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ABSTRACT

Fluorescence lifetime imaging (FLIM) is a powerful microscopy technique for providing contrast of

biological and other systems by differences in molecular species or their environments.  However, the

cost of equipment and the complexity of data analysis have limited the application of FLIM.  We

present a mathematical model and physical implementation for a low cost Digital Frequency Domain

FLIM (DFD-FLIM) system which can provide lifetime resolution with quality comparable to time-

correlated single photon counting methods.  Our implementation provides data natively in the form of

phasors.  Based on the mathematical model, we present an error analysis which shows the precise

parameters for maximizing the quality of lifetime acquisition, as well as data to support this conclusion.

The hardware and software of the proposed DFD-FLIM method simplifies the process of data

acquisition for FLIM, presents a new interface for data display and interpretation, and optimizes the

accuracy of lifetime determination.

This is a preprint of an article published in Microsc Res Tech 71(3): 201-213, 2008.
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INTRODUCTION

We have developed a physical implementation and statistical model of a new method for FLIM

data collection and analysis.  Our approach falls in the category of the “frequency domain” approach to

lifetime acquisition, yet uses a detector operating in the photon counting mode.  This digital frequency

domain (DFD) method overcomes the problems of duty cycle, modulation of the detector gain and

expensive radiofrequency synthesizers used in the classical analog frequency domain approach.  In our

approach we implemented all the operations performed in a frequency-domain lifetime instrument in a

digital form using a single field programmable chip.  Since all operations including the generation of

the light modulation frequency, the generation of the cross-correlation sampling frequency and the

assignment of the time of arrival of a photon to a bin are digital, there are no calibrations or

adjustments to be performed.  The mathematical model presented below fully accounts for all the

elements of the DFD method.  In addition, the mathematical model reproduces, as a limiting case, the

principle of the time-correlated single photon counting (TCSPC) approach.  Therefore, on a common

statistical basis we can compare the two approaches and derive some general conclusions about the

relative precision of the two methods.  We found that with proper system design the two methods can

be made to have comparable precision.  More importantly, the mathematical model was used to

maximize the precision of the DFD implementation and to determine which parameters are crucial to

reach optimal performance.  In terms of precision of the lifetime measurement, we were able to fully

quantify the effect of the instrument response including the jitter of the detection system.

Fluorescence lifetime is a fundamental spectroscopic quantity that allows quantitative analysis

through several approaches, including the identification of molecular species based on lifetime, Förster

Resonance Energy Transfer (FRET), contrast due to different ion concentrations, and measurements of

chemical equilibria.  For measurements done in a cuvette, in which spatial resolution is not needed,

there are two major approaches for the acquisition of the fluorescence decay.  One is based on TCSPC

or time-sampling of the intensity decay after pulse excitation, and a second is based on the

measurement of the harmonic response of the fluorescence system.

When spatial resolution is needed, such as with microscopy, different considerations come into

play depending on the kind of microscope used.  One major difference between the laser scanning

confocal microscope and the camera based microscopes is that in the former the detector works in the

serial mode, although there are some recent scanning instruments using multiple foci in conjunction

with a camera to collect the image (Grant and others, 2005; van Munster and others, 2007).  For FLIM

instruments operating in the serial mode, a bottleneck in the rate of data acquisition is caused by the
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recovery time of the TAC element that is common to the TCSPC based instruments.

During the last few years, several new instruments were introduced for FLIM operation in the

confocal microscope by several manufacturers.  As a consequence, FLIM has become more common

and is now available in several labs.  One of the reasons for the interest in FLIM is that FRET imaging

by lifetime resolved methods is generally considered to have fewer problems with background and

autofluorescence than intensity ratio methods.  However, FLIM methods are limited to few labs due to

the high cost of the instrumentation and the difficulty of performing lifetime analysis in many pixels

simultaneously (Pelet and others, 2004).  The analog frequency-domain approach offers some

simplification in the analysis methods and in the laser sources used (Clegg and others, 1992).

However, the traditional frequency-domain electronics operating in the radio frequency range require

gain modulated detectors, radio frequency amplifiers (Gratton and Limkeman, 1983), and are not a

simple addition to existing laser confocal microscopes.  Whatever approach is utilized, current methods

are relatively expensive, require specialized electronic and modulated sources, and involve

sophisticated analysis methods to extract information about the lifetime image and the processes that

produce lifetime variations in different pixels of an image (Pelet and others, 2004).

In this paper we describe new data acquisition hardware that requires minimal modifications to

the configuration of common commercial laser confocal microscopes.  The cost of the new electronics

is minimal.  We also use the phasor method of data analysis that is “native” to the proposed hardware

and simplifies the calculation and presentation of lifetime images.  Overall, the proposed approach has

the potential to make FLIM technology more widely available.  Our approach uses serial detectors in

the photon counting mode, and the digital heterodyning method to acquire data which is directly

analyzed in the frequency domain.  The principle of the digital heterodyning method was previously

described (Eid, 2002).  However, the original implementation by Eid et al. (2002) used a specialized

acquisition card and had limitations in terms of the duty cycle and speed of data acquisition.  In this

paper we develop a mathematical model of DFD-FLIM (Digital Frequency Domain FLIM).  Using this

model we were able to choose optimal system parameters which minimize the distribution of lifetime

values.  Using an FPGA chip, we have implemented a version of the digital heterodyning method

which has a 100% duty cycle so that no photons are lost, operates in several harmonic frequencies

simultaneously, can be used in conjunction with common detectors in commercial laser scanning

microscopes, only requires a modulated light source instead of a pulsed source, has uncertainty levels

comparable to TCSPC methods, and has very high throughput with a very low cost.  The cost of the

FPGA chip and evaluation board is below $100.  The mathematical model contains, as a limiting case,
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the description of data acquisition using the TCSPC method of data acquisition.  Using the model, we

were able to compare theoretically and experimentally the proposed DFD and the TCSPC methods and

to conclude that they have the same statistical accuracy.  We were also able to predict the effect of

instrument jitter on the precision of the DFD approach and to conclude that there is an optimal jitter

level that improves the precision of the determination of very short lifetimes.

We implemented the DFD approach in several confocal microscopes, both with 1-photon and 2-

photon excitation, and with home built and commercial instruments.  As shown below, the hardware

collects data directly under the form of “phasors” at several harmonic frequencies simultaneously.  The

phasor representation of the fluorescence decay allows a very simple interpretation of the FLIM image

and the calculation of FRET efficiencies without the usual translation of the decay into exponential

components.  (The calculation of FRET efficiencies will be described in a forthcoming publication).

The phasor approach to data analysis was previously proposed by us and by others (Clayton and others,

2004; Jameson and others, 1984; Redford and Clegg, 2005).  It provides a simple graphical interface

for FLIM data presentation and analysis without the need of fitting the fluorescence decay at each

pixel.  We compared data collected with the DFD and the TCSPC method on the same sample.  After

optimization of the design parameters, the DFD approach gave results comparable to those obtained

with TCSPC. 

MATERIALS AND METHODS

Introduction to digital frequency-domain methods

Frequency domain lifetime methods are characterized by the usage of a periodic modulated

excitation, for which the finite lifetime of the fluorophore results in a phase delay and demodulates the

emission.  These characteristics of the response at any given modulation frequency are traditionally

represented by τp and τm respectively.  A derivation of these equations is given by (Spencer and Weber,

1969):

( )hF

ex

hp
hf

,, tan
2

1 φ
π

τ = (1)

1
1

2

1
2

,

, −=
hFex

hm
mhfπ

τ (2)

Traditional analog approaches to frequency domain acquisition use modulation of the gain of a
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PMT or of an image intensifier.  For digital frequency domain lifetime acquisition, we replace the

modulation of these analog signals with a digital modulation scheme inside the data collection circuitry

(rather than at the detector level) by using multiple sampling windows within each excitation period, as

shown in Figure 1.  Because the modulation is performed digitally, the signal can be processed by an

arbitrary number of sampling windows without any loss of signal, and the PMT can be operated at full

gain during the entire acquisition.

To achieve sensitivity to short lifetimes and to ensure evenly distributed sampling of the

fluorescence emission, we use heterodyning between the frequency of the sampling windows and the

excitation frequency of the light source, as shown in Figure 1.  As will be described below, this allows

us to translate the fluorescence response into a cross-correlation phase histogram, as shown in Figure 2,

which contains a functional form given by the convolution of the fluorescence emission with the shape

of the sampling window.

Digital Frequency Domain Hardware

We created a device called the FLIMBox, in which the digital frequency domain algorithm is

implemented in a system which uses a field programmable gate array (FPGA).  An FPGA is a chip

which can be rapidly reprogrammed with different circuit layouts by uploading firmware, and thus

serves as a convenient tool for the development of scientific hardware.  The specific FPGA we used
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Figure 1: An illustration of the digital heterodyning principle, with exaggerated heterodyning such

that fcc = fs / 8 instead of fcc = fs / 256 which we used in our implementation.  Arriving photons (dots)

are assigned to one of four sampling windows according to their arrival time.  In the real case, the

sampling windows slide through the entire period of the emission response due to the slight difference

in frequencies, for a total of 256 steps.



was a Xilinx 
®

 Spartan 
®

 3E, XC3S100E 
™

 (San Jose, CA),

on an Avnet Electronics Marketing Evaluation Kit (Phoenix,

AZ) with a Cypress EZ-USB FX2 
™

 chip (San Jose, CA).

The FPGA contains two digital clock managers

(DCMs) which provide clock synchronization to an external

clock and clock multiplication services.  Each DCM

multiplies an input clock frequency by nd / md, where nd and

md are integers ranging from 1 to 32.  To implement the

heterodyning principle in a digital system, it is convenient to

have a cross-correlation frequency which is a whole integer

fraction of the sampling frequency, fs.  To reach the minimal

uncertainty plateau described in the parameters optimization

section below, at least four sampling windows are required.  This can be obtained by choosing n1 = 32,

m1 = 17, n2 = 32, m2 = 15, and dividing the frequency by four, such that a clock is generated which is

four times the sampling clock. The resulting cross-correlation frequency of fcc = fs / 256, is given by:

exs f
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4
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nn
f 1

4 21

21 −= (3)

For example, for a 48MHz excitation frequency, a 4X clock is generated at 192.8MHz, yielding a

sampling frequency of 48.188MHz and a cross-correlation frequency (the difference between the light

modulation and the sampling frequency) of 188kHz.  This fast 4X clock is then used as the input for a

counter which tags incoming photons with the sampling window number (0 to 3) which corresponds to

their arrival time.

To relate the window during which a photon arrived to a portion of the excitation period, it is

necessary to know the relative phase difference between the sampling and excitation clocks.  For digital

stability of this phase difference measurement, this was implemented as a cross-correlation phase

counter which counts at the time scale of the sampling clock, has a periodicity equal to the cross-

correlation frequency, and uses negative feedback on the measurement of the excitation clock to lock

on to a consistent phase relationship.  This circuit enforces the same phase relationship between the

cross-correlation counter and the sampling and excitation clocks each time the device is activated.

Therefore the cross-correlation phase counter provides a consistent measurement of the relative phase
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Figure 2: A histogram of counts

received at each phase value of the

cross-correlation period.  For this

figure the phase values have been

divided into 64 bins.  Plots such as this

one contain the exponential decay of a

fluorophore, convoluted by the

instrument response function.
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difference between the sampling and excitation clocks.

The circuit then outputs a value identifying the arrival window, warrival, and the cross-correlation

counter value, pccc, for each photon count.  For our implementation, these two values can be combined

to form a cross-correlation phase index as follows:


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w
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where nw is the total number of sampling windows.  This cross-correlation phase index is used to

construct the cross-correlation phase histogram, H(p), which is a histogram of the phase indexes for

each photon detected.

A requirement for imaging in a raster-scan instrument is a mechanism for scanner

synchronization, so that the system can ensure that the data for each pixel is acquired at the same

physical position without significant drift.  A scan enable control line was included in the chip which

enables data collection only when it is active, allowing the scanner control mechanism to signal when

each frame (or line) has started.  We then use the total time of arrival of a photon with respect to the

starting of the frame (macro-time) to divide the information into pixels, each of which has a

corresponding phase histogram.

System Layout

The complete schematic layout can be seen in Figure 3, where an example is shown with the

FLIMBox installed on a commercial confocal system with a modulated diode laser.  We used an
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Figure 3: Experimental setup with the FLIMBox attached to a microscope.  The microscope provides

the signals from two detectors Ch1 and Ch2 and a Frame Synchronization signal.  The FPGA unit is

programmed by custom firmware to perform the digital frequency domain acquisition.



Olympus FluoView FV1000 (Olympus America, Center Valley, PA) with a variety of modulated diode

lasers from ISS (Champaign, IL).  The diode laser is driven by a 48MHz LVTTL signal produced by

the FLIMBox which is high for 45° of the repetition period.  In other system configurations we have

also used 80MHz titanium-sapphire lasers in place of a modulated diode laser.

To provide an optical phase reference, the laser output is then split by a beam splitter which

deflects a portion of the light to a GHz photodiode (Det200, Thorlabs, Newton, NJ).  This photodiode

signal is then amplified and sent to a zero-crossing trigger which produces a LVTTL signal that goes

into the FLIMBox and serves as a frequency and phase reference for fex.  The main portion of the laser

is sent into the microscope.  Without this optical phase reference, we found that the laser can

sometimes introduce an unpredictable and significant phase shift which disrupts phase accuracy.  With

the optical phase reference in place, the system was stable to within 0.1° in phase.

The outputs of the photomultiplier tubes (PMTs) for two channels are sent to GHz amplifiers

(ACA-4-35-N, Becker & Hickl, Berlin, Germany), which are then connected to constant fraction

discriminators (CFDs) (Model 6915, Phillips Scientific, Mahwah, NJ) which trigger a LVTTL signal

on the zero-slope of the PMT response when it goes past a set threshold.

The photon count LVTTL signals are processed inside of the FLIMBox on two fully

independent channels.  The photon arrival time information is then placed into a FIFO, from which the

data is transferred via USB to a computer for processing.

The cross-correlation phase histogram at each pixel, H(p), is then constructed by a computer

program and used for the FLIM analysis..  The intensity image can be obtained by simply summing the

points (np) of the phase histogram at each pixel as follows:

∑
−

=

=
1

0

)(
pn

p

pHI (5)

Phasor Calculation

In this work we use the phasor representation of the fluorescence decay for FLIM data analysis.

The phasor approach was originally proposed by us (Jameson and others, 1984) and subsequently

expanded by others (Clayton and others, 2004; Redford and Clegg, 2005).  To analyze data with the

phasor approach, it is necessary to calculate the intensity-normalized phasor components for harmonic

h as follows:
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From these two terms, the phase and modulation values are calculated according to the vector

transformation equations:
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The instrument response function is accounted for by scaling and rotation of the phasor using a

reference phasor from a known reference lifetime.  The modulation and phase values of the known

lifetime are inserted into equations 24 and 25 to obtain the modulation factor and phase shift of the

instrument response at each harmonic of interest.  This allows one to completely account for the

response of the system with a single measurement.

A global representation of FLIM images at any given harmonic frequency can be obtained by

turning φF and mF back into instrument response corrected versions of the cosine and sine values of the

Fourier transform.

( )
hFhFhF mg ,,, cos φ= (10)

( )
hFhFhF ms ,,, sin φ= (11)

Each pair of gF,h and sF,h values can be treated as a vector called a phasor, and these values can be

accumulated on a two-dimensional histogram called a phasor plot, as shown in Figure 4a.

Presenting FLIM data in this format provides a number of advantages.  Since the g and s

coordinates come from equations 6 and 7, they are both intensity normalized linear coordinates.  The

application of the instrument response only performs a scaling and a rotation, so this does not disrupt

the linearity.  Since g and s are linear, this means that the phasor positions of multi-exponential

lifetimes are the vector sum of their single-exponential phasors.  This also means that each pixel with

multiple molecular species has a phasor position which is a vector sum of the phasors for each species,

according to:
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Where fi,h are the fractional fluorescence intensities of each phasor component such that:

1, =∑
i

hif (14)

With knowledge of the relative brightness of two species, this property of the phasors allows one to

extract relative concentrations with ease.

Using equations 1 and 2 we can see that all single-exponential lifetimes occur when τp = τm, and

thus when mF,h = cos(φF,h) (Jameson and others, 1984).  This corresponds to a semicircle on the phasor

plot called the “universal circle” which is given by:

( ) ( )2

2
122

2
1 =+− sg (15)

All multiexponential lifetimes are therefore linear combinations of single-exponential lifetimes, as

given by equations 12-14, and therefore all multiexponential lifetimes have phasors which are inside

the universal circle.

Digital Frequency Domain FLIM Theory

To maximize the ability of DFD-FLIM hardware to determine lifetimes, we must reduce the

uncertainty spread of phasors in the phasor plot.  In Figure 4, where the plot is an experimental

histogram of phasors at each pixel, a decrease in uncertainty would correspond to more pixels having
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Figure 4: The normalized phasor histograms for solutions of (a) fluorescein and (b) rhodamine B,

acquired at 48MHz.  Only the phasor histogram for the first harmonic is shown.



phasors closer to the center of the phasor distribution, or a decrease in the uncertainty of the phase and

modulation.  To achieve this, we developed a theoretical model of the data acquisition and processing

which shows which experimental parameters are important and how to change these parameters to

minimize the width of the phasor distribution.

Consider an arbitrary normalized fluorescence excitation function E(t) modulated at a frequency

fex, which can be written as a Fourier series,

( )∑ −+=
h

hEexhE thfmtE ,, 2cos21)( φπ (16)

where mE,h is the modulation of the excitation at each harmonic, and φE,h is an arbitrary phase shift.  The

probability distribution for the fluorescence emission is given by the convolution between the

excitation function and the fluorescence response of the fluorophores.  For an arbitrary combination of

fluorophores, the fluorescence response function can be written as:
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where τi are the fluorescence lifetimes, fi are the fractional intensities, and f0 is the contribution of the

uncorrelated background.  This emission is then detected by a photomultiplier tube (PMT) (or other

photon counting device), a discriminator, and a logic gate, with a total time response jitter which can be

approximated as a Gaussian:
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where sj is the standard deviation of the detection time jitter, composed of a transit time spread,

discriminator jitter, and triggering jitter for the digital logic.  The arrival time is then resolved within

the circuit into one of nw arrival time windows, each of which is shaped as a periodic boxcar function.
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where warrival is the index of the arrival time window being considered (ranging from 0 to nw - 1), and fs

is the sampling frequency.  Since this sampling process is performed digitally, every photon is counted

in one of the sampling windows, resulting in a 100% duty cycle.  We note that if the number of

sampling windows is very large, this model corresponds to the data produced by the TCSPC method.
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However, with TCSPC the assignment of the photon to a given bin is obtained measuring the time

delay between emission and excitation by the TAC method (Time-to-Amplitude converter).  In the

DFD method the assignment is done by tagging the photon with a number equal to the phase shift

between the sampling and excitation clocks.

We calculate the probability distribution of the detected photons by convoluting the excitation,

fluorescence response, jitter of the system, and sampling window:

)()()()()( tStJtFtEtH
arrivalarrival ww ∗∗∗= (20)

This equation can be greatly simplified by using the convolution theorem, so that:

( ) ( ) ( ) ( ) ( ))()()()()( tStJtFtEtH
arrivalarrival ww FFFFFFFFFFFFFFFFFFFF •••= (21)

Since E(t) and Sw,arrival(t) have two different frequencies, the frequency of Hw,arrival(t) is actually the

cross-correlation frequency given by (Spencer and Weber, 1969):

exscc fff −= (22)

We can see that each arrival time window represented by Sw,arrival(t) will result in an identical

probability distribution in Hw,arrival(t), but with a phase offset warrival / (nwfcc).  This allows us to

recombine the separate sampling windows during data processing into a single probability distribution

H(t).  Because our analysis technique specifically utilizes the harmonics of the Fourier series, we can

perform the analysis on the harmonics of H(t) given by:

( )( )[ ]∑ +−−+=
h

hFhEhScchShJhFhE thfmmmmtH ,,,,,,, 2cos21)( φφφπ (23)

The resulting modulation of H(t) for each harmonic h is given by the product of all the component

modulations, as:

hIRhFhShJhFhEhH mmmmmmm ,,,,,,, == (24)

Therefore if we know the modulation of the instrument response, mIR,h = mE,hmJ,hmS,h, we can extract the

modulation of the fluorescence lifetime response, mF,h.

The resulting phase of H(t) for each harmonic corresponds to the relative phase difference

between the sampling period and the excitation period, plus the phase offset provided by the

fluorescence lifetime response, as follows:
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hIRhFhFhEhShH ,,,,,, )( φφφφφφ +=+−= (25)

Therefore if we know the relative phase difference between the sampling period and the excitation

period, φIR,h = (φS,h - φE,h), then we can extract the phase offset provided by the fluorescence lifetime

response.  Both the modulation and the phase of the instrument response can be obtained by measuring

a reference sample with a known lifetime value.

Derivations similar to this section have been previously given, such as in Jameson and others.

(1984).  However the digital sampling windows and jitter terms were not included in previous

derivations.

Optimization of the DFD Parameters

To determine the uncertainty in phasor values, we must find the standard deviation of the

measured phase and modulation for each harmonic.  We can perform the analysis on the phase

histogram H(p), which represents one

period of H(t), and where 0 ≤ p ≤ np - 1. To

perform this error analysis, we first plot the

cross-correlation phase histogram in polar

coordinates for the harmonic of interest.

For the first harmonic, this is a plot with

H(p) as the radial value, 2πp / np as the

phase value, and where p = np represents a

complete orbit.  An example is given in

Figure 5.

In this coordinate system, the

Fourier transform for each harmonic can be

viewed graphically as the vector sum of the

values plotted.  Mh = mHN and φH are the

magnitude and angle of this vector sum.

From this graphical representation we can

observe the effect of fluctuations in H(p) on

the values of mH and φH.  By the principles
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Figure 5: The cross-correlation phase histogram bins

(crosses) for fluorescein are plotted in polar

coordinates, forming np=64 vectors.  One vector H(p) of

the series is identified in the figure. The MH vector which

represents the phase and modulation of the first

harmonic is produced by the vector sum of each vector

in the phase histogram series.

MH

φH

(vector sum not to scale)

H(p)

2πp/np



of vector addition, φH will only be affected by fluctuations in H(p) which occur perpendicularly to the

vector sum.  The variances introduced by each of these components at every value of p can be added

linearly.  So if we consider the Poissonian error in each bin of H(p) (this is the phase histogram in

which every bin contains independent events), we obtain the standard deviation in phase as follows:
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The derivation of the expression for the standard deviation of modulation is similar, except using the

fluctuations which are parallel to the vector sum, and taking into account that modulation is normalized

by N, and thus fluctuations will also affect mH via the contributions of N.
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These uncertainty values on phase and modulation can then be propagated through equations 1 and 2 to

obtain the uncertainties on τp and τm:
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From this analysis we can learn several insightful properties about the behavior of the phasor

distribution.  Firstly, the distribution of both phase and modulation decreases by the square root of the
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number of counts in the phase histogram acquired at each pixel.  Secondly, the distribution of both

phase and modulation is inversely proportional to mIR,h, the modulation of the instrument response for

each harmonic.  Since mIR,h ranges from 0 to 1, the value which produces the optimal distribution is

when it is equal to 1.  From consideration of mIR,h = mE,hmJ,hmS,h we can then immediately see that the

optimal configuration places each of those component modulation values close to 1.  For a square wave

excitation of width θ, the modulation values as shown in Figure 6a are found by taking the Fourier

transform of that square wave, which yields:







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2

sin
2

,

θ
θ

h

h
m hE (34)

Similarly, for the sampling window, as seen in Figure 6b, the modulation values are given by:
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For Gaussian system jitter, as seen in Figure 6c, the modulation values are given by:

22222

,
exj fh

hJ em
σπ−= (36)

This analysis allows us to quantitatively evaluate the design parameters required to minimize the

distribution of phasors.  For lifetime values obtained from the first harmonic, we can see that the

modulation, and thus the information content, has reached a plateau with an excitation square wave of

90° or smaller (Figure 6a), four or more sampling windows (Figure 6b), and system jitter less than 2ns

(Figure 6c).  Improvements beyond this point will make only marginal improvements to the statistical

uncertainties of a measurement with the first harmonic.

In our specific system configuration with a 45° square wave excitation, this produces an mex,1 of

0.9745, an mex,2 of 0.9003, and an mex,3 of 0.7842 at the three lowest harmonics.  So even though a diode

laser driven in this manner has a pulse width as wide as 2.6ns, it will still produce results of equivalent

quality to a femtosecond pulsed laser for the first two harmonics.

Multiexponential Analysis

An extensive amount has been written about the extraction of component lifetimes by multi-

frequency fitting (Jameson and Gratton, 1983; Gratton and others, 1984; Jameson and others, 1984;

Lakowicz and others, 1984).  In our imaging system used in FLIM we only excite at a single laser
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repetition frequency with a pulse sufficiently

narrow to contain several harmonic frequencies.

Each harmonic yields 2 independent variables, the

phase and modulation, so a direct relationship can

be established between the number of harmonics

and the number of lifetime components.  For

example, using 2 harmonics, two lifetime

components can be calculated using an exact

formula (two lifetime values, one fractional

component and one background term) using the

principles outlined by (Weber, 1981).

RESULTS

Solution Measurements

We evaluated the FLIMBox hardware,

phasor analysis, and the above error analysis by

performing solution lifetime measurements on a

FLIM setup.  We prepared fluorescein in a pH 10

solution, which is known to have a lifetime of

4.05ns as determined in cuvette measurements.

Then we used this fluorescein solution as our

lifetime reference for determining the instrument

response, and also as a sample for examining the

pixel uncertainty.  We then prepared a solution of

rhodamine B in water as an additional sample.

Figure 4a shows under the form of an

image, the histogram of the phasor values for a

256x256 pixel image of fluorescein taken at

48MHz, excited with a 470nm diode laser, in the

Olympus FV1000 with FLIMBox described above,

with that same fluorescein sample used as the
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Figure 6: Plots showing the contribution to the

modulation of the instrument response for the first

three harmonics.  (a) Square wave excitation of

variable width (in degrees).  (b) Number of digital

sampling windows.  (c) Gaussian time-response

jitter of a given width (in ns).  Solid, dashed, and

dotted lines are for the 1st, 2nd and 3rd harmonics,

respectively.



reference.  The measurement was acquired at 200,000 counts per second, with 40 microseconds per

pixel.  Pixel phase histograms were accumulated until there were on the average of 538 counts in each

pixel.  Figure 4b shows the rhodamine B phasor plot taken on the same instrument, but with 50,000

counts per second and an average of 202 counts per pixel.

By using the error equations 28 and 31, we calculated the expected uncertainties in both phase

and modulation, and we compared these to the experimental standard deviations for the fluorescein and

rhodamine B measurements.  We found very high correspondence between the theory and experimental

results, as shown in Table 1.  We repeated this comparison with many measurements under various

conditions and system configurations, including for data taken with a TCSPC system, and found the

equations holding in each case.  This confirms that the theoretical uncertainty equations completely

account for the precision of the system, and confirms that under real physical conditions, the statistical

errors of a FLIM measurement can be correctly evaluated and effectively improved by the optimized

parameters derived by the mathematical model of the DFD method.

TABLE 1:  Phase and
modulation
uncertainty per pixel
using the 1st

harmonics at 48 MHz

Fluorescein (pH 10) 

(538 counts / pixel)

Rhodamine B (water)

(202 counts / pixel)

σφ σm σφ σm

Experimental 3.50° 0.035 3.86° 0.049

Theoretical 3.50° 0.035 3.83° 0.049

We also evaluated the phase and modulation lifetime values and uncertainties of the two

measurements.  Since the fluorescein measurement is used as a reference it is not meaningful to

consider its lifetime value, since these are fixed at 4.05ns by the referencing process.  However, we can

still consider the uncertainties in these.  The fluorescein measurement had a τp per pixel of 4.05 ±

0.522ns, and a τm per pixel of 4.05 ± 0.379ns.  The predicted values for the uncertainties according to

equations 32 and 33 are 0.505ns and 0.376ns.  To avoid skew in the lifetime values, the mean of all

lifetime values is not used to determine rhodamine B's mean lifetime.  Instead, the lifetime of the center

of mass of all the phasors is used, as the phasor addition is linear.  For the rhodamine B measurement,

the measured τp for each pixel was 1.723 ± 0.287ns, and the measured τm was 2.001 ± 0.448ns.  The

predicted uncertainties per pixel are 0.281ns and 0.428ns.

Note that the phasor for rhodamine B is not exactly on the universal circle, although we
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expected a single exponential according to our measurement in cuvette.  The phasor analysis provides

an immediate and intuitive explanation for this result.  In this case, the system on which the

measurement was taken had background counts of 1500 per second out of a total 50,000 counts per

second, which corresponds to a 3% background for the rhodamine B measurement.  Since uncorrelated

background counts occur at a phasor position at (0, 0) coordinate, this phasor is linearly combined

according to equations 12-14 with the phasor for rhodamine B's actual lifetime.  This linear

combination with the uncorrelated background reduces m and therefore increases τm, but not the τp

value.  When the phasor contribution of the uncorrelated background is subtracted from the rhodamine

B phasor, the phasor coordinate will move to the universal circle, and τm becomes 1.7ns.

If instead of examining the above measurements at each pixel, we use the same data to evaluate

the uncertainty of the mean, rather than the uncertainty of each pixel, we find much more statistical

precision.  The fluorescein measurement then has a phasor point which is determined by 35 million

counts, and the rhodamine measurement has a phasor point which is determined by 13 million counts.

The uncertainties of the means for the fluorescein lifetimes are then 2.0ps and 1.5ps for τp and τm.

Similarly for rhodamine B the uncertainties of the means are 1.1ps and 1.8ps for τp and τm.  This

emphasizes that the precision of lifetime measurement is not constrained by the precision of individual

photon arrival times.  The precision of the average value is determined by statistics, and therefore is a

function of the system parameters and the number of counts.  The accuracy of the phasor position

determination depends on the stability of the system after it has been referenced with a known lifetime.

To evaluate the long-term stability of our system, we examined the trend of phase and

modulation values over the course of hours and days using an excitation modulation of 48MHz.  We

determined that after an initial 45 minute warm-up period, the phase remained stable within around

0.1°, and the modulation remained stable within less than 0.001 over time periods of hours to days.

These correspond to lifetime stability around 10ps for fluorescein, as given by equations 32 and 33.

For comparison with an existing standard for lifetime measurement hardware, we measured

fluorescein with a 443nm diode laser modulated at 48MHz and the FLIMBox on our FV1000 setup,

and with a Becker & Hickl TCSPC card (model 830, Becker & Hickl, Berlin, Germany) connected to a

home-built 2-photon system using an 80MHz Titanium-Sapphire laser.  According to our model, when

the data are processed in the same way and for the same number of counts, the precision of the

determination of the phase and modulation values should only depend on the instrument modulation

factor.  Since at 80 MHz, the modulation factor for fluorescein is less than at 48 MHz, we anticipated
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that the precision of the data acquired

with FLIMBox (at 48 MHz) should be

better than the precision of data

acquired with the B&H card (at 80

MHz).  As can be seen in Figure 7, the

phase uncertainties obtained for the

measurement of fluorescein with the

FLIMBox is less than that of the

TCSPC system under these two sets of

conditions.  The relevant point here is

the demonstration that both data

acquisition systems reach the statistical

limits in the precision of the

measurement of lifetime values, and

that the modulation factor and the

number of photons fully account for the

precision of the measurement.

Gerritsen et al. (2006) define a

count-independent metric for the precision of a lifetime measurement as follows:

NF
τ

στ= (37)

By inserting equations 32 and 33 into equation 37, we are able to obtain the minimum F value

(representing the highest sensitivity) for the highest modulation of the instrument response, as shown in

Figure 8.

Multiexponential Analysis of ECFP

We measured the lifetime of enhanced cyan fluorescent protein (ECFP) in a 20mM Tris buffer

solution with a 443 nm diode laser for excitation.  Using the first and second harmonic to determine

two exponential components and the amount of unmodulated background (we use an exact formula

since we have two phases and two modulations and four unknown parameters), we obtained a relative

contribution of 12 ± 1% for a lifetime of 0.75 ± 0.03 ns, and 88% for a lifetime of 3.17 ± 0.03 ns.  The

standard deviations of the lifetime determinations are obtained from 8 independent measurements of
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Figure 7: A comparison of the phase uncertainty for

fluorescein measurements as a function of counts between a

Becker & Hickl card Model 830 on an 80MHz 2-photon

system (solid line, + symbol)  and the FLIMBox on a diode

laser system driven at 48MHz (dashed line, × symbol).  Per

equal counts, the uncertainty for the B&H card is higher than

the FILMBox card due to the increased demodulation of the

fluorescein signal at 80MHz with respect to 48MHz.

However, all the uncertainties are close to the values

predicted by the mathematical model when this demodulation

is taken into account. 
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this system. We also noticed a slight spectral

dependence of the relative contributions.

These results correspond well with the

literature, confirming the ability to extract

multiple exponential components by using

DFD-FLIM (Tramier and others, 2004).

Fluorescence Lifetime Images

To demonstrate the ability to acquire

lifetime images, and the linear combination

of phasors we obtained a series of letter-

shaped microchannels with a fluorescein

solution in the letter “L”, a rhodamine B

solution in the letter “D”, and a mixture of

the two solutions in the letter “F”.  Figure 9a

shows the lifetime image generated from τp,

and Figure 9b shows the phasor plot

obtained from this FLIM image.  Taking

advantage of the intrinsic spatial correlation in images, the phasors for this image were resampled by

averaging with their nearest neighbors to improve statistical accuracy.

By using a graphical calculator inside of the Globals for Images program (LFD, Irvine, CA)

which applies equations 12-14, we calculated that the “F” point on the phasor plot is 25% away from

the “L” phasor, and 75% away from the “D” phasor.  This shows that the phasor for the letter “F” is

composed of 75% of the fluorescein solution by relative intensity.

DISCUSSION

We have developed a mathematical framework that provides an understanding of the effect of

different parameters in the DFD-FLIM approach.  We have shown that the experimental realization of

the DFD principle in the FPGA chip gives values in very good accord with the model.  This implies

that the there are no additional factors (systematic or random) in the hardware implementation which

are not accounted for by the mathematical model.  As a consequence of the theoretical description, we
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Figure 8: The theoretical minimum F values for τp

(solid line) and τm (dashed line) are shown as a

function of 2πhfexτ for instrument response modulation

values of 0.99.  The + and × symbols show the F values

for the τp
 
 and τm of fluorescein in pH 10 solution taken

with the FLIMBox at 48MHz, while the * and □ symbols

show the F values for the same sample measured with

the TCSPC system at 80MHz.  The F value for τm of the

TCSPC measurement is anomalously low due a

clustering of the modulation values resulting from the

dead zones at the edges of the card's phase histogram.
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have determined the system parameters which optimize the precision of phasor distributions and

corresponding lifetime values.  We have reached these optimal parameters in our implementation of the

FLIMBox for a hypothetical system in which the lifetimes values range between 0.1ns and 10ns.  We

have also shown that using an optical reference for the excitation, the drifts of the physical

implementation are very small, giving better than 10ps stability for the measurement of the lifetime of

fluorescein at 48MHz.

In this work we provide a statistical framework that correctly predicts the errors in lifetime

determination for any given sample and system configuration.  Equations 28 and 31 show that the best

precision of the position of the phasor (and of the lifetime value) is achieved when all the modulation

factors are close to 1.  This corresponds to the well-known principle that given a certain lifetime value,

the best precision is obtained when the excitation pulse is narrow and repeats with a period which is

much longer than the lifetime, the time windows (of the photon delay histogram) are in a large number

and the instrument jitter is small.  However, the value of this equation is that it allows us to

quantitatively predict how much each of these factors will ultimately affect the precision of the lifetime

determination.  For example, we can predict that for a lifetime of about 3 ns (typical of a GFP) quasi

optimal measurement conditions are obtained at excitation frequencies around 40-50 MHz with pulses

of about 1-2 ns, using 4 time windows in the DFD implementation and with instrument jitter on the

order of 1-2 ns.  Improving on these conditions will only marginally decrease the error in the lifetime

determination.  All factors in equations 34-36 have very broad shapes (Figure 6) showing that the

system performance degrades slowly when we move away from the optimal conditions.  Therefore it is

possible to design a system which is quasi-optimal over a relatively broad range of lifetime values.

This evaluation resulted in the design of the very simple and cheap system of data acquisition for FLIM

presented in this paper.    
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Figure 9: Microchannels with fluorescein in pH 10 solution (letter L), rhodamine B (letter D), and a

combination of the two (letter F).  Shown are (a) the τp image and (b) a phasor plot demonstrating that

the phasors in the letter F are a linear combination of the phasors for the letters L and D.



A striking difference between the DFD and the TCSPC approach is the small number of time

windows used in the DFD (four windows) with respect to the relative large number of time bins used in

the TCSPC when applied to FLIM (64 bins or more).  At first sight it would appear that the small

number of windows in the DFD approach will limit the capability of measuring very short lifetimes

since each window ultimately is several nanoseconds wide.  However, the presence of jitter and the

sliding window principle makes the measurement of very short lifetime possible and the errors are

comparable to the state-of-the-art TCSPC systems.

In our mathematical model of DFD, jitter was presented as a phenomenon which reduces

modulation, and therefore reduces statistical accuracy.  While this is true, there is also a substantial

benefit of having a small amount of jitter in a system.  To maintain the ability to measure very short

lifetimes, it is necessary for a short lifetime response to be oversampled, so that even very small

lifetime changes show up as a response in several bins of the phase histogram as shown schematically

in Figure 10.  This oversampling can be provided by the shape of the excitation pulse and/or by the

jitter of the detection electronics.  Depending on

settings (laser, PMTs etc), we measured the jitter

on the FV1000 system with the FLIMBox to range

from 0.82ns to 2ns.  This jitter, according to

equations 34-36, results in modulation values

ranging from 0.95 to 0.84 for the first three

harmonics.  The FLIMBox produces 256 bins in

the phase histogram, but for memory conservation

this is usually binned down to 64.  This amount of

jitter corresponds to an oversampling by around 3-

6 bins, providing increased sensitivity to small

lifetime values, with minimal expense in

uncertainty.  If the jitter is too large, resulting in

oversampling by a large number of bins, then the

precision of the measurement will reduce according

to the modulation value (Equation 36) for that

jitter.  The effect of jitter in the determination of

very short lifetime values is more complex than it

will appear solely from equation 36 due to the
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Figure 10: With pulsed excitation, in the

absence of jitter, a lifetime value much shorter

than the bin size gives “delays” all in the same

bin so that small changes in lifetime result in

identical histograms.  The solid curve at bin 1

represents this case in which the center of mass

of the distribution cannot be determined with a

precision better than the bin size. In the presence

of jitter, the broadening of the distribution of

delays gives different bin contents even if the

changes in lifetime are very small.  The dotted

curve, which is the convolution of the solid curve

with a Gaussian jitter, shows that bin 4 contains

less counts than bin 6 so that the center of mass

of the distribution can be determined with

precision better than the bin size.
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effect of limited count statistics in any real measurements.  According to Figure 10, in the absence of

jitter, there is always a probability that some counts will appear in bin 2 although the majority of the

counts will be in bin 1.  The amount of counts in bin 2 will also depend on the precise position of the

time of photon arrival inside bin 1.  Therefore, if we have only a limited amount of counts, statistically

we could have either no count in bin 2 or just a few counts.  These discrete statistics produces a

“pixelation” (in the phasor plot) of phasors corresponding to very short lifetime values.  The presence

of jitter reduces this “pixelation”, providing a continuum of phasors centered at the correct phasor

position (an equivalent effect is also present in the TCSPC approach).  The important point here is that

the resolution of very short lifetimes is improved and the error is reduced by the presence of a small

amount of jitter and that the ultimate lifetime resolution of the DFD is only a matter of count statistics.

The effect of the count statistics on the resolution of lifetimes can be precisely determined using the

mathematical model and therefore a direct quantitative comparison between the DFD and TCSPC

method could be done for any given implementation of the two methods.  

This insight about jitter reveals new possibilities for FLIM.  PMT-based systems usually have a

quantum efficiency of around 25% (up to 40% for the GaAs modules), while avalanche photodiode

(APD) based systems can have quantum efficiencies of over 60%.  These APDs are usually avoided for

lifetime measurements because they have a time response jitter on the order of a nanosecond.

According to our model, the additional jitter of the APDs will have very little influence on the precision

of lifetime measurements.  This indicates that DFD-FLIM using APDs may actually yield an overall

improvement in lifetime resolution due to the larger number of photons detected.

Our mathematical model shows that an excitation source with a pulse narrower than 90° of the

repetition period is near optimal.  Further reduction of the excitation pulse width only results in

marginal improvement of the precision of the measurement.  The DFD method, by virtue of being a

frequency domain method, only works with periodic excitation.  This is usually the case using pulsed

lasers, however the model shows that the narrow pulses from picosecond or femtosecond lasers are not

a requirement for FLIM and do not provide substantial benefit over properly modulated diode lasers in

the sub-nanosecond regime. 

The DFD approach increases the duty cycle of the detection to 100% as compared to the 50%

duty cycle of the analog FD method.  Furthermore, the 4 windows design reaches the plateau in terms

of measurement precision for the first harmonic and provides a modulation of 64% for the second

harmonic.  There is a practical reason why we cannot increase the number of time windows to a much

larger number.  This is due to the maximal internal frequency of operation of the FPGA chip.  For
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example, to achieve 4 windows operation at about 50 MHZ, we need to generate a frequency in the

chip which is factor of four larger than the modulation frequency, i.e., 200MHz.  To increase the

number of windows by another factor of 2 we will need to generate a frequency of 400MHz, which is

above the maximum limit of the specific FPGA we have used.  Other faster chips are commercially

available and eventually the precision of the DFD method could be improved.  However, according to

Figure 6b, the improvement obtained by the 8-window design with respect to a 4-window design is

marginal.  Of course, if the laser repetition frequency is much lower than 50 MHz (for example 20

MHz), we could increase the number of time windows in the FPGA chip accordingly. 

In a recent paper (Medine and others, 2007), it is stated that, “a principle strength of TCSPC-

FLIM is statistical accuracy, and this is reflected in the ability to fit two or sometimes three exponential

functions to a particular decay.”  We show in the section about the resolution of the decay of ECFP in

two exponential components that DFD-FLIM has comparable statistical accuracy to TCSPC-FLIM for

multicomponent analysis, but with substantially reduced hardware expense.

The TAC-based system we used (B&H model 830) has a 125ns dead time.  The dead time

limitation becomes particularly relevant in FLIM when the laser samples a very bright pixel.

Saturation not only results in lost counts, but can induce significant skew on the lifetime values.  Using

several cards in parallel removes this limitation but at a very high cost.  The FLIMBox hardware

collects data at a maximum speed of one count per sampling period.  The fundamental limit in count

rate is due to the dead time of the discriminator (which is about 10ns) rather than the processing speed

of the FPGA chip.  One bottleneck of the particular FPGA we used is the size of the FIFO buffer

connected to the USB interface, which limits the average (not the burst) count rate to about 2MHz.

In conclusion, DFD-FLIM provides a powerful new technique for obtaining lifetime images

with a signal-to-noise and lifetime measurement ability comparable to the leading techniques in the

field, yet with significantly reduced hardware expense.  In addition, the theoretical model we developed

reveals the system parameter values which must be chosen to optimize the efficiencies of photons for

phasor analysis.  When DFD-FLIM is combined with the phasor analysis methods, the resulting pair

can make lifetime techniques accessible and practical for a wide variety of researchers and applications.

Acknowledgments

This work was supported by NIH, PHS 5 P41 RR03155.  The microchannels in Figure 9a were

prepared by Dr. Christian Hellriegel with assistance from the Jeon lab at UCI.

24



REFERENCES

Clayton AH, Hanley QS, Verveer PJ. 2004. Graphical representation and
multicomponent analysis of single-frequency fluorescence lifetime imaging
microscopy data. J Microsc 213(Pt 1):1-5.

Clegg R, Feddersen B, Gratton E, Jovin T. 1992. Time resolved imaging
fluorescence microscopy. Proc. SPIE 1640,  Time-Resolved Laser
Spectroscopy in Biochemistry III. Lakowicz JR, editor. SPIE, Bellingham, WA,
pp 448-460.

Eid J. 2002. Two-photon dual channel fluctuation correlation spectroscopy: Theory
and application. PhD Thesis, UIUC.

Gerritsen HC, Draaijer A, Van den Heuvel DJ, Agronskaia AV. 2006. Fluorescence
Lifetime Imaging in Scanning Microscopy. in Handbook of Biological
Confocal Microscopy Third Edition. Pawley JB Editor. Springer, New York,
NY:516-534.

Grant DM, Elson DS, Schimpf D, Dunsby C, Requejo-Isidro J, Auksorius E, Munro I,
Neil MA, French PM, Nye E, Stamp G, Courtney P. 2005. Optically sectioned
fluorescence lifetime imaging using a Nipkow disk microscope and a tunable
ultrafast continuum excitation source. Opt Lett 30(24):3353-5.

Gratton E, Limkeman M. 1983. A continuously variable frequency cross-correlation
phase fluorometer with picosecond resolution. Biophys J 44(3):315-24.

Gratton E, Limkeman M, Lakowicz JR, Maliwal BP, Cherek H, Laczko G. 1984.
Resolution of mixtures of fluorophores using variable-frequency phase and
modulation data. Biophys J 46(4):479-86.

Jameson D, Gratton E. 1983. Analysis of heterogeneous emissions by
multifrequency phase and modulation fluorometry. Eastwood D, editor:
American Society of Testing and Materials. 67-81 p.

Jameson DM, Gratton E, Hall R. 1984. The measurement and analysis of
heterogeneous emissions by multifrequency phase and modulation
fluorometry. App. Spec. Rev. 20:55-106.

Lakowicz JR, Laczko G, Cherek H, Gratton E, Limkeman M. 1984. Analysis of
fluorescence decay kinetics from variable-frequency phase shift and
modulation  data. Biophys J 46(4):463-77.

Medine CN, McDonald A, Bergmann A, Duncan RR. 2007. Time-correlated single
photon counting FLIM: some considerations for physiologists. Microsc Res
Tech 70(5):420-5.

Pelet S, Previte MJ, Laiho LH, So PT. 2004. A fast global fitting algorithm for
fluorescence lifetime imaging microscopy based on image segmentation.
Biophys J 87(4):2807-17.

Redford GI, Clegg RM. 2005. Polar plot representation for frequency-domain
analysis of fluorescence lifetimes. J Fluoresc 15(5):805-15.

Spencer RD, Weber G. 1969.  Measurements of Subnanosecond Fluorescence
Lifetimes with a Cross-correlation Phase Fluorometer. Annals New York
Academy of Sciences 158:361-376.

Tramier M, Kemnitz K, Durieux C, Coppey-Moisan M. 2004. Picosecond time-
resolved microspectrofluorometry in live cells exemplified by complex
fluorescence dynamics of popular probes ethidium and cyan fluorescent
protein. J Microsc 213(Pt 2):110-8.

van Munster EB, Goedhart J, Kremers GJ, Manders EM, Gadella TW, Jr. 2007.

25



Combination of a spinning disc confocal unit with frequency-domain
fluorescence lifetime imaging microscopy. Cytometry A 71(4):207-14.

Weber G. 1981. Resolution of the fluorescence lifetimes in a heterogeneous
system by phase and modulation measurements. J. Phys. Chem. 85:949-
953.

26


