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a b s t r a c t

The Drucker-Prager’s plasticity model obeying nonlinear kinematic and linear isotropic hardenings is

considered. A new integration formulation is suggested that is based on definitions of angles between

the strain rate and the shifted stress, and between the shifted stress and back stress in the deviatoric

plane. This method will reduce the constitutive relations to five ordinary differential equations (ODEs).

For solving this system of ODEs, the embedded pairs and local error estimation schemes along with FSAL

property are used. As a result, an integration scheme is developed with automatic error control. The

updated stress produced by the proposed numerical scheme is consistent with the yield condition.

Finally, a broad set of numerical tests are carried out to investigate the accuracy and efficiency of the

suggested technique.

� 2011 Elsevier Masson SAS. All rights reserved.

1. Introduction

When the plastic deformations of materials are involved, the

nonlinear finite element methods along with the theory of plas-

ticity are commonly used for solving this kind of engineering

problems. The accuracy and efficiency of the overall nonlinear finite

element analysis are directly associated with the robustness of the

stress updating process. The stress updating is carried out by

integrating the constitutive equations at each Gauss point. This

integration is normally done by a numerical method because the

analytical exact integrations for a few plasticity models are merely

available.

In the past century, numerous investigations have been done to

develop and examine the integration methods. These comprehen-

sive studies are because of the issue importance and for the reason

that a variety of the plasticity models and hardening rules are

existed. Wilkins (1964) proposed the radial return integration,

which the scheme needs a purely elastic predictor and a plastic

corrector (return mapping). A closed-form exact solution for the

elastic-perfectly plastic von-Mises model was suggested by Krieg

and Krieg (1977). Yoder and Whirley (1984) developed an analyt-

ical integration for the von-Mises model with a condition of purely

kinematic hardening, and a perturbation solution by considering

the isotropic hardening effects. Ortiz and Popov (1985) preformed

comprehensive studies on the accuracy and stability of the well-

known integration schemes, such as the radial return procedure.

A family of return mapping schemes for the plane stress elasto-

plastic problemwas proposed by Simo and Taylor (1986). Loret and

Prevost (1986) presented an accurate solution for the Drucker-

Prager’s criterion along with a linear hardening rule and arbitrary

degree of non-associability. In their research, an ordinary differ-

ential equation has been derived, which can be integrated by an

accurate Runge-Kutta procedure.

For the case of the von-Mises criterion with mixed hardening,

Dodds (1987) examined common numerical integrations. Runesson

et al. (1988) presented a limited accuracy analysis for constitutive

equations for the behavior of metals as well as concrete and soil.

Sloan and Booker (1992) showed the Tresca constitutive law may

be integrated exactly under plane strain conditions. In their study,

a semi-analytical algorithm for Mohr-Coulomb plasticity model

was derived. Ristinmaa and Tryding (1993) suggested a unified

approach which could include all the earlier exact integration

algorithms. Genna and Pandolfi (1994) provided a two-step inte-

gration scheme for the Drucker-Prager’s yield surface with linear

mixed hardening. The returnmapping algorithm for a class of cyclic

plasticity models was extended by Hopperstad and Remseth

(1995). Wie et al. (1996) proposed a consistent algorithm for

Prandtl-Reuss elastic-perfectly plastic materials. Their stress

updating scheme combines the advantages of the exact solution

and the rapid convergence of Newton iteration technique.
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In the current century, the rate of the development for the

integration methods in plasticity has been even increased. As

a result, the exponential-based method has been developed based

on the internal symmetries of the plasticity models. For the internal

symmetries constitutive equations, the plastic consistency condi-

tion is satisfied if the numerical solution could consider it (Hong

and Liu, 2000, 2001; Liu, 2003, 2004a). In addition to these

developments, the schemes based on Euler’s integrations have

been proposed for the new plasticity models. Sloan et al. (2001)

refined effective explicit integrations with automatic error control

for the Cam clay family. Wallin and Ristinmaa (2001) reformulated

the constitutive equations to a system of ordinary differential

equations. In their study, the fifth-order Dormand-Prince scheme

5(4) is used for solving this system of ODEs. Moreover, an algo-

rithmic tangent stiffness tensor and its approximate evaluation

were derived. A comprehensive investigation on the application of

the differential-algebraic equations (DAEs) in nonlinear finite

element analysis was performed by Ellsiepen and Hartmann

(2001). In this study, the system of DAEs was connected to the

Multilevel-Newton method. It is worth mentioning that the system

of DAEs is obtained from coupling the mechanical balance laws

(which are algebraic equations) and the constitutive equations of

the internal variables (which are ordinary differential equations).

Kobayashi and Ohno (2002) implemented an integration algorithm

based on the backward Euler method for a cyclic plasticity model.

Auricchio andBeirão daVeiga (2003) suggested a non-consistent

integration scheme based on an exponential map for the associative

von-Mises plasticity with linear hardening. Kobayashi et al. (2003)

presented an implicit integration and its consistent tangent

modulus in the case of constitutive equations,which depend to time

and temperature. Liu (2004b) derived two explicit exponential-

based integrations for the elastic-perfectly plastic Drucker-Prager’s

model. Hartmann (2005) presented remarks on the application of

the classical NewtoneRaphson algorithm related to the finite

element method and compared it with the classical and improved

version of the Multilevel-Newton method. Artioli et al. (2005) pre-

sented two consistent exponential-based schemes for the von-

Mises yield surface with linear mixed hardening. Clausen et al.

(2006) developed a return mapping scheme for constitutive rela-

tionswithmultipleyieldplanes. A second-orderexplicit exponential

scheme for the von-Misesmaterialwith linearmixedhardeningwas

extended by Artioli et al. (2006). Rezaiee-Pajand and Nasirai (2007)

derived a semi-implicit exponential-based integration with

quadratic rate of convergence for the von-Mises plasticity model

along with linear mixed hardening. Artioli et al. (2007) suggested

a second-order exponential algorithm for the von-Mises plasticity

governed by linear isotropic and Armstrong-Frederick’s kinematic

hardening. Rezaiee-Pajand and Nasirai (2008) proposed 2 second-

order semi-implicit stressupdating schemes for theelastic-perfectly

plastic Drucker-Prager model.

Wallin and Ristinmaa (2008) presented a reduced set of ODEs

from the von-Mises isotropic hardening plasticity coupled to damage

models. It was demonstrated that an additional set of ODEs for

consistent tangent stiffness tensor is needed,which should be solved

simultaneously with the reduced set of the former ODEs. Szabó

(2009) developed a semi-analytical algorithm for von-Mises plas-

ticity with linear isotropic hardening. Followed by, two semi-

analytical integrations in the case of the combined linear isotropic-

kinematic hardening von-Mises plasticity were provided by Kossa

and Szabó (2009). These solutions correspond with the strain-

driven and stress-driven problems, which are developed by using

the assumptions of constant strain and stress rates, respectively.

Coombs et al. (2010) derived an analytical backward Euler algorithm

for the modified Reuleaux model. Rezaiee-Pajand et al. (2010)

proposed an exponential-based integration for the von-Mises

plasticity with multi-component nonlinear kinematic hardening.

Finally, an accurate solution and approximate integrations of the

Drucker-Prager’s constitutive equationswith linearmixedhardening

were presented by Rezaiee-Pajand et al. (2011).

In the present study, the Drucker-Prager’s constitutive equations

governedby linear isotropic andnonlinearkinematic hardenings are

considered. Anew integration formulation is derived,which is based

on introducing the angle between the strain rate and the shifted

stress, and theangle between the shifted stress andback stress in the

deviatoric plane. The constitutive equations are reduced to five

ordinary differential equations (ODEs). The derived differential

equations can be solved by ODE integration techniques. The third-

order Bogacki-Shampine method 3(2) and the fifth-order Dormand-

Prince scheme 5(4) are used for medium and high accuracies,

respectively. These approaches were designed to produce an esti-

mate of the local truncation error for a single RungeeKutta step. In

addition, an extra advantage of these approaches is having FSAL

(First Same As Last) property. As a result, an effective scheme for

integrating the nonlinear constitutive equations will be developed,

which can effectively control the errors. A wide range of numerical

tests is provided to investigate theaccuracyandefficiencyof thenew

integration. These tests include strain load histories, iso-errormaps,

and computation time.

2. Constitutive equations

In this study, it is assumed that the realm of the deformations is

small. The Drucker-Prager’s criterion (Drucker and Prager, 1952)

with nonlinear kinematic and linear isotropic hardenings is adop-

ted. This yield function is a simple modification of the von-Mises

plasticity model that the effect of the hydrostatic pressure on the

failure is considered by the inclusion of an additional term as

follows:

F ¼ 1

2
s0 : s0 �

�

sy � bp0
�2
; sy � bp0>0 (1)

where, sy denotes the yield stress in pure shear, and b is a material

parameter related to yielding. The evolution of the yield stress is

represented by a linear isotropic hardening. The parameters s0 and
p0 denote the deviatoric shifted stress and the hydrostatic shifted

stress as:

s
0 ¼ s0 þ p0i with p0 ¼ 1

3
trðs0Þ (2)

In this equation, i represents the second-order identity tensor.

Also, ‘tr’ denotes the trace operator. The shifted stress, s0, is defined
by the next relation:

s
0 ¼ s� a (3)

Where the total stress and the total back stress were denoted by s

and a, respectively. As a usual, the back stress represents the center

of the yield surface in the stress space. For convenience, the total

strain, ε, is split into the deviatoric strain, e, and the volumetric

strain, εv, as below:

ε ¼ eþ 1

3
εvi with εv ¼ trðεÞ (4)

The additive decomposition of the strain into elastic and plastic

parts is used by the following relations:

ε ¼ ε
e þ ε

p (5)

e ¼ ee þ ep (6)

εv ¼ ε
e
v þ ε

p
v (7)
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Now, an associative flow rule is adopted to determine the plastic

strain rate as:

_εp ¼ _g
vF

vs0 (8)

Where, the term _g is the plastic multiplier. Using Eq. (1), the last

relation can be written in below form:

_εp ¼ _g

�

s0 þ 2

3
b
�

sy � bp0
�

i

�

(9)

Using the last equation, the rate of the volumetric plastic strain,

i.e. trð_εpÞ, is easily determined as follows:

_ε
p
v ¼ 2b _g

�

sy � bp0
�

(10)

In the present study, a linear isotropic hardening is adopted. This

rule can be introduced by the equation:

sy ¼ sy;0 þ Hisog (11)

where, sy;0 denotes the initial yield stress in pure shear, and Hiso is

the linear isotropic hardening modulus. The kinematic hardening

rule presents the translation of the yield surface as a rigid body

during plastic yielding. An Armstrong and Frederick’s kinematic

hardening, which is the most well-known nonlinear kinematic

hardening rule (Armstrong and Frederick, 1966), is utilized. A recall

term (called dynamic recovery) in this rule has been defined that

incorporates the fading memory effect on the strain path. The

subsequent evolution law of the back stress is expressed according

to the Armstrong and Frederick rule:

_a ¼ Hkin _ε
p � _gHnla (12)

Where, the constants Hkin and Hnl are thematerial parameters. This

rule is presented in the deviatoric plane in the below form:

_a ¼ Hkin _e
p � _gHnla (13)

In the last equation, a signifies the deviatoric part of the back

stress, and it can be defined as follows:

a ¼ a� pi with p ¼ 1

3
tr

�

a

�

(14)

Where, p is the volumetric part of the back stress. The rate of the

shifted stress for isotropic materials is obtained by taking the time

derivative of Eq. (3) and using the generalized Hooke’s law and Eq.

(12). As a result, the following relation will be valid:

_s
0 ¼ 2G _εe þ

�

K � 2

3
G

�

_εevi� Hkin _ε
p þ _gHnla (15)

In this equation, G and K are the shear and bulk modulus,

respectively. The rate of the hydrostatic shifted stress can be ach-

ieved by using Eqs. (2) and (15) as:

_p0 ¼ K _εv � K _ε
p
v þ _gHnlp (16)

Where, K is expressed as:

K ¼ K þ 1

3
Hkin (17)

Now, the radius of the yield surface in the deviatoric plane, R, is

defined by:

R ¼
ffiffiffi

2
p
�

sy � bp0
�

(18)

Then, substituting Eq. (10) into Eq. (16) and using the last rela-

tion yield:

_p0 ¼ K _εv �
ffiffiffi

2
p

bK _gRþ _gHnlp (19)

This relationship specifies the governing differential equation of

the hydrostatic shifted stress. The rate of the volumetric part of the

back stress, p, can be obtained by using Eqs. (14), (12), (10) and the

definition of the radius of the yield surface as:

_p ¼
ffiffiffi

2
p

3
Hkinb _gR� _gHnlp (20)

Using Eqs. (9) and (10), the rate of the plastic deviatoric strain

can be found, which has the below form:

_e
p ¼ _gs0 (21)

The rate of the deviatoric part of the shifted stress, _s0, can be

determined based on the rate of elastic deviatoric strain and the

deviatoric back stress by:

_s
0 ¼ 2G _e

e � _a (22)

Substituting Eqs. (13) and (21) into the last equation leads to the

following constitutive equation for the deviatoric shifted stress:

_s
0 ¼ 2G _e� 2G _gs0 þ _gHnla (23)

where,

2G ¼ 2Gþ Hkin (24)

To complete the basic equations, the Kuhn-Tucker loading/

unloading conditions are given as follows:

_g � 0; F � 0; _gF ¼ 0 (25)

According to the last complementary conditions, the state of the

material is plastic (or elastoplastic) if f _g > 0 and F ¼ 0g, and

elastic if f _g ¼ 0 and F � 0g. Finally, the plastic multiplier, _g, can be

derived by using the consistency condition, i.e. _g _F ¼ 0 if F ¼ 0,

during plastic yielding:

_g ¼ 2Gs0 : _eþ
ffiffiffi

2
p

bKR _εv

2
	

Gþ Kb
2



R2 þ
ffiffiffi

2
p

ðHiso � bHnlpÞR� Hnls
0 : a

(26)

2.1. Remark 1

While yielding inmanymetals, such as iron-basedmaterials and

aluminum, is depended to pressure, the plastic deformation is

essentially incompressible (Spitzig and Richmond, 1984). Plastic

incompressibility can be considered by means of a non-associative

flow rule based on the following plastic potential (Lei and

Lissenden, 2007):

Q ¼ 1

2
s0 : s0 (27)

The non-associated potential flow has the below form:

_εp ¼ _e
p ¼ _g

vQ

vs0 ¼ _gs0 (28)

Therefore, while yielding of material is pressure sensitive, the

volume does not change ð_εpv ¼ 0Þ. In this case, the deviatoric part of

the back stress is equal to the total back stress, i.e. a ¼ a and _p ¼ 0.

Furthermore, the rate of the hydrostatic shifted stress, p0, and the

plastic multiplier, _g, can be obtained by:

_p0 ¼ K _εv (29)
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_g ¼ 2Gs0 : _eþ
ffiffiffi

2
p

bKR_εv

2GR2 þ
ffiffiffi

2
p

HisoR� Hnls
0 : a

(30)

3. A new integration formulation

In order to integrate the constitutive equations, the constant

strain rate assumption over the time interval is used. This means

that both _e and _εv are kept constant in each time step. It should be

added, this assumption has been widely used in both exact and

numerical integration methods. Moreover, it is assumed that at

beginning time of integrating the stress state becomes plastic, i.e. s0

lies on the yield surface. As a result, based on Eqs. (1) and (18) one

can easily write the following relation:

R ¼ ks0k (31)

The angle ðjÞ between the deviatoric shifted stress, s0, and the

deviatoric strain rate, _e, is defined in below form:

s0 : _e ¼ R
�

� _e
�

�cos j (32)

Moreover, an extra angle, f, between the deviatoric shifted

stress, s0, and the deviatoric back stress, a, is defined as:

s0 : a ¼ Ra cos f (33)

Where,

a ¼ kak (34)

The definitions of the angles j and f are shown in Fig. 1.

Taking the scalar product of Eq. (23) by s0 leads to the relation:

s0 : _s0 ¼ 2Gs0 : _e� 2G _gs0 : s0 þ _gHnls
0 : a (35)

For convenience, one can write the next equalities:

s0 : s0 ¼ R2

s0 : _s0 ¼ R _R
(36)

By substituting these relations and Eqs. (32) and (33) into Eq.

(35), the following differential equation can be achieved:

_R ¼ 2G
�

� _e
�

�cos j� _gð2GR� Hnlacos fÞ (37)

The last equality is the governing differential equation of the

yield surface radius in the deviatoric plane. Substituting Eq. (21)

into (13) and taking the scalar product of the result by a give the

following expressions:

a : _a ¼ Hkin _ga : s0 � _gHnla : a (38)

a : a ¼ a2

a : _a ¼ a _a
(39)

The evolution equation of a is achieved by inserting Eqs. (33)

and (39) into Eq. (38) as follows:

_a ¼ _gðHkinRcos f� HnlaÞ (40)

At this point, it is intended to achieve the evolution equation of

j. For this purpose, taking the derivative in time of Eq. (32) leads to

the next formula:

_s
0
: _e ¼ _R

�

� _e
�

�cos j� R
�

� _e
�

�
_jsin j (41)

Then, taking the scalar product of Eq. (23) by _e and using the

definition of the angles j and f yield the below result:

_s
0
: _e ¼ 2Gk _ek2�2G _gR

�

� _e
�

�cos jþ _gHnla
�

� _e
�

�cos ðjþfÞ (42)

By comparing Eqs. (41) and (42) the following relationship will

be in hand:

_Rcos j� R _jsin j ¼ 2G
�

� _e
�

�� 2G _gRcos jþ _gHnlacos ðjþ fÞ
(43)

Now, substituting _R of Eq. (37) into Eq. (43) and rearranging

terms lead to the subsequent rate equation:

_j ¼ 1

R

�

_gHnlasin f� 2G
�

� _e
�

�sin j
�

(44)

The rate of the angle j obeys the last differential equation. In

order to find a rate equation of the angle f, first, taking the scalar

product of the deviatoric back stress a by the deviatoric strain rate _e

is written as:

a : _e ¼ a
�

� _e
�

�cos ðjþ fÞ (45)

Then, taking the derivative in time of this equation gives:

_a : _e ¼ _a
�

� _e
�

�cos ðjþ fÞ � a
�

� _e
�

�

	

_jþ _f



sin ðjþ fÞ (46)

After that, taking the scalar product of Eq. (13) by _e and applying

Eqs. (21), (32) and (45) will achieve the next relation:

_a : _e ¼ Hkin _gR
�

� _e
�

�cos j� _gHnla
�

� _e
�

�cos ðjþ fÞ (47)

Now, comparing Eqs. (46) and (47), applying Eqs. (40) and (44),

and simplifying the results the following differential equation can

be obtained:

_f ¼ �1

a
Hkin _gRsin f� 1

R

�

_gHnlasin f� 2G
�

� _e
�

�sin j
�

(48)

It is observed that in differential Eqs. (37), (40), (44) and (48) the

plastic multiplier, _g, has been appeared. This parameter is a func-

tion of the variables R, a, j, f and p. Therefore, substituting Eqs. (32)

and (33) into Eq. (26) can determine a relation for the plastic

multiplier, as:Fig. 1. The definitions of the angles j and f.
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_g ¼ 2GR
�

� _e
�

�cos jþ
ffiffiffi

2
p

bKR _εv

2
	

Gþ Kb
2



R2 þ
ffiffiffi

2
p

ðHiso � bHnlpÞR� HnlRacos f
(49)

Note that the rate of the variable pwas given by Eq. (20). At this

stage, two 5-dimensional vectors are defined as:

Y ¼

8

>

>

>

>

<

>

>

>

>

:

y1
y2
y3
y4
y5

9

>

>

>

>

=

>

>

>

>

;

¼

8

>

>

>

>

<

>

>

>

>

:

R
a
j
f
p

9

>

>

>

>

=

>

>

>

>

;

(50)

and,

F ¼

8

>

>

>

>

<

>

>

>

>

:

f1
f2
f3
f4
f5

9

>

>

>

>

=

>

>

>

>

;

¼

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

2G
�

� _e
�

�cos y3 � _gð2Gy1 � Hnly2cos y4Þ
_gðHkiny1cos y4 � Hnly2Þ

1

y1

�

_gHnly2sin y4 � 2G
�

� _e
�

�sin y3
�

� 1

y2
Hkin _gy1sin y4 �

1

y1

�

_gHnly2sin y4 � 2G
�

� _e
�

�sin y3
�

_g

 

ffiffiffi

2
p

3
Hkinby1 � Hnly5

!

9

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

;

(51)

Finally, the ordinary differential Eqs. (37), (40), (44), (48) and

(20) can be rewritten by the following compact form:

_Y ¼ Fðt; y1; y2; y3; y4; y5Þ ¼ Fðt;YÞ (52)

Since there is no analytical solution for this system of ordinary

differential equations (ODEs), it can be solved by a numerical

integration technique. One type of the most important ODE inte-

grations is the explicit Runge-Kutta families. Two of these strategies

for integrating the system of ODEs (52) will be explained in next

section. Now, it is intended to integrate the constitutive equations

over the time interval ½t0; t1�. The initial conditions for solving the

system of ODEs (52) are defined as follows:

Y0 ¼

8

>

>

>

>

<

>

>

>

>

:

R0
a0
j0
f0
p0

9

>

>

>

>

=

>

>

>

>

;

(53)

Then, solving the system of differential Eq. (52) by an ODE

integration technique results in the vector Y1 at time t ¼ t1.

Consequently, the deviatoric shifted stress at the end of time step

s01 ¼ s0ðt ¼ t1Þ can be assumed as a linear combination of

s00 ¼ s0ðt ¼ t0Þ and Ds0TR in the following form:

s01 ¼ xs00 þ zDs0TR (54)

Where, Ds0TR is an increment of the trial stress, i.e.

Ds0TR ¼ 2G _eðt1 � t0Þ ¼ 2G _eDt (55)

The scalar parameters x and z have the subsequent expressions:

x ¼ R1sin j1

R0sin j0

z ¼ R1sin ðj0 � j1Þ
kDs0TRksin j0

(56)

It is worth mentioning that the last parameters can be obtained

by the relations:

�
�

xs00 þ zDs0TR
�

: Ds0TR ¼ R1
�

�Ds0TR
�

�cos j1
�

xs00 þ zDs0TR
�

: s01 ¼ R21
(57)

According to the last equations, the suggested integration

formulation automatically satisfies the condition of consistency

with the yield surface. Also, the deviatoric back stress at time

t ¼ t1, i.e. a1, can be achieved by a linear combination of the

tensors a0 and Ds0TR as follows:

a1 ¼ xa0 þ zDs0 TR (58)

Where, the parameters x and z are given by:

x ¼ a1sin ðj1 þ f1Þ
a0sin ðj0 þ f0Þ

z ¼ a1sin ðj0 þ f 0 � j1 � f 1Þ
kDs0TRksin ðj0 þ f0Þ

(59)

3.1. Remark 2

If j0 ¼ 0 or p, the loading is proportional, and j remains equal

to zero or p throughout the load step and Eq. (54) will change to the

subsequent relation:

s01 ¼ R1
R0

s00 (60)

3.2. Remark 3

If j0 þ f 0 ¼ 0 or p, then, jþ f remains equal to zero or p

throughout the load step, and Eq. (58) will be formed as:

a1 ¼ a1
a0

a0 (61)

4. ODE integrations with error control and FSAL property

In order to integrate the system of ODEs (52), two following

methods are used in this study: the third-order Bogacki-Shampine

method 3(2) (Bogacki and Shampine, 1989) for medium accuracy

and the fifth-order Dormand-Prince method 5(4) (Dormand and

Prince, 1980) for high accuracy. These techniques have the FSAL

property, and these can estimate the local error to implement

adaptive step size. It is worth mentioning that a particularly

interesting special class of explicit Runge-Kutta methods, which is

used inmost modern codes, has the coefficients with FSAL property

(so-called First Same As Last property). For the ODE integrationwith

this property, the last stage of one integration step is evaluated at

the same as the first stage of the next integration step. Furthermore,

the adaptive tactics are designed to produce an estimate of the local

truncation error of a single Runge-Kutta step. It should be

mentioned, the Runge-Kutta methods have already used by the

researchers for integrating the constitutive equations and their

reduced form (e.g. Sloan and Booker,1992; Sloan et al., 2001;Wallin

and Ristinmaa, 2001, 2008).

4.1. Bogacki-Shampine method 3(2)

The Bogacki-Shampine strategy 3(2) (BSh32) is a Runge-Kutta

technique of the third-order with four stages having FSAL
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property. Therefore, this approach approximately uses three func-

tions in each step. Moreover, the method has an embedded second-

order technique, which can be used to implement adaptive step

size. In order to integrate, a time step, Dt ¼ tnþ1 � tn, is considered.

Also, it is assumed that Yn denotes the value of Y at the time t ¼ tn.

Now, using the Bogacki-Shampine tactic, the system of ODEs (52)

can be integrated numerically to find Ynþ1 at t ¼ tnþ1 by the

following equations:

Ynþ1 ¼ Yn þ Dt

�

2

9
k1 þ

1

3
k2 þ

4

9
k3

�

(62)

Ynþ1 ¼ Yn þ Dt

�

7

24
k1 þ

1

4
k2 þ

1

3
k3 þ

1

8
k4

�

(63)

All the vectors appeared in these equations are calculated as:

k1 ¼ Fðtn;YnÞ

k2 ¼ F

�

tn þ
1

2
Dt;Yn þ

1

2
Dtk1

�

k3 ¼ F

�

tn þ
3

4
Dt;Yn þ

3

4
Dtk2

�

k4 ¼ Fðtnþ1;Ynþ1Þ

(64)

Where, Ynþ1 and Ynþ1 are the second-order and third-order

approximations to the exact solution, respectively. Therefore, the

difference between these vectors can be used to implement adap-

tive step size. Since the method has the FSAL property, the value k4

in one integration step equals the value k1 in the next step and

effectively three function evaluations are computed in each time

step. The local truncation error in Ynþ1 can be computed by:

Enþ1 ¼ Ynþ1 �Ynþ1 ¼ Dt

�

� 5

72
k1 þ

1

12
k2 þ

1

9
k3 �

1

8
k4

�

(65)

Utilizing Eq. (65), the scalar measure of the relative local error

can be defined by the next equality:

E ¼ max

�jE1j
jy1j

;
jE2j
jy2j

;
jE3j
jy3j

;
jE4j
jy4j

;
jE5j
jy5j



nþ1

(66)

In this relation, Ei (where, i ¼ 1;2;.;5) is the i th component of

the vector Enþ1. Now, the relative local error can be utilized for

determining the size of the next step. The following equation is

widely used in the integral step size controller (Shampine and

Watts, 1976):

Dtnþ1 ¼ 0:9Dtn

�

Tol

E

�1
3

(67)

Where, Dtnþ1 and Tol denote the size of the next time step and the

maximum allowable local error, respectively.

4.2. Dormand-Prince method 5(4)

The Dormand-Prince method 5(4) (DP54) is a member of the

embedded Runge-Kutta family in the fifth-order with a FSAL

scheme. This procedure has seven stages, but it effectively uses only

six function evaluations per step.Moreover, it can estimate the local

error to implement the adaptive step size. Once again, it is assumed

that Yn and Dt are the value of vector Y at the time tn and the size of

the time step, respectively. In order to integrate the system of ODEs

(52) one step of the Dormand-Prince method is given by the

expressions:

Ynþ1 ¼ Yn þ Dt

�

35

384
k1 þ

500

1113
k3 þ

125

192
k4 �

2187

6784
k5 þ

11

84
k6

�

(68)

Ynþ1 ¼Yn þ Dt

�

5179

57600
k1 þ

7571

16695
k3 þ

393

640
k4 �

92097

339200
k5

þ 187

2100
k6 þ

1

40
k7

�

ð69Þ

and,

k1 ¼ Fðtn; YnÞ
k2 ¼ F

�

tn þ
1

5
Dt; Yn þ

1

5
Dtk1

�

k3 ¼ F

�

tn þ
3

10
Dt; Yn þ

3

40
Dtk1 þ

9

40
Dtk2

�

k4 ¼ F

�

tn þ
4

5
Dt; Yn þ

44

45
Dtk1 �

56

15
Dtk2 þ

32

9
Dtk3

�

k5 ¼ F

�

tn þ
8

9
Dt; Yn þ

19372

6561
Dtk1 �

25360

2187
Dtk2 þ

64448

6561
Dtk3

�212

729
Dtk4

�

k6 ¼ F

�

tnþ1; Yn þ
9017

3168
Dtk1 �

355

33
Dtk2 þ

46732

5247
Dtk3

þ 49

176
Dtk4 �

5103

18656
Dtk5

�

k7 ¼ Fðtnþ1;Ynþ1Þ (70)

Where, Ynþ1 and Ynþ1 represent the fourth-order and fifth-order

accurate solution, respectively. An error estimator can be formed

by subtracting Ynþ1 from Ynþ1 as:

Enþ1 ¼Dt

�

71

57600
k1 �

71

16695
k3 þ

71

1920
k4 �

17253

339200
k5

þ 22

525
k6 �

1

40
k7

�

ð71Þ

The scalar measure of the relative local error can be computed

by Eq. (66). In order to determine the size of the next time step, the

following equation can be used (Shampine and Watts, 1976):

Dtnþ1 ¼ 0:9Dtn

�

Tol

E

�1
5

(72)

5. Stress updating schemes with automatic error control

For updating the material state, it is assumed that the strain

history is a rectilinear path, such that _ε is constant during each time

step. This is denoted by _εn at a discrete time t ¼ tn. The constitutive

variables at the time tn, i.e. εn, sn, an and gn are all known, and the

updated strain εnþ1 is also given at the time tnþ1. The proposed

numerical scheme must integrate the constitutive variables over

the time increment to update the material state. In order to inte-

grate, a strain increment, i.e. Dε ¼ Dt _ε ¼ εnþ1 � εn, is applied and

it is decomposed into deviatoric De and volumetric Dεv parts. Then,

a trial solution for the elastic phase at the end of the time step, i.e.

tnþ1, is calculated as:

s0TRnþ1 ¼ s0n þ 2GDe

p0TRnþ1 ¼ p0n þ KDεv

a
TR
nþ1 ¼ an

pTRnþ1 ¼ pn

s
TR
y;nþ1 ¼ sy;n

(73)
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The trial values are admissible, if the following condition is

satisfied:

ks0TRnþ1k
2 � 2

	

s
TR
y;nþ1 � bp0TRnþ1


2
(74)

Therefore, the time step is elastic and the variables at the time

tnþ1 are taken as the trial values. If Eq. (74) is not fulfilled, the time

step can be divided into an elastic part followed by a plastic part. A

scalar parameter a˛½0; 1Þ is introduced, as aDt and ð1� aÞDt give
the elastic part and plastic part of the time step, respectively. This

scalar parameter can be computed by:

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B2 � 4AC
p

� B

2A
(75)

where, the scalars A, B and C are given as:

A ¼ k2GDek2 � 2ðbKDεvÞ2

B ¼ 4GDe : s0n þ 4bK
�

sy;n � bp0n
�

Dεv

C ¼ ks0nk2 � 2
�

sy;n � bp0n
�2

(76)

It should be noted that the parameter a was computed by

considering the exact yield condition, i.e. F ¼ 0. When the exact

condition is replaced by the approximate one jFj � tolF , which tolF
denotes a small positive tolerance, the algorithm presented by

Sloan et al. (2001) can be used for obtaining a. In the following,

using this parameter ðaÞ, the deviatoric and volumetric compo-

nents of the shifted stress at the time tnþa can be calculated as

follows:

s0nþa ¼ s0n þ 2GaDe

p0nþa ¼ p0n þ KaDεv

(77)

At this stage, s0nþa has been lied on the yield surface. To find the

updated stress and constitutive quantities at the end of the elas-

toplastic part of the load step, the system of ODEs (52) should be

numerically integrated over the time interval t ¼ tnþa to t ¼ tnþ1.

The initial condition for the system of ODEs at the time tnþa is

Ynþa ¼ fRnþa; an; jnþa; fnþa; pnþagT . Since it is intended to

control the error, schemes along with sub-steps should be selected.

One way to control accuracy in the solution of an initial value

problem is to solve the problem twice by using step sizes Dt and

Dt=2 and then compare the results at the end of the larger step size.

But, this approach needs a large amount of calculations for the

smaller step size. Also, if it is determined that the obtained results

are not admissible, the solution must be repeated. The ODE inte-

grationmethodsmentioned in Section 4 are theways to resolve this

trouble. Generally, each time step may consist of several sub-steps,

and the relative local error of each sub-step should be computed to

determine the size of the next sub-step based on the maximum

allowable local error, Tol (for example, see Eq. (67)). In fact, this

approach permits the size of each sub-step Dtj ¼ tjþ1 � tj (super-

script j is a counter for the number of sub-steps) to be varied

throughout the interval t ¼ tnþa to t ¼ tnþ1, i.e. 0 < Dtj �
ð1� aÞDtn.

In each sub-step, the system of ODEs (52) is integrated with the

initial condition Y
j
nþa and applying Dtj into Eqs. (62) and (63) for

the BSh32 method, or in the case of the DP54 tactic, Eqs. (68) and

(69) are used. After that, the relative local error is computed by

Eq. (66). If the relative local error Ej is not greater than the specified

error tolerance Tol, the present sub-step is admissible, and the size

of the next sub-step is given by Eq. (67) for the BSh32 (or Eq. (72)

for the DP54 method). But, if the relative error is greater than the

specified error tolerance, the present solution is not admissible, and

the size of the sub-step must be decreased. One way for computing

a smaller sub-step size is using an extrapolation by Eq. (67) for the

BSh32 (or Eq. (72) for the DP54). This approach has been used by

Sloan et al. (2001) for selecting a smaller sub-step in the case of the

sub-step has failed. The integration process is finished when the

sum of the sub-steps becomes equal to ð1� aÞDtn, i.e.
P

Dtj ¼
ð1� aÞDtn. Finally, using the vector Ynþ1 ¼ fRnþ1; anþ1; jnþ1;

fnþ1; pnþ1gT computed by an ODE method, the following consti-

tutive quantities can be updated:

s0nþ1 ¼ xns
0
nþa þ znDs

0TR

anþ1 ¼ xnanþa þ znDs
0TR

(78)

Where, Ds0TR ¼ 2Gð1� aÞDe and the scalar parameters are:

xn ¼ Rnþ1sin jnþ1

Rnsin jnþa

zn ¼ Rnþ1sin ðjnþa � jnþ1Þ
kDs0TRksin jnþa

(79)

Furthermore, the parameters xn and zn are given by:

xn ¼ anþ1sin ðjnþ1 þ f nþ1Þ
anþasin ðjnþa þ f nþaÞ

zn ¼ anþ1sin ðjnþa þ f nþa � jnþ1 � f nþ1Þ
kDs0TRksin ðjnþa þ f nþaÞ

(80)

In order to update the hydrostatic stress, first by using the Eqs.

(19) and (20), the following equation is held:

_p0 ¼ K _εv �
ffiffiffi

2
p

Kb _gR� _p (81)

Now, Eq. (81) is directly integrated as:

p0nþ1 � p0nþa ¼
Z

tnþ1

tnþa

	

K _εv �
ffiffiffi

2
p

Kb _gR� _p



dt (82)

Then, using Eq. (21) and simplifying the result, the subsequent

relationships can be easily obtained:

p0nþ1 � p0nþa ¼ K

Z

tnþ1

tnþa

_εvdt �
ffiffiffi

2
p

bK

Z

tnþ1

tnþa

k _epkdt �
Z

tnþ1

tnþa

_pdt (83)

p0nþ1 ¼ Kð1� aÞDεv �
ffiffiffi

2
p

bKkDepk � pnþ1 þ pn þ p0nþa (84)

Where, Dep is obtained by using the basic relation for s0nþ1, i.e.

s0nþ1 ¼ snþ1 � anþ1 ¼ sn þ 2GðDe� DepÞ � anþ1 (85)

Manipulating the above equation, the below equality can be

achieved:

Dep ¼ 1

2G
ðsn þ 2GDe� s0nþ1 � anþ1Þ (86)

Finally, the yield stress at the time tnþ1 can be computed by

using the definition of the yield surface radius in the deviatoric

plane, i.e. Eq. (18). The new stress updating scheme is summarized

in a flow chart which is shown in Fig. 2.

5.1. Remark 4

The direction of both angles j and f, must be the same because

the angle between the back stress and the strain rate is computed

by summing the angles j and f. Therefore, the angles j and f at the

time t ¼ tnþa can be computed from the below relationships:
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jnþa ¼ cos�1

�

s0nþa : De

RnkDek

�

(87)

f nþa ¼
�

knþa if cos ðcnþaÞ ¼ cos ðjnþa þ knþaÞ
�knþa if cos ðcnþaÞscos ðjnþa þ knþaÞ (88)

Where,

knþa ¼ cos�1

�

s0nþa : an

Rnþaan

�

cnþa ¼ cos�1

�

an : De

ankDek

�

(89)

5.2. Remark 5

A consistent tangent stiffness tensor is required to preserve the

quadratic asymptotic convergence for the Newton iterationmethod

in a nonlinear finite element analysis. Consistency implies that the

stresses obtained by the tangent stiffness tensor must be matched

the stresses updated by the integration scheme to the first order.

Computing the tangent operator is briefly presented in the

following. The discrete consistent tangent operator is derived by

linearizing the stress updating method as:

dsnþ1

dεnþ1
¼
�

ds0nþ1

denþ1
þdanþ1

denþ1

�

Idevþ
�

dp0nþ1

dε
v;nþ1

þ dpnþ1

dε
v;nþ1

�

i5i (90)

Idev ¼ I � 1

3
i5i (91)

Fig. 2. Flow chart for suggested stress updating scheme.
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Where, I denotes the fourth-order identity tensor. To compute the

derivatives of the tensors appeared in Eq. (90), a derivative of Ynþ1,

i.e. Gnþ1 ¼ ðdY=dεÞnþ1 is needed. Taking the time derivative of G,

the following evolution equation may be in hand:

dG

dt
¼ dF

dY

dY

dε
(92)

At this stage, solving the above system of ODEs simultaneously

with the system of ODEs (52) gives the consistent tangent operator

and constitutive variables. Both the system of ODEs (52) and (92)

can be presented as:
�

_Y
_G

�

¼
"

F
dF

dY
G

#

(93)

It should be noted, this technique has been already used by

Wallin and Ristinmaa (2008) for integrating the damage evolution

laws.

6. Treatment of apex

It should be noted that there is a singularity point associated

with the apex of the Drucker-Prager’s cone. In fact, if the trial stress

is situated inside the complementary cone, the stress updated must

be located at the apex, i.e. s0nþ1 ¼ 0 and Rnþ1 ¼ 0. If not, updating

the material state is the same as the formulation presented earlier

(Fig. 3). At the apex, by following the typical methodology, the

increment of the plastic multiplier, l, for a fully plastic load step can

be calculated from the next condition:

Rnþ1 ¼
ffiffiffi

2
p
�

sy;nþ1 � bp0nþ1

�

¼ 0 (94)

Utilizing the last equation and Eqs. (11) and (19) and adopting an

approximate explicit manner, the subsequent plastic multiplier can

be obtained:

l ¼
ffiffiffi

2
p

bKDεv � Rn
ffiffiffi

2
p

Hiso �
ffiffiffi

2
p

bHnlpn þ 2b
2
KRn

(95)

Now, the other parameters can be updated as:

Dep ¼ ls0n

anþ1 ¼ an þ HkinDe
p � lHnlan

pnþ1 ¼ pn þ
ffiffiffi

2
p

3
lbHkinRn � lHnlpn

sy;nþ1 ¼ sy;n þ lHiso

p0nþ1 ¼ 1

b
sy;nþ1

(96)

As a result, for integrating the constitutive equations the

following algorithm can be tracked. First, the updated state of

material is assumed to be on the smooth portion of the cone. In

other words, integration is done based on the scheme was pre-

sented in Section 5. Subsequently, the below condition is verified:

ks0TRnþ1k � 2GkDepk (97)

If the last condition is fulfilled, the updated material state is

acceptable and is located on the smooth portion. Otherwise, the

trial stress is positioned inside the complementary cone, and the

updated stress point must be at the apex of the cone. Also, other

constitutive variables can be determined by Eqs. (95) and (96). This

algorithm is typically used for integrating the Drucker-Prager’s

constitutive equations (see, for example, References: de Souza Neto

et al., 2008; Rezaiee-Pajand et al., 2011).

7. Numerical tests

In order to investigate the accuracy and efficiency of the new

integration formulation, a broad set of numerical tests is provided

in this section. The assessments are classified in three categories. In

the first one, two strain load histories are adopted and the relative

error of the stress and back stress output are computed by the new

scheme. The robustness of the suggested method is verified by

plotting the iso-error maps in the second categories. To show the

Fig. 3. Choosing the appropriate integration.

Fig. 4. Strain load history 1.
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efficiency and performance of the proposed integration technique,

computation time for the new strategy, the forward Euler and the

backward Euler methods will be tested and compared. In all

numerical examples, the general material properties are adopted as

follows (Lei and Lissenden, 2007):

E ¼ 1:02� 105 MPa; n ¼ 0:325; sy0 ¼ 156 MPa; b ¼ 0:055

Moreover, the mechanical properties for the hardening rules are

given below:

Hkin ¼ 24600 MPa; Hnl ¼ 118; Hiso ¼ 500 MPa2

Since the suggested integration is based on the definitions of the

angles between the quantities, this technique is called Angles’

method. To make the text self-sufficient, the backward and forward

Euler integrations will be briefly presented in Appendices A and B,

respectively.

7.1. Strain load histories

Two biaxial non-proportional strain load histories are adopted.

In these histories, the strain components are varied proportionally

to εy0 ¼
ffiffiffi

3
p

ðsy;0=EÞ while all the other strain components are

equal to zero. The strain load history 1 and 2 are given in Figs. 4 and

5, respectively. The strain paths have considered linear to eliminate

the discretization errors. First, to verify the correctness of the new

integration results, i.e. the Angles’ method, the updated stress

history associated with the strain history 1 is computed by the

backward Euler scheme with a fine time step ðDt ¼ 10�5 secÞ as
a ‘reference solution’ because of lacking the exact solution of the

investigated problem. Afterward, using the Angles’ integration

along with the DP54 and the BSh32 (Angles-DP54 and Angles-

BSh32), the stress histories are updated with Dt ¼ 0:1 sec and

Tol ¼ 10�4. The histories of two updated stress components s11
and s12 obtained by the new method, and the ‘reference’ one are

plotted in Figs. 6 and 7.

In the next stage, it is intended to assess the accuracy of the new

scheme pertaining to the specified error tolerance, Tol. To fulfill this

aim, three error tolerances Tol ¼ 10�2, 10�3 and 10�4 are

considered, and the updated stress is achieved by the Angles’

approach and using the BSh32 (Angles-BSh32). To present the

Fig. 5. Strain load history 2.

Fig. 6. The history of updated stress component s11 for strain history 1.

Fig. 7. The history of updated stress component s12 for strain history 1.

Fig. 8. Stress and back stress relative errors for history 1 by Angles-BSh32 and

Tol ¼ 10�2.
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solution results, the stress and back stress relative errors are

calculated by the following equations:

Esn ¼ ksn � s
E
nk

ksE
nk

(98)

Ean ¼ kan � aEnk
kaEnk

(99)

Where, sn and an denote stress and back stress, respectively,

computed by the Angles-BSh32 at the time tn. Also, sE
n and aEn are

the stress and back stress, which are updated by the Angles-DP54

with a time step Dt ¼ 0:1 sec and a stringent error tolerance of

Tol ¼ 10�10. These are assumed as the ‘exact solutions’.

Figs. 8 and 9 show the relative error of the stress and back stress

with Tol ¼ 10�2 for strain histories 1 and 2, respectively. Further-

more, the relative errors of stresses for two specified error toler-

ances of 10�3 and 10�4 are presented in Figs. 10 to 13. As it can be

seen in these figures, the errors of the computed stresses are

around the specified tolerance error, Tol, because the errors are not

directly controlled for the stress, s, and back stress, a, in the Angles’

method. In fact, the integration process is performed based on the

scalar parameters fR; a; j; f; pg, and the errors are calculated

based on these parameters in computation of the stress updating.

Therefore, the errorsmight be slightlymore than the specified error

tolerance.

7.2. Iso-error maps

It is desired to examine the accuracy and robustness of the new

formulation based on the size of the load step and an error toler-

ance. Therefore, the iso-error maps are utilized as a strong tool for

this purpose. The iso-error maps have been successfully used by

Krieg and Krieg (1977), Ortiz and Popov (1985), Ortiz and Simo

(1896), Loret and Prevost (1986), Genna and Pandolfi (1994),

Simo and Hughes (1998), Artioli et al. (2006, 2007), de Souza

Neto et al. (2008), Rezaiee-Pajand and Nasirai (2008) and Wallin

and Ristinmaa (2008).

Fig. 9. Stress and back stress relative errors for history 2 by Angles-BSh32 and

Tol ¼ 10�2.

Fig. 10. Stress and back stress relative errors for history 1 by Angles-BSh32 and

Tol ¼ 10�3.

Fig. 11. Stress and back stress relative errors for history 2 by Angles-BSh32 and

Tol ¼ 10�3.

Fig. 12. Stress and back stress relative errors for history 1 by Angles-BSh32 and

Tol ¼ 10�4.
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In order to calculate error contours, it is assumed that the stress

state at the time tn is on the yield surface. Then, an arbitrary

increment for the deviatoric strain De will be chosen to have the

principal directions identical to s0n. To determine a strain increment

Dε, the volumetric part of the strain must be specified. Therefore,

the following parameter is used:

V ¼ Dεv
ffiffiffi

2
p

kDek
(100)

In this relation, V is a scalar parameter to characterize the ratio

of the volumetric strain increment and the deviatoric strain

increment in the load step. Now, a reference system of ðn̂; t̂Þ is

assumed as an orthogonal basis for the deviatoric plane in principal

stress space. In this system, n̂ is defined as the unit outward normal

to the yield surface at s0n, i.e. n̂ ¼ s0n=Rn. Subsequently, a range of

the deviatoric strain increment can be produced by the parameters:

N ¼
ffiffiffi

2
p

rcos ðjnÞ
T ¼

ffiffiffi

2
p

rsin ðjnÞ
(101)

Where,

r ¼ 2GkDek
Rn

(102)

In fact, both the direction and the amplitude pertaining to

a deviatoric loading increment can be easily obtained by using

these projections, N and T . The definitions of the parameters N and

T are shown in Fig. 14. Finally, a unique strain increment Dε is

characterized by selecting values for V, N and T . To investigate the

accuracy of the new integration, two different values V ¼ 0 and 1

are considered and the subsequent domains of N and T for them are

considered (see references: Loret and Prevost,1986; Rezaiee-Pajand

and Nasirai, 2008):

0 � N � 5; 0 � T � 5 for V ¼ 0
�5 � N � 5; 0 � T � 5 for V ¼ 1

It should be noted that the trial stress, i.e. 2GDe, lies on the

deviatoric plane for V ¼ 0 and the interval of jn must be ½0; p=2�
to guarantee staying in plastic phase. Therefore, the parameter N

has no negative value. However, in the case of V ¼ 1 the interval

for jn is assumed to be ½0; p�, i.e. N can have both positive and

negative values.

Fig. 13. Stress and back stress relative errors for history 2 by Angles-BSh32 and

Tol ¼ 10�4.

Fig. 14. Definition of the parameters T, N.

Fig. 15. Stress iso-error maps for V ¼ 0.

Fig. 16. Back stress iso-error maps for V ¼ 0.
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Finally, the material state is updated by using the Angles-BSh32

with an error tolerance Tol ¼ 1%. In addition, the stresses updated

by the Angles-DP54 with Tol ¼ 10�10 are assumed as the exact

solutions. The error of updated stress and back stress are computed

based on Eqs. (98) and (99). Figs. 15 and 16 show the iso-error maps

for the stress and back stress in the case of V ¼ 0, respectively. As it

is shown, the maximum error obtained for stress and back stress

are Esmax ¼ 0:87% and Eamax ¼ 0:62%, respectively, which are less

than the specified error tolerance, Tol ¼ 1%. In the case of V ¼ 1,

the error contours are presented for updated stress and back stress

in Figs. 17 and 18, respectively. The maximum values of stress error

and back stress error are Esmax ¼ 0:22% and Eamax ¼ 0:31%. There-

fore, for V ¼ 1, the maximum errors have lower values than

Tol ¼ 1%. As a result, all diagrams illustrate the robustness and

accuracy of the new integration scheme.

7.3. Computation time

In this section, the efficiency and performance of the suggested

integration method are tested. For this propose, computation times

for the Angles-BSh32, the forward Euler and backward Euler

integrations are recorded and compared. Here, it is assumed that

the stress state at the time tn lies on the yield surface, as it was

explained in Section 7.2. A magnitude of deviatoric loading incre-

ment kDek ¼ 1% and V ¼ 1 are adopted. Then, the stress state is

updated with each value for jn from 0 to 180+ as follows:

jn ¼ 0; 0:02+; 0:04+;.; 180+

In fact, the stress updating of 9001 strain histories are computed

with the different number of sub-steps of the strain increment to

obtain the different values of errors and CPU times for each case. As

a result, it is possible to compare the efficiency of the new inte-

gration scheme and Euler’s integrations for a wide range of the

strain steps. For each history, the total error of the updated stress is

calculated by:

ETotal ¼
X

9001

i¼1

ksnþ1;i � s
E
nþ1;ik

ksE
nþ1;i

k
� 100% (103)

Where, sE
nþ1 represents the updated stress computed by Angles-

DP54 with Tol ¼ 10�10. Also, snþ1 is the stress tensor at the time

tnþ1, which is obtained with a different number of steps by the

Fig. 17. Stress iso-error maps for V ¼ 1.

Fig. 18. Back stress iso-error maps for V ¼ 1.
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Angles-BSh32 method and the Euler’s integrations. Fig. 19 shows

the results of the computation time on a normal CPU for the Angles-

BSh32, the forward Euler and backward Euler integrations versus

the total error in percent. For presenting more clearly the results,

the average numbers of Newton iterations per time step are given

in the diagram. Also, for computing the discrete plastic multiplier, l,

an error tolerance of 10�12 was used. Based on these findings, the

suggested integration presents the shortest CPU time, and runs for

the total error ETotal ¼ 450%, about 4 and 9 times faster than the

forward and backward Euler, respectively. In the case of high

accuracy, the new scheme is very faster than the Euler’s integration

strategies. In other words, the efficiency of the suggested integra-

tion is not at all comparable in the high accuracies. It should be

noted that reducing the constitutive equations to a few ordinary

differential equations (Angles’ method) and using the Bogacki-

Shampine method 3(2) (BSh32) are the main reasons for obtain-

ing to this high efficiency.

An additional investigation on the efficiency and performance of

the new scheme in order to clarify better is carried out. A biaxial

non-proportional deviatoric strain history is considered. Other

strain components are assumed to be equal to zero. This strain

history is shown in Fig. 20. Moreover, the following relation defines

the volumetric strain as:

εvðtÞ ¼ 0:001 t (104)

It is desired to compare the computation time for updated

stresses associated with this strain history by all mentioned

schemes. In order to give an assessable CPU time, the strain history

is repeated 200 times with a total time 1400 (sec). Furthermore, to

easily evaluate the performances of all algorithms, the total error

(sum of the every 0.1 (sec) stress relative errors over the total time)

for all schemes are kept the same. As pervious numerical tests, the

stresses computed by the Angles-DP54 with Tol ¼ 10�10 are

considered the exact solutions. The findings are shown in Table 1.

As it can be seen, the backward Euler scheme has presented the

lowest performance due to its inherently iterative loops. In fact, the

average number of Newton iterations per time step for backward

Euler is 3.91, while the other methods do not require any iteration

loops due to their explicit nature. Although the forward Euler

method requires less time than the backward Euler, its CPU time is

very longer than the CPU time related to the Angles-BSh32. In the

other words, the new scheme is run very faster and more efficient

than the forward Euler, which known as a rapid integration.

8. Conclusions

A new consistent integration formulation has been developed

for the Drucker-Prager’s plasticity models with Armstrong-Fred-

erick’s kinematic and linear isotropic hardenings. The suggested

technique, i.e. Angles’ method, is derived based on the definitions

of angles between constitutive quantities. This approach reduced

the constitutive equations to five ordinary differential equations

that could be solved by an ODE integration procedure. The third-

order Bogacki-Shampine method 3(2) (BSh32) is used for

medium accuracy. Moreover, the fifth-order Dormand-Prince

method 5(4) (DP54) is utilized for high accuracy. These ODE solvers

have the FSAL property. Also, they can estimate the local error to

Fig. 19. Efficiency of the different stress updating algorithms in a logarithmic space.

Fig. 20. Deviatoric strain history.

Table 1

Performances of the algorithms.

Algorithm Max. successful

sub-steps

Total successful

sub-steps

Total

error

CPU time (sec)

Angles-BSh32 4 57,238 49.3 15.1

Forward Euler 1 1,120,000 49.9 130.6

Backward Euler 1 448,000 46.8 224.1
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implement adaptive step size. As a result, a powerful integration

with automatic error control was formulated. This strategy uses

Angles’ method along with the BSh32 or DP54 to update the

constitutive equations. To show the accuracy and efficiency of the

new scheme, a wide range of the numerical tests was presented

including strain load histories, iso-error maps, and computation

time. The explicit forward and implicit backward Euler integrations

were also used to compare the efficiency and performance of the

suggestedmethod. These numerical studies showed the robustness

and high efficiency of the new integration process. The effective-

ness of the proposed approach is a result of the reduced constitu-

tive equations and using an ODE integration technique along with

error control and FSAL property.

Appendix A. Backward Euler integration

The backward Euler integration for the Drucker-Prager’s plas-

ticity model obeying the Armstrong-Frederick kinematic hardening

is briefly provided. Following standard methodology, the strain rate
_ε is kept constant during each load step. Therefore, a strain incre-

ment Dε ¼ Dt _ε ¼ εnþ1 � εn over the time interval from tn to tnþ1 is

considered. The material state at the time tn is known, and it is

characterized by the constitutive quantitiesfεn; εpn;sn; ang. In order

to integrate the constitutive equations by backward Euler scheme,

an elastic predictor and a plastic corrector are used. First, the elastic

predictor is assumed to be a trial solution, the same as relations

have been presented in Eq. (73). Then, if the condition given in Eq.

(74) is fulfilled, the trial solution is acceptable. Otherwise, a plastic

corrector is needed. Now, using the return mapping algorithm, the

following equations can give the deviatoric and volumetric parts of

the shifted stress at the time tnþ1:

s0nþ1 ¼ 1

q1

�

s0TRnþ1 þ
lHnl

1þ lHnl
an

�

p0nþa ¼ 1

q2

"

p0TRnþ1 þ
lHnl

1þ lHnl
pn þ

 

2

3

l2bHnlHkin

1þ lHnl
� 2lbK

!

�
�

sy;n þ lHiso

�

#

(A.1)

Where, the scalars q1 and q2 are given by:

q1 ¼ 1þ 2Gl� l2HnlHkin

1þ lHnl

q2 ¼ 1� lKb
2 þ 2

3

l2b2HnlHkin

1þ lHnl

(A.2)

The discrete plastic multiplier l is calculated by employing the

yield criterion, i.e. Eq. (1), for the material state at the time tnþ1 as:

F
�

s0nþ1; p
0
nþ1; sy;nþ1

�

¼ FðlÞ ¼ 0 (A.3)

Where,

sy;nþ1 ¼ sy;n þ lHiso (A.4)

Eq (A.3) leads to a nonlinear equation that must be solved by

using a numerical technique. Implementing a perturbationmethod,

such as the NewtoneRaphson iteration procedure, leads the next

formula:

ljþ1 ¼ lj �
F
	

lj



F 0
	

lj

 (A.5)

Where, the superscript j denotes the jth iteration, and F 0 refers to

the first derivative of FðlÞ with respect to l. The iterations can be

begunwith l0 ¼ 0 as an initial value. After converging the value of

l on a positive root, the components of the shifted stress are

updated by using Eq (A.1) and (A.2). Moreover, the back stress at the

end of the load step can be given by the following equations:

anþ1 ¼ 1

1þ lHnl
an þ

lHkin

1þ lHnl
s0nþ1

pnþ1 ¼ 1

1þ lHnl
pn þ

2

3

lbHkin

1þ lHnl

�

sy;nþ1 � bp0nþ1

�

(A.6)

Appendix B. Forward Euler integration

To integrate the constitutive equations by explicit forward Euler

scheme, the constant strain rate assumption is used. At the time tn
the constitutive quantities and the strain increment are known.

First, an elastic trial solution is calculated by a relation similar to Eq.

(73). Then, if the condition (74) is satisfied, the trial estimation

could be admissible. If not, the load step should be divided into the

elastic and plastic parts by a scalar parameteron a that has been

introduced in Section 5. By using the parameter a, the deviatoric

and volumetric components of the shifted stress can be determined

at the contact point with the yield surface (at the time tnþa) by Eq.

(77). In the next stage, the discrete plastic multiplier l is needed to

achieve the constitutive quantities at the time tnþ1. Using Eq. (26)

and an explicit assumption, the parameter l can be calculated as:

l ¼ _gð1� aÞDt

¼
ð1� aÞ

	

2Gs0nþa : Deþ
ffiffiffi

2
p

bKDεvRnþa




2
	

Gþ Kb
2



R2nþa þ
ffiffiffi

2
p

ðHiso � bHnlpnÞRnþa � Hnls
0
nþa : an

(B.1)

Where,

Rnþa ¼
ffiffiffi

2
p
�

sy;n � bp0nþa

�

(B.2)

Finally, the constitutive quantities can be updated by the

following equations:

s0nþ1 ¼ s0nþa þ 2Gð1� aÞDe� 2Gls0nþa þ lHnlan

anþ1 ¼ anþa þ lHkins
0
nþa � lHnlan

p0nþ1 ¼ p0nþa þ Kð1� aÞDεv �
ffiffiffi

2
p

bKlRnþa þ lHnlpn

pnþ1 ¼ pn þ
ffiffiffi

2
p

3
lbHkinRnþa � lHnlpn

sy;nþ1 ¼ sy;n þ lHiso

(B.3)

Since the forward Euler integration is not consistent with the

yield condition, the stress state at the end of the load step may be

not located on the yield surface. Therefore, a corrector tensor

should be added to the deviatoric shifted stress, s0nþ1, in the normal

direction to the yield surface in the deviatoric plane, i.e.

nnþ1 ¼ s0nþ1=ks0nþ1k. The factor of the corrector can be calculated

from below relationship:

af ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðnnþ1 : s0nþ1Þ
2�ks0nþ1k

2 þ R2nþ1

q

� nnþ1 : s0nþ1 (B.4)
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