

β = 0.3

Map dimensions Updating parameter Neighbourhood option Number of Classification accuracy

Map x-dim y-dim linear exponent

ial

fixed shrinking iterations trn.dat (%) tes.dat (%) average (%)

1 7 7 ♦ ♦ 10 82.13 81.21 81.67

2 7 7 ♦ ♦ 30 79.13 75.15 77.14
3 7 7 ♦ ♦ 50 71.75 78.18 74.97

4 7 7 ♦ ♦ 10 72.57 73.64 73.11
5 7 7 ♦ ♦ 30 75.30 76.67 75.99

6 7 7 ♦ ♦ 50 71.75 72.88 72.32

7 7 7 ♦ ♦ 10 77.21 78.94 78.08
8 7 7 ♦ ♦ 30 76.01 73.79 74.90
9 7 7 ♦ ♦ 50 72.02 74.39 73.21

10 7 7 ♦ ♦ 10 74.10 70.76 72.43
11 7 7 ♦ ♦ 30 74.48 71.36 72.92

12 7 7 ♦ ♦ 50 76.93 72.88 74.91

13 10 10 ♦ ♦ 10 78.31 78.94 78.63
14 10 10 ♦ ♦ 30 82.13 79.70 80.92
15 10 10 ♦ ♦ 50 81.04 82.73 81.89

16 10 10 ♦ ♦ 10 84.37 88.33 86.35
17 10 10 ♦ ♦ 30 85.03 83.64 84.34

18 10 10 ♦ ♦ 50 83.50 81.20 82.35
19 10 10 ♦ ♦ 10 88.03 87.42 87.73

20 10 10 ♦ ♦ 30 82.57 84.39 83.48
21 10 10 ♦ ♦ 50 83.66 84.39 84.03

22 10 10 ♦ ♦ 10 89.84 82.12 85.98
23 10 10 ♦ ♦ 30 86.67 87.42 87.04

24 10 10 ♦ ♦ 50 84.47 82.40 83.44

x-dim: the x dimension of the Kohonen self-organising map

y_dim: the y dimension of the Kohonen self-organising map

trn.dat: classification results using the training data set as inputs

tes.dat: classification results using the test data set as inputs

average: the average classification results using the training and test data sets

training data set: 366 vectors; test data set: 132 vectors

 Transactions on Information and Communications Technologies vol 20, © 1998 WIT Press, www.witpress.com, ISSN 1743-3517

