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ABSTRACT In this research, a new robust control method is developed, which achieves a fixed-time

convergence, robust stabilization, and high accuracy for trajectory tracking control of uncertain magnetic

levitation systems. A hybrid controller is a combination of an adaptive fixed-time disturbance observer

and a fixed-time control algorithm. First, to estimate precisely the total uncertain component in fixed-

time, an adaptive disturbance observer is constructed. Then, a new robust control method is designed from

a proposed fixed-time sliding manifold, disturbance observer’s information, and a continuous fixed-time

reaching law. A global fixed-time stability and convergence time boundary of the control system is obtained

by Lyapunov criteria in which the settling time can be arbitrarily set using design parameters regardless

of the system’s initial state. Finally, the designed control strategy is implemented for a magnetic levitation

system and its control performance is compared with other existing finite-time control methods to evaluate

outstanding features of the proposed system. Trajectory tracking experiments in MATLAB/SIMULINK

environment have been performed to exhibit the effectiveness and practicability of the designed approach.

INDEX TERMS Lyapunov criteria, fixed-time control, terminal sliding mode control, magnetic levitation

systems, nonlinear control.

I. INTRODUCTION

The design of advanced controllers for magnetic levitation

systems (MLSs) is essential to extend their applications to

many real systems in automation, transportation, and other

related research fields. MLSs have been used very success-

fully in many fields. Some notable applications stated in stud-

ies [1], [2] can be mentioned as a high-speed maglev train,

frictionless bearings, spacecraft, rocket-guiding projects,

gyroscopes, microrobotics, contactless melting, wafer distri-

bution systems, the centrifuge of nuclear reactor, vibration

isolation systems, and so on. Evidently, MLSs are indeed

a potential object for researchers. The general feature in

all MLSs applications is the absence of mechanical contact

and therefore they are free from abrasion and friction. This

increases the working efficiency, reduces maintenance costs,

and increases the operating life of the system. MLSs are a
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technology in which an object is suspended in the air envi-

ronment without assistance other than the electromagnetic

forces. These magnetic fields are applied to reverse or offset

the gravitational force or any other counter accelerations.

Therefore, the characteristics of MLS are high nonlinearity

and unstable under the influence of external noise, sensor

noise, and undefined dynamic components. And the mathe-

matical equation description ofMLSs is nonlinear differential

equations.

Various control methodologies are suggested for MLSs

such as adaptive control [3], PID [4], [5], robust control [6],

the exact linearization control [7], and Fuzzy H∞ robust

control [8].Most of them rely on the linearization of themath-

ematical model for the nominal working point. For exam-

ple, with PID controllers [4], [5], although it has a simple

design and is easy to design, the performance is not high

due to without considering the mathematical model of the

system. With the control methods relied on the linearization

of the mathematical model, the linearization of the system’s
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mathematical model may be inadequate in the presence of

external disturbances, sensor noise, or unknown dynamic

components. As a result, the control performance can be

rapidly degraded in working operations with the increasing

discrepancy between the trajectory system and the nomi-

nal working point. Maintaining a high tracking performance

along with an efficient control system over a long work

journey is a challenge for researchers. On the other hand,

the nonlinear control is marked with the following character-

istics: 1) simplicity in the control design; 2) a strong ability

to compensate for large change dynamics in uncertain sys-

tems; 3) the necessary range of work is large. Consequently,

nonlinear control algorithms seem more suitable for MLSs

than for model linearization. In addition, MLSs also exist the

variation of suspending mass and the changes of resistance

and inductance due to the process of electromagnet heating.

To improve performance, those changes must also be fully

considered.

The majority of the nonlinear controllers for MLSs that

existed in the literature have only been verified by com-

puter simulation results [9]–[14]. A few studies have also

been applied to real systems with low efficiency. Usually,

the desired trajectories in those studies are simple as straight

lines. For more complex orbits, such as sinusoidal and rest-

to-rest, are rarely considered. Therefore, to track those men-

tioned trajectories with high performance is also one of the

motivations of researchers. The next motivation is that the

initial value of the system trajectories in the implemented

methods is usually set very small and very close to the desired

orbit. The amplitudes of the above orbits are also set to

small values. Therefore, the problem of fast convergence has

not been investigated with a large initial value. Furthermore,

using the above methods especially in SMC only finite-time

convergence of the sliding surface is guaranteed, whilst the

trajectories of the system asymptotically converge to the

origin. Consequently, the system state would never reach

the origin point in finite-time. In order to increase tracking

accuracy, those controllers need to add more control force

input. However, in most cases, it is not practical to be limited

in terms of equipment and produce unbounded input values.

Or it also causes serious chattering when using sliding mode

control-based methods.

Terminal sliding mode control (TSMC) is a popular non-

linear control algorithm derived from sliding mode control

(SMC) [15]–[18] thus, it not only inherits the advantages of

SMC such as ability rejection to system uncertainties and

external noise, low insensitivity, and simple control design

but also supplies stable convergence in finite-time and high

precision. Thanks to these advantages, TSMC is widely used

in control design for nonlinear systems [19]–[23]. How-

ever, with the first proposed TSMCs, there appears to be

a singularity in calculating the time derivative of the slid-

ing mode surface [24], [25]. To solve the singularity prob-

lem or to produce faster convergent stability, theoretical

breakthroughs have been introduced such as proposed non-

singular TSMC (NTSMC) in [26]–[28] or proposed fast

TSMC (FTSMC) in [29]–[31]. Following this development,

nonsingular fast TSMC (NFTSMC) [32]–[38] was devel-

oped to inherit the advantages of both NTSMC and FTSMC

at the same time. NFTSMC not only evades singularity

but also eliminates malfunctions during the approach pro-

cess of arbitrary initial states to the desired trajectories

along with a fast stability convergence in finite-time. There-

fore, the control system is continuously running in sliding

mode, and immutability is always guaranteed. In addition,

the settling time for the convergence of the state variables

in approaching the sliding surface can be arbitrarily pre-

set with the controllers such as finite-time or fixed-time

NFTSMC [33], [39], [40]. However, very few finite-time

or fixed-time NFTSMC for MLSs have been verified for

their effectiveness by experimental results [22], [41] until

now. The feasibility of the controllers is generally only ver-

ified by simulation results on the computer using MAT-

LAB/Simulink [17], [32].

A common characteristic of the conventional SMC,

TSMC, or NFTSMC-based control methods is that oscilla-

tion occurs in the control input which is commonly known

as chattering. Those control algorithms apply discontinuous

control action with a sign function to control from an arbitrary

initial state to the equilibrium point along a user-defined

trajectory and provide outstanding robustness to parame-

ter uncertainty and disturbances. Nevertheless, the control

action appears chattering phenomenon because of the dis-

continuity in the control law that is undesirable in most

process applications. Chattering can damage the system,

impair control performance, and generate heat that heats

the device. From there, the operating life of the device

is reduced. Hence, chattering needs to be minimized or

eliminated to improve performance. The topic of chattering

elimination is still attracting researchers now. There are a

number of suggested methods for dealing with chattering,

such as continuous sliding-mode control methods [68], [69],

neural networks-SMC (NN-SMC) [34], [42]–[46], low pass

filters [47], [48], quasi-sliding mode [49], fuzzy-SMC [50],

high-order-SMC (HOSMC) [51]. Continuous sliding-mode

control methods have lesser chattering than discontinuous

sliding-mode control methods. They can reduce chattering

behavior but cannot completely eliminate this behavior that

analyzed in the paper entitled ‘‘Analysis of Chattering in

Continuous Sliding-Mode Controllers’’ [70]. NN or Fuzzy

can arbitrarily estimate any nonlinear terms of the system.

Nevertheless, the use of these approaches has a certain com-

plexity as they add the calculation to the control design.

Using low-pass filters can damage the information shape

of uncertainties or external disturbances when the filter’

parameter is not suitably selected. The finite-time conver-

gence of quasi-sliding mode has not been fully confirmed

yet when it is combined with other control methods. With

HOSMC, the first uses continuous control signals by calcu-

lating the integral of the discontinuous control signal. Based

on this computation, a continuous compensation term is then

added to the control loop to reduce the influence of total
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uncertain terms. Nonetheless, the sliding gain of HOSMC

is designated the same as the sliding gain of SMC. Further-

more, convergence stability in fixed-time cannot be guar-

anteed with a traditional HOSMC. Besides, to reduce the

chattering behavior of SMC-based methods without losing

the control performance, several observers have been intro-

duced such as extended observer [52], high-gain observer

(HGO) [53], sliding mode observer (SMO), fuzzy logic

observer (FLO) [54], neural network observer (NNO) [55],

etc. Comparison between the above observers, SMO has

stronger features, so, it usually offers better accuracy of

uncertainty and external disturbances. However, the chat-

tering behaviors still significantly persist with traditional

SMO. To reduce SMO’s chattering behavior while inheriting

its powerful properties, high order sliding mode observer

(HOSMO) [56], [57] has been proposed. HOSMO can not

only reduce chattering behavior but also provide a finite-time

convergence. Unfortunately, the traditional HOSMO has not

obtained or guaranteed stability in fixed-time yet. That is a

limitation when they are applied to real systems where the

initial value of the system trajectories is unknown in advance.

Recently, the application of disturbance observer (DO) is also

a good potential method which has proven its effectiveness in

studies [35], [58]–[60]. In [35], [58]–[60], all of the external

disturbances and unknown dynamical uncertain terms are

first defined as an extended variable which is the total of

unknown uncertain components affecting the system. Then,

to exactly achieve this total unknown component, thereby

supplying for the control loop, a DO is applied. Thanks to

this technique, chattering that appeared in the control input

is greatly reduced. Because it is only necessary to use a

reasonable gain in the reaching control law to compensate

for the effects of DO’s approximate error. By using a small

design value of the reaching control law only generates suit-

able chattering in the control signal. Especially, because of

DO’s simplicity it is suitable for applications in real sys-

tems without increasing the system’s calculation problem.

Moreover, according to the author’s knowledge, there has

not currently stilled an observer that is combined between

HOSMO and DO with fixed-time convergence for MLSs.

Therefore, our motivation is to develop a new adaptive DO

based on HOSMO with the convergence in fixed-time for

MLSs.

In the implemented experimental system, the electro-

magnetic force keeps the metal sphere floating in the air.

Mechanical contact with the sphere is absent in this case.

The characteristics of this MLS are high nonlinearity and

unstable under the influence of external noise, sensor noise,

and undefined dynamic components. Accordingly, the devel-

opment of an efficient control method to achieve andmaintain

the expected high control performance in the mentioned work

condition is not easy.

Consequently, This article designs a completely new con-

trol algorithm and differs from the current controlmethods for

MLSs (such as [17], [22], [61]) that existed in the literature.

The designed control method is required to operate a high

control performance over a long work journey. The imple-

mented controllers are also required to significantly diminish

oscillation behavior in the control inputs while providing

a fast fixed-time convergence for system state trajectories.

And it is especially important to be applicable to practical

applications with a design that is not too complicated. New

points and contributions of our robust control method, which

achieves a fixed-time convergence, robust stabilization, and

high accuracy for trajectory tracking control of uncertain

MLSs that highlighted as follows:

1) The first new contribution in this paper compared

to existing methods for MLSs is an observer with

fixed-time convergence is designed to avoid delay in

the information delivery of uncertain components to

the control loop. The new DO is developed based on

HOSMO and dual layers adaptive rule as in [40], [61].

2) A new robust control method is designed from a

proposed fixed-time sliding manifold, disturbance

observer’s information, and a continuous fixed-time

reaching law in which the dual layers adaptive tech-

nique is used to reject the requirement of upper bound

of the total uncertainties.

3) The settling time of the control system can be cal-

culated in advance by assigning the suitable design

parameters regardless of the system’s initial state.

4) Fixed-time convergence and the effectiveness of the

proposed controller has been fully verified by Lya-

punov theory and by experimental results for a real

MLS.

The remainder of the paper is organized as follows:

Nomenclature, the essential lemmas, definitions, as well as

the nonlinear mathematical model of the MLS are presented

in Section 2. Section 3 is the synthesis process of the proposed

algorithm which is carried out in the following three main

steps: Firstly, designs an adaptive disturbance observer. Sec-

ondly, proposes a fixed-time sliding mode surface. Finally,

designs a new composite control method from a proposed

fixed-time sliding manifold, disturbance observer’s informa-

tion, and a continuous fixed-time reaching law. Stability anal-

ysis and proofs also are given in Section 3. Validation of

the proposed controller’s efficiency and superiority compared

to a few of the existing methods for MLSs is performed in

section 4. Finally, this study is closed with some remarks and

conclusions.

II. NOMENCLATURE, PRELIMINARY CONCEPTS, AND

MODELING OF MAGNETIC LEVITATION SYSTEMS

A. NOMENCLATURE

The nomenclature used in this paper is stated in Table 1.

B. MODELING OF MAGNETIC LEVITATION SYSTEMS

The MLS considered in this paper is depicted in Fig. 1. The

object used for attraction is a metal sphere with a specific

mass m which is controlled to move along in an invisible ver-

tical line connecting to the centre point of the electromagnet.
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FIGURE 1. Diagram of a Magnetic Levitation System.

TABLE 1. Nomenclature.

The position of the metal sphere is calculated from the under-

side of the electromagnet to the tip of the metal sphere and

it is defined as h. The controller’s output signal is a voltage

signal u. Then, by using a converter, the output voltage signal

will be converted to the current flowing into the coil of the

electromagnet. As a result, the electromagnetic force F(h, i)

will be generated to reverse and offset the gravitational force

or any other counter accelerations as well as to magnetize

metal sphere. Therefore, under the effect of the electromag-

netic force and gravity, the metal sphere will move in an

invisible vertical line connecting to the centre point of the

electromagnet. Determining the position of the metal sphere

thanks to the use of an infrared sensor to measure the distance

between the metal sphere and the electromagnet. This sen-

sor includes infrared transmitters and detectors as displayed

in Fig. 1.

The nonlinear model of MLS is presented in a simple

formulation based on the studies in [3], [10], [44]:

mḧ = mg− F(h, i), (1)

where the acceleration due to the gravity is denoted as g,

the electromagnetic force F(h, i) generated by the current

flowing in the coil of the electromagnet is determined in the

relationship between the current i and the position of the

metal sphere h:

F (h, i) = β

(

i

h

)2

, (2)

where β is a constant depending on the parameters of the

electromagnet.

The current flowing in winding and the control input volt-

age are linearly related according to the expression:

i = Cu. (3)

where C is a relationship coefficient between the current

flowing in winding and the control input voltage.

From the obtained result of Eqs. (2) and (3), Eq. (1) is

rewritten as follows:

mḧ = mg− βC2 1

h2
u2. (4)

By dividing both sides of Eq. (4) by m and setting 4 =
βC2

m
, Eq. (4) can be equivalent:

ḧ = g−
4

h2
u2. (5)

The system parameter4 is not precisely defined, however,

this parameter can be achieved by applying approximate

methods. In addition, the results shown in Eqs. (2) and (3)

can also be obtained by suitable assumptions. Thus, without
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a loss of the commonality, Eq. (4) is written in the general

form with uncertain dynamics and external disturbances as

follows:

ḧ = g−
4̂

h2
u2 + δ (h, t) , (6)

where 4̂ is estimate value of 4, and δ (h, t) is a function of

uncertain dynamics and external disturbances.

For convenience and to avoid repetition in sentences,

the function of uncertain dynamics and external disturbances

is termed as the total uncertainties.

Assumption 1: The total uncertainties are assumed to be

bounded by:

|δ (h, t)| < δ̄, (7)

where δ̄ is a positive constant.

Assumption 2: The first derivative of the total uncertainties

exists:

∣

∣δ̇ (h, t)
∣

∣ < δ̄∗, (8)

where δ̄∗ is arbitrary positive constant.

Remark 1: In literature, two assumptions are widely used

in the control design [33], [40].

C. MOTIVATION OF THE PAPER

The objective of this research is to propose a new robust con-

trol method, which achieves a fixed-time convergence, robust

stabilization, and high accuracy for trajectory tracking control

of MLSs with uncertain dynamics and external disturbances.

D. PRELIMINARY CONCEPTS

Consider the following system:

ẋ (t) = f (t, x) , x (0) = x0, (9)

where x ∈ R
n, f (x): δ is nonlinear function that is on open

neighborhood δ ⊆ R
n of the origin, and f (0) = 0. The origin

is assumed to be an equilibrium point of the system (9).

Definition 1 ([62]): The origin of the system (9) is called to

be a globally finite-time stable if it is globally asymptotically

stable with bounded time function T (x0), i.e., there exists

Tmax > 0 such that T (x0) satisfies the following constrain

T (x0) < Tmax.

Lemma 1 ([62]): Let us consider a differential equation:

ṗ = −k0sig(p)
a0 − µ0sig(p)

b0 , (10)

where sig(p)γi = |p|γisign (p), a0 =
(ψ0+1)

2
+

(ψ0−1)sign(|p|−1)
2

, b0 =
(ψ0+ϕ0)

2
+
(ψ0−ϕ0)sign(|p|−1)

2
, k0, µ0 are

the designed positive constants, ψ0 > 1, and 0 < ϕ0 <

1. Consequently, the dynamic system (10) is admitted as

finite-time stable with respect to the initial condition p (0) and

the convergence time T0 is bounded by:

T0<
1

(k0+µ0) (ψ0 − 1)
+

1

µ0 (1−ϕ0)
ln

(

1+
k0

µ0

)

, (11)

III. CONTROL DESIGN AND STABILITY INVESTIGATION

This section presents a new robust control method, which

achieves a fixed-time convergence, robust stabilization, and

high accuracy for trajectory tracking control of uncertain

MLSs.

A. DESIGN OF THE PROPOSED ADAPTIVE

DISTURBANCE OBSERVER

The total uncertainties are estimated by the proposed ADO.

The proposed observer is designed as:






υ̃ = υ − ḣ

υ̇ = g−
4̂

h2
u2 + δ̂ − k3sig(υ̃)

a3 − µ3sig(υ̃)
b3 ,

(12)

where υ represents an estimated value of ḣ. Furthermore,

k3, µ3 stand for the positive constants, a3 > 1, and

0 < b3 < 1.

The term of δ̂ estimated value of the total uncertainties and

its updating law is designed as follows:
{

ψ = ˙̃υ + k3sig(υ̃)
a3 + µ3sig(υ̃)

b3

˙̂
δ = −k4sig(ψ)

a4 − µ4sig(ψ)
b4 − δ̄∗ (t) sign (ψ) ,

(13)

where k4, µ4 stand for the positive constants, a4 > 1, 0 <

b4 < 1, and δ̄∗ (t) is an adaptation gain.

Theorem 1: Let us consider the dynamical system (3) if

an ADO is designed as Eqs. (12) - (13) to approximate the

total uncertainties along with the condition δ̄∗ (t) >
∣

∣δ̇
∣

∣ then

ADO’s estimation error will converge to zero in fixed-time.

Stability Analysis of ADO:

The first derivative of the term υ̃ in Eq. (12) is calculated

as:

˙̃υ = υ̇ − ḧ

= δ̂ − δ − k3sig(υ̃)
a3 − µ3sig(υ̃)

b3 . (14)

Substituting the obtained results in Eq. (14) into Eq. (13),

we can gain:

ψ = δ̂ − δ. (15)

Taking the time derivative of Eq. (15) and noting Eq. (13),

we can attain:

ψ̇ =
˙̂
δ − δ̇

= −δ̇−k4sig(ψ)
a4−µ4sig(ψ)

b4−δ̄∗ (t) sign (ψ) . (16)

Define a Lyapunov function candidate V1 = 0.5ψ2, its

time derivative is calculated according to the result in Eq. (16)

as follows:

V̇1 = ψψ̇

= ψ
(

−δ̇ − k4sig(ψ)
a4 − µ4sig(ψ)

b4−δ̄∗ (t) sign (ψ)
)

= −δ̇ψ − δ̄∗ (t) |ψ | − k4|ψ |a4+1 − µ4|ψ |b4+1

6 −
(

δ̄∗ (t)−
∣

∣δ̇
∣

∣

)

|ψ | − k4|ψ |a4+1 − µ4|ψ |b4+1

6 −k4|ψ |a4+1 − µ4|ψ |b4+1

6 0. (17)
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From Eq. (17), it is easy to see that V̇1 6 0. Therefore,

the sliding mode surface ψ will converge to zero in fixed-

time, i.e., ψ = 0.

Based Eq. (15), it is seen that ADO’s estimation error is

defined as:

δ̃ = δ̂ − δ = ψ. (18)

Therefore, ADO can exactly estimate the total uncertain-

ties in fixed-time.

This completes the proof.

The sliding value δ̄∗ (t)was assigned based on Assumption

2. To satisfy this Assumption, δ̄∗ (t) is adapted according to

the dual layers adaptive rule as in [40], [63], as follows:










˙̄δ
∗
(t) = − (K0 + K1) sign (σ )

K̇1 (t) =

{

Kd |σ | , |σ | > σ0

0, |σ | 6 σ0

(19)

in which






























σ = δ̄∗ (t)−
|ξ |

ρ0
− ρ1

ξ̇ = λfal
(

−δ̄∗ (t) sign (ψ)− ξ, η, φ0
)

fal (X , η, φ0) =







|X |ηsign (X) , |X | > φ0
X

φ
1−η
0

, |X | 6 φ0,

(20)

where K0,Kd , λ > 0, 0 < ρ0, ρ1, η, φ0 < 1. An approxi-

mation value of the term −δ̄∗ (t) sign (ψ) is achieved by the

fal (·) function filter in real-time.

B. DESIGN OF THE PROPOSED FIXED-TIME SLIDING

MODE SURFACE

Let hd be the prescribed reference path. Therefore, e = h−hd
is the positional control error, ė = ḣ − ḣd is the velocity

control error. From tracking errors and Lemma 1, a new

fixed-time sliding mode surface is developed to achieve a fast

stabilization and fixed-time convergence as follows:

s = ė+ k1sig(e)
a1 + µ1sig(e)

b1 , (21)

where s ∈ R is the fixed-time slidingmode surface, k1, µ1 are

the designed positive constants, sig(e)γi = |e|γisign (e), a1 =
(ψ1+1)

2
+

(ψ1−1)sign(|e|−1)
2

, b1 =
(ψ1+ϕ1)

2
+

(ψ1−ϕ1)sign(|e|−1)
2

,

ψ1 > 1, and 0 < ϕ1 < 1.

According to SMC algorithms, when the system states

work in the sliding motion phase, they must be satisfied with

some constraints [64]. Therefore, expression (21) becomes:

ė = −k1sig(e)
a1 − µ1sig(e)

b1 . (22)

Theorem 2: Let us investigate the dynamics (22) with a

globally fixed-time stable point, e = 0, and the state variables

of the dynamic (22), e = 0, within the fixed-time Ts <
1

(k1+µ1)(ψ1−1)
+ 1

µ1(1−ϕ1)
ln
(

1 + k1
µ1

)

.

Proof: The differential formula for the dynamics (22)

can be equivalent modified as follows:
{

ė = −k1sig(e)
ψ1 − µ1sig(e)

ψ1 , |e| > 1

ė = −k1e− µ1sig(e)
ϕ1 , |e| < 1.

(23)

where sig(e)γi = |e|γisign (e).

Consequently, the settling time can be obtained by solving

Eq. (23):

Tmax = lim
e(0)→∞





e(0)
∫

1

1

(k1 + µ1) sig(e)
ψ1
de





+ lim
e(0)→∞



+

1
∫

0

1

k1e+ µ1sig(e)
ϕ1
de





= lim
e(0)→∞

1 − |e (0)|1−ψ

(k1 + µ1) (ψ1 − 1)

+
1

µ1 (1 − ϕ1)
ln

(

1 +
k1

µ1

)

=
1

(k1 + µ1) (ψ1 − 1)

+
1

µ1 (1 − ϕ1)
ln

(

1 +
k1

µ1

)

. (24)

This completes the proof.

C. DESIGN OF THE PROPOSED FIXED-TIME

CONTROL ALGORITHM

In this subsection, a new fixed-time control method is devised

based on the designed ADO and fixed-time sliding mode

surface to achieve high control performance for MLSs (6).

To find the effective control input, the time derivative of

Eq. (21) is calculated by:

ṡ = ë+ k1a1|e|
a1−1ė+ µ1b1|e|

b1−1ė. (25)

Then, the dynamic (25) can be rewritten along with the

system (6) as:

ṡ = g−
4̂

h2
u2 + δ − ḧd

+ k1α1|e|
a1−1ė+ µ1b1|e|

b1−1ė. (26)

Based on dynamic (26), the control signals are designed as:

u =

√

h2

4̂

(

ueq + ur
)

, (27)

where the term of ueq, holds the path of the error variables

on the fixed-time sliding surface (21) and treats the total

uncertainties. Therefore, ueq is defined from ADO (12) - (13)

and dynamic (26) as follows:

ueq = g+ δ̂ − ḧd + k1a1|e|
a1−1ė+ µ1b1|e|

b1−1ė. (28)

To handle the remaining influences from the term δ̃ and

to provide a fast convergence for the system trajectory in

approaching the proposed sliding mode surface, the reaching

control law is suggested in the below expression:

ur = k2sig(s)
a2 + µ2sig(s)

b2 , (29)

where k2, µ2 are the designed positive constants, sig(s)γi =

|s|γisign (s), a2 =
(ψ2+1)

2
+

(ψ2−1)sign(|s|−1)
2

, b2 =
(ψ2+ϕ2)

2
+

(ψ2−ϕ2)sign(|s|−1)
2

, ψ2 > 1 and 0 < ϕ2 < 1.
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FIGURE 2. The architecture of the proposed fixed-time control methodology.

D. STABILITY INVESTIGATION OF THE DESIGNED

CONTROL ALGORITHM

Utilizing the control input signals (27) - (29) to the expression

in Eq. (26) offers:

ṡ = −ur − δ̃. (30)

Then, the following Lyapunov candidate V2 = s2 is con-

sidered to verify correctness of the suggested control input

(27) - (29) and its time derivative is computed as:

V̇2 = 2sṡ

= 2s
(

−ur − δ̃
)

= 2s
(

−k2|s|
a2sign (s)− µ2|s|

b2sign (s)− δ̃
)

= −2k2|s|
a2+1 − 2µ2|s|

b2+1 − 2δ̃s. (31)

As concluded in the subsection of ADO stability analysis,

ADO can exactly estimate the total uncertainties in fixed-

time. It is means that there exists a fixed-time T̄ such that

δ̃ = 0 for t > T̄ , then,

V̇2 = −2k2|s|
a2+1 − 2µ2|s|

b2+1

= −2k2V
a2+1

2

2 − 2µ2V
b2+1

2

2 . (32)

Based on Lemma 1, the proposed sliding mode surface will

be converged to zero in fixed-time Tr and the convergence

time Tr is bounded by

Tr<
1

(k2+µ2) (ψ2 − 1)
+

1

µ2 (1−ϕ2)
ln

(

1+
k2

µ2

)

. (33)

This completes the proof.

Therefore, the total convergence time for the system (6)

can be defined as:

T = Tr + Ts

<
1

(k2 + µ2) (ψ2 − 1)
+

1

µ2 (1 − ϕ2)
ln

(

1 +
k2

µ2

)

TABLE 2. Essential parameters of an experimental MLS.

FIGURE 3. Platform of an Experimental MLS.

+
1

(k1 + µ1) (ψ1 − 1)
+

1

µ1 (1 − ϕ1)
ln

(

1 +
k1

µ1

)

.

(34)

The architecture of the proposed fixed-time control

methodology is depicted in Fig. 2.
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FIGURE 4. Development Tools for the control methodology.

FIGURE 5. The actual trajectories of the metal sphere in tracking the desired trajectories.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

Experimental study of a magnetic levitation system (MLS)

has been implemented to investigate the effectiveness of the

proposed control algorithm. Trajectory tracking experimental

for an experimental MLS [65] has been performed using

MATLAB/SIMULINK along with discussions in comparing
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FIGURE 6. The trajectory errors of the metal sphere in tracking the desired trajectories.

the performance of the proposed controller with a finite-time

NFTSMC stated in [66] and a finite-time NFTSMC stated

in [67] to verify the improved performance of the designed

control method.

Essential parameters ofMLS are reported in Table 2. These

parameters were stated in our previous works [34] and an

existed study [65].

To validate the performance of the proposed control system

by using experimental results, experiments for an MLS were

performed under different operating conditions, including

the tracking of different desired trajectories as well as the

effects of different external disturbances that divides the three

following cases:

Case 1: Assume that an external disturbance with the equa-

tion described below affects the system:

d (t) = 2 sin
(

π t
/

5
)

(

m
/

s2
)

. (35)

The metal sphere is driven to trace the straight line as

follows:

hd1 = 15 (mm) , (36)

Case 2: Assume that an external disturbance with the equa-

tion described below affects the system:

d (t) = 2 sin
(

π t
/

5
)

(

m
/

s2
)

. (37)

The metal sphere is driven to trace the following sinusoidal

line:

hd2 = 15 + 2.5 sin (0.4π t) (mm) . (38)

Case 3: Assume that an external disturbance with the equa-

tion described below affects the system:

d (t) = 1 sin
(

π t
/

10
)

+ 0.8 sin
(

π t
/

5
)

+ 0.8 sin
(

2π t
/

5
)

(

m
/

s2
)

. (39)
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FIGURE 7. Control input signals of the three separate control methodologies.

The metal sphere is driven to trace the sinusoidal line as

follows:

hd3 = 15 + 2.5 cos
(

7π t
/

50
)

(mm) . (40)

Considering Eqs. (38) and (40), they indicate that hd2min =

hd3min = 12.5 (mm). The maximum voltage from the out-

put of the controller is limited as umax < 4.5 (V ). 4 =

0.00134557 is the real value of system dynamic and it is

hypothesized according to the experimental results presented

in [10]. Based on Assumption 2, the upper bound of the

derivative of the total uncertainties is defined:

∣

∣δ̇ (h, t)
∣

∣ 6

∣

∣

∣
4− 4̂

∣

∣

∣

h2min

u2max = 3 (41)

in which the system trajectory has initial value of h0 =

26 (mm).

To make a comparison of the experimental results from

different controllers, a finite-timeNFTSMC stated in [66] and

a finite-time NFTSMC stated in [67] have been designed for

an above MLS as follows:














s = ė+ k5sig(e)
a5 + µ5sig(e)

b5

u =

√

√

√

√

h2

4̂

(

g− ḧd +
(

k5a5|e|
a5−1 + µ5b5|e|

b5−1
)

ė

+Ŵ5s+
(

δ̄∗ + w5

)

sign (s)

)

(42)

and














s = ė+ k6sig(e)
a6 + µ6sig(e)

b6

u =

√

√

√

√

h2

4̂

(

g− ḧd +
(

k6a6|e|
a6−1 + µ6b6|e|

b6−1
)

ė

+Ŵ6s+
(

δ̄∗ + w6

)

sign (s)

)

.

(43)

Here, k5, k6, µ5, µ6 stand for the positive constants, a5 > 1,

and 0 < b5 < 1. a6 =
(ψ6+1)

2
+

(ψ6−1)sign(|e|−1)
2

, b6 =
(ψ6+ϕ6)

2
+

(ψ6−ϕ6)sign(|e|−1)
2

, ψ6 > 1, and 0 < ϕ6 < 1.

An experimental platform of MLS is setup as our previous

work [34] shown in Fig. 3. The experimental system includes
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FIGURE 8. Estimated value of the total uncertainties.

number 1) a mechanical component; number 2) analogue

control interface; number 3) feedback SCSI adapter box;

number 4) a PCI1711 I/O card.

The essential tools for implementation of the control algo-

rithm are displayed in Fig. 4. The fundamental tools include

MATLAB/Simulink, Real Time Workshop, Real Microsoft

Visual C++ Professional, Control Toolbox, and Time Win-

dows Target. Furthermore, to achieve the executable file from

the control law model, the essential processes are performed

as in [65].

Remark 2:To facilitate naming control methods in the anal-

ysis and evaluation of experiments, the controllers presented

in Eqs. (42) and (43) are called NFTSMC1 and NFTSMC2,

respectively.

Remark 3: Selection and attainment of control parame-

ters for all three control methods must abide by the fol-

lowing conditions: 1) must comply with the conditions

stated in the paper; 2) to ensure the fairness of the com-

parison among the control methods; 3) the selection of

control parameters is carried out by a series of repeated

experiments to achieve the best control performance for the

three control methods. Consequently, the selection of con-

trol parameters for the three control algorithms is reported

in Table 3.

Remark 4: First, design parameters ki and µi are selected

as positive constant to guarantee the stability of the system.

Based on Eq. (11), Eq. (24), or Eq. (34), it is seen that this

selection of control parameters affects the control perfor-

mance. If the coefficients are selected larger, the convergence

rate is faster. However, the choice of parameters to satisfy the

hardware configuration should also be considered. Therefore,

through the practical experiments, we obtain the parameters

that are almost optimal for the system.

The performance investigation of the three controllers was

conducted in two phases:

Phase 1: At time 0 < t < 20s, MLS only is checked

with uncertain dynamics without the effects of external dis-

turbances that means d (t) = 0.
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FIGURE 9. Estimated value of the sliding gain.

TABLE 3. The control parameters.

Phase 2: At time t = 20s, an external disturbance is

assumed to add to the MLS. Specifically, in three cases,

the assumed value of the external disturbance is respectively

described in Eqs. (35), (37), and (39).

The position trajectory of the metal sphere in tracking

the desired reference trajectory in Eqs. (36), (38), and (40)

by using the three other control methodologies is displayed

in Fig. 5. The trajectory error of each controller in com-

parison with the specified trajectory is shown in Fig. 6.

An overview in Fig. 5 shows that all three control methods

provided high tracking accuracy with fast finite-time con-

vergence. Accordingly, they can be used for the trajectory

tracking control of uncertain MLSs. Considering in detail the

trajectory error generated by the three control methods, it is

seen that NFTSMC1 andNFTSMC2 produce the same trajec-

tory errors. The tracking accuracy of both methods including

NFTSMC1 and NFTSMC2 can be achieved which is on the

order of 10−3 ∼ 10−4m. And their convergence time also

can be obtained T ≈ 0.3s. However, the convergence time

of NFTSMC2 is a little faster than the convergence time of

NFTSMC1. Meanwhile, the proposed control methodology

has the smallest trajectory errors (10−4 ∼ 10−5m) along with

the fastest convergence time (T ≈ 0.2s) among the three

control methods.

Fig. 7 shows the control input signals of three differ-

ent control methods. The chattering behavior is also clearly

displayed in Fig. 7. Performing a comparison of chattering
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behavior among the three controllers we noticed that the

chattering behavior appeared in the control signals of both

NFTSMC1 and NFTSMC2 has the same amplitude and fre-

quency. Because NFTSMC1 and NFTSMC2 have applied the

same gain value (with δ̄∗ + w = 5) in the reaching control

law to dismiss the undesired effects of total uncertainties. The

chattering behavior that appeared in the control signal of the

proposed controller has been significantly reduced because

the total uncertainties have been estimated by an ADO to feed

to the closed control loop. Moreover, a continuous fixed-time

reaching law in Eq. (29) also contributes to reducing chat-

tering behavior. In the theory of continuous SMC, most of

continuous sliding-mode controllers can deliver smooth sig-

nals with no chattering. However, as we are known, Chat-

tering is fast oscillations caused by finite-time or fixed-time

controllers due to the system’s non-idealities and it does not

matter if it is a continuous controller or not. That is why

it is impossible to conclude about finite-time or fixed-time

chattering-free control. The continuous SMC only provides

the control signal without chattering phenomena in simula-

tion conditions. For the real system, this seems to be impos-

sible. In fact, our experiments it has shown that it only sig-

nificantly reduces chattering but cannot eliminate completely

chattering behavior. In addition, because the characteristic of

the system under consideration is the electromagnetic force

keeps the metal sphere floating in the air. Mechanical contact

with the sphere is absent in this case. Therefore, the charac-

teristic of the control input appears the oscillations as shown

in Fig. 7.

Fig. 8 displays the estimated value of the total uncertain-

ties. Look at Fig. 8, it is seen that ADO has a fixed-time

convergence. Therefore, the stability of ADO is guaranteed

in fixed-time to avoid delay in the information delivery of

uncertain components to the control loop.

The estimated values of the adaptive sliding gain are shown

in Fig. 9. Fig. 9 indicates that these values are excellently

adapted according to variations of the total uncertainties.

With the dual layers adaptive technique, the requirement of

upper bound of the total uncertainties was rejected.Moreover,

the adaptive values have expressed an increase or decrease

according to an increase or decrease of the total uncertainties.

It is not the same as traditional adaptive techniques that only

show an increase in order to reach the upper bound of the total

uncertainties.

The proposed controller proved to be the best of the three

control methods from the experimental evaluation results in

three terms including the tracking accuracy, fast fixed-time

convergence, and chattering behavior.

V. SOME REMARKS AND CONCLUSION

In this research, a new robust control method was developed,

which achieved a fixed-time convergence, robust stabiliza-

tion, and high accuracy for trajectory tracking control of

uncertain MLSs. The new points and important contributions

of the paper can be marked as follows: 1) an ADO with

fixed-time convergence was proposed to avoid delay in the

information delivery of uncertain components to the control

loop; 2) the settling time of the control system could be calcu-

lated in advance by assigning the suitable design parameters

regardless of the system’s initial state; 3) the adaptive values

are excellently adapted according to variations of the total

uncertainties. Therefore, the requirement of upper bound of

the total uncertainties was rejected. Moreover, the adaptive

values have expressed an increase or decrease according to

an increase or decrease of the total uncertainties. It is not

the same as traditional adaptive techniques that only show

an increase in order to reach the upper bound of the total

uncertainties; 4) the proposed control algorithm proved to be

the best of the three control methods from the experimen-

tal evaluation results in three terms including high tracking

accuracy, fast fixed-time convergence, and less chattering

behavior; 5) fixed-time convergence and the effectiveness of

the proposed controller has been fully verified by Lyapunov

theory and by experimental results for a real MLS.

It is seen that system (6) has the form of a class

of second-order nonlinear systems. Therefore, the imple-

mented control algorithm can extend to various nonlinear

systems such as robotic manipulators, inverted pendulums,

Van der Pol circuit systems, and so on. Moreover, a robust

fault-tolerant control method for MLSs should be considered

in future work which not only considers faults in the system

but also considers faults from sensors.
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