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Abstract: The biochemical recurrence (BCR) of patients with prostate cancer (PCa) after radical
prostatectomy is high, and mitochondrial respiration is reported to be associated with the metabolism
in PCa development. This study aimed to establish a mitochondrial respiratory gene-based risk model
to predict the BCR of PCa. RNA sequencing data of PCa were downloaded from The Cancer Genome
Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, and mitochondrial respiratory-
related genes (MRGs) were sourced via GeneCards. The differentially expressed mitochondrial
respiratory and BCR-related genes (DE-MR-BCRGs) were acquired through overlapping BCR-related
differentially expressed genes (BCR-DEGs) and differentially expressed MRGs (DE-MRGs) between
PCa samples and controls. Further, univariate Cox, least absolute shrinkage and selection operator
(LASSO), and multivariate Cox analyses were performed to construct a DE-MRGs-based risk model.
Then, a nomogram was established by analyzing the independent prognostic factor of five clinical
features and risk scores. Moreover, Gene Set Enrichment Analysis (GSEA), tumor microenvironment,
and drug susceptibility analyses were employed between high- and low-risk groups of PCa patients
with BCR. Finally, qRT-PCR was utilized to validate the expression of prognostic genes. We identified
11 DE-MR-BCRGs by overlapping 132 DE-MRGs and 13 BCR-DEGs and constructed a risk model
consisting of 4 genes (APOE, DNAH8, EME2, and KIF5A). Furthermore, we established an accurate
nomogram, including a risk score and a Gleason score, for the BCR prediction of PCa patients. The
GSEA result suggested the risk model was related to the PPAR signaling pathway, the cholesterol
catabolic process, the organic hydroxy compound biosynthetic process, the small molecule catabolic
process, and the steroid catabolic process. Simultaneously, we found six immune cell types relevant to
the risk model: resting memory CD4+ T cells, monocytes, resting mast cells, activated memory CD4+
T cells, regulatory T cells (Tregs), and macrophages M2. Moreover, the risk model could affect the
IC50 of 12 cancer drugs, including Lapatinib, Bicalutamide, and Embelin. Finally, qRT-PCR showed
that APOE, EME2, and DNAH8 were highly expressed in PCa, while KIF5A was downregulated in
PCa. Collectively, a mitochondrial respiratory gene-based nomogram including four genes and one
clinical feature was established for BCR prediction in patients with PCa, which could provide novel
strategies for further studies.
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1. Introduction

Prostate cancer (PCa) is the most commonly diagnosed malignant tumor of the male
genitourinary system, ranking second and fifth in morbidity and mortality worldwide [1].
According to GLOBOCAN 2020, an estimated 191,930 new patients with PCa were di-
agnosed globally [2]. Radical prostatectomy (RP) and radical radiotherapy (RT) are the
recommended curative treatments for clinically organ-confined PCa, and technological
advances have improved the efficacy of both RP and RT. However, approximately 20–60%
of patients who receive radical treatment encounter biochemical recurrence (BCR) within
10 years [3]. Biochemical recurrence is when prostate-specific antigen (PSA) levels rise after
the treatment of PCa, with certain PSA not reaching a consistent level. Routinely, we define
PSA > 0.2 ng/mL after radical surgery or PSA > 2 ng/mL higher than the post-radiation
PSA nadir as BCR [4,5]. It is reported that 24–34% of PCa patients with BCR exhibit distant
metastasis [6]. Once the patients demonstrate signs of BCR, the treatment becomes very
tricky. Antonarakis et al. reported that the median time for metastasis-free survival of
patients with BCR was 10 years [7]. Studies have shown that clinicopathological factors,
such as clinical staging, PSA, Gleason score, and surgical margin, cannot accurately predict
BCR [8]. Therefore, it is urgent to seek new and more accurate BCR predictive markers and
explore the pathogenesis of PCa.

Mitochondria are the core site of cellular energy production in the form of adenosine
triphosphate (ATP) through oxidative phosphorylation (OXPHOS) of glucose [9]. Recent
studies have shown that targeting the energy metabolism of cancer cells might be a new
and promising area for selective tumor treatment [10]. Emerging evidence suggests that
mitochondria are involved in fatty acid metabolism, reactive oxygen species (ROS) pro-
duction, and cell apoptosis, which can change cancer cell progression and survival [11,12].
In 1956, Warburg first observed a close relationship between mitochondrial respiratory
defects, aerobic glycolysis, and cancer [13]. A recent study has verified that impairment of
mitochondrial respiration can inhibit the migration and invasion of breast cancer, mouse
melanoma, and PCa cells [14]. Among patients with colorectal cancer, a high mitochondrial
respiration level in the tumor samples has been associated with poor survival [10]. Roy
et al. showed that the mitochondrial respiration profile might serve as a biomarker for
the identification of leukemic cells [15]. Mitochondrial DNA (mtDNA) encodes essential
subunits of the mitochondrial respiratory chain that act as energy sources and facilitate
tumor proliferation and invasion. Kalsbeek et al. used next-generation sequencing to
examine mitochondrial genomes from PCa tissue biopsies, which showed a positive corre-
lation of the total burden of acquired mtDNA variants with the elevated Gleason score at
diagnosis and BCR [9]. Furthermore, it was found that mitochondrial damage and genome
change were related to tumor growth, metastasis, and BCR [16]. Although studies have
established that mitochondrial respiration plays a critical role in tumor development and
the anti-tumor process, the relationship between mitochondrial respiration and BCR in PCa
is still unclear.

In our present study, we constructed a risk signature based on four mitochondrial
respiration-related genes (MRGs) using The Cancer Genome Atlas (TCGA) sequencing
data of PCa, and the GSE116918 dataset was used to verify the stability of this model.
Furthermore, the correlation of MRGs with clinical features and the tumor immune mi-
croenvironment was analyzed. Finally, a nomogram was constructed based on four MRGs
and clinicopathological factors which demonstrated good performance for predicting
prognosis in patients with PCa.

2. Materials and Methods
2.1. Data Sources

The expression profile and clinical information of 499 PCa samples and 52 controls
were obtained from The Cancer Genome Atlas Prostate Adenocarcinoma (TCGA-PRAD) via
the University of California Santa Cruz Xena (UCSC Xena) database (https://xenabrowser.
net/, accessed on 22 June 2022). Of the 499 PCa samples, 435 had BCR information (342

https://xenabrowser.net/
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non-BCR samples and 93 BCR samples), of which 400 were accompanied by a specific BCR
time, and 315 of the 400 PCa samples had survival information. The external validation
dataset, GSE116918, which included 248 localized/locally advanced patients with PCa
commencing radical radiotherapy (with ADT) (192 non-BCR samples and 56 BCR samples),
was downloaded from the GEO database (https://www.ncbi.nlm.nih.gov/geo/, accessed
on 22 June 2022). Additionally, 785 MRGs were sourced via GeneCards (https://www.
genecards.org/, accessed on 24 June 2022). The clinical characteristics of patients with PCa
in the TCGA-PRAD cohort and GSE116918 dataset are shown in Supplementary Table S1.
The GSE70768 dataset (consisting of 113 PCa and 73 normal samples) and the GSE55945
dataset (consisting of 13 PCa and 8 normal samples) were applied to validate the expression
of the model genes.

2.2. Identification of Differentially Expressed Mitochondrial Respiratory BCR-Related Genes
(DE-MR-BCRGs) and Enrichment Analysis

Initially, overlapping genes of 785 MRGs with 499 PCa samples and 52 controls from
TCGA-PRAD were selected. Then, differential analysis was performed on the overlapped
genes to identify differentially expressed MRGs (DE-MRGs) between PCa samples and
controls with the thresholds of p < 0.05 and |log (FC)| > 0.5 by Limma (version 3.44.3) [17].
Simultaneously, the same differential analysis was applied to screen BCR-related differ-
entially expressed genes (BCR-DEGs) between 342 non-BCR and 93 BCR samples from
TCGA-PRAD. Subsequently, DE-MRGs were overlapped with BCR-DEGs through jvenn
(http://jvenn.toulouse.inra.fr/app/example.htm, accessed on 8 July 2022), and the inter-
sected genes were considered as DE-MR-BCRGs. The clusterProfiler (version 3.8.1) [18]
was used to perform functional annotation and pathway enrichment analyses, including
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analysis, for DE-MR-BCRGs. A p-value < 0.05 was considered statistically significant.

2.3. Construction and Validation of the BCR-Based Prognostic Risk Score Model

Univariate Cox regression analysis was initially employed on the DE-MR-BCRGs;
genes with a p-value of < 0.05 were further screened by least absolute shrinkage and
selection operator (LASSO) regression. LASSO was performed by glmnet (version 4.1-1),
with the set of family = Cox and nfold = 20. The genes screened by LASSO when λ was
minimum were optimized stepwise to build a multivariate Cox BCR-based prognostic risk
score model, and the genes in the model were deemed as model genes.

The prognostic risk score model was constructed with the formula: risk score =

∑n
n=1 coe fi ∗ xi. The prognostic performance of the risk score model was evaluated by

time-dependent receiver operating characteristic (ROC) curve analysis within 1, 3, and 5
years with “survivalROC” (version 1.16.1) [19]. Next, prognostic risk scores were generated
for the 400 PCa samples with a specific BCR time in TCGA-PARD. The 400 PCa samples
were divided into high-risk and low-risk groups according to the median value of their risk
score. Then, a Kaplan–Meier (K–M) survival curve was constructed for each risk group to
compare their survival differences using the surv_cutpoint function. Moreover, a risk curve
and a scatter plot of the risk groups, and a heatmap of model genes in each risk group were
generated. Additionally, the same evaluation procedures were employed in the external
validation set (GSE116918) to further verify the applicability of the risk model.

2.4. Establishment of Nomogram

In order to explore the correlation between clinicopathological features and risk score
grouping, the data for PSA (≥10, <10), race (white, others), Gleason score (≥7, <7), age
(≥60, <60), and clinical stage (≥T3, <T3) were extracted from the 400 patients with PCa
in TCGA-PARD and the correlations with risk score grouping were determined using
Pearson correlation. Similarly, the correlation between clinicopathological features and
risk score grouping was also analyzed in the training set (GSE116918). However, since
there was no information on the race of the patients, only the PSA, Gleason score, age,
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and clinical stage of the 248 PCa samples were correlated and analyzed with risk score
grouping. Next, the correlation between the risk scores and the five clinicopathological
features was analyzed; the clinicopathological features with statistical significance (p <
0.05) and risk score of the 315 PCa samples with survival information in TCGA-PARD
were introduced into univariate and multivariate Cox proportional hazards regression
analyses. The results with p < 0.05 in both Cox analyses were considered independent
prognostic factors to construct an independent prognostic model. Furthermore, the model
was evaluated and validated by plotting its ROC curves of the training and validation sets,
respectively. In addition, the independent prognostic model was visualized through rms
(version 6.2-0) [20] into a nomogram, and its prognostic performance was evaluated by
Harrell’s concordance index (C-index) and the slopes of its calibration curves.

2.5. Correlations between Risk Score and Enriched Pathways and Terms

The ssGSEA algorithm scored the functional enrichment results to investigate the
molecular mechanisms of model genes. Subsequently, to detect the pathways significantly
associated with risk scores, the correlation between each ssGSEA and the risk scores was
computed using the Pearson algorithm.

2.6. Tumor Microenvironment (TME) Analyses

To detect the differences between the infiltration of the two risk groups, CIBERSORT
was applied to calculate the proportion of various immune cell types from the LM22 gene
set in each sample from both risk groups. The proportion of each immune cell was further
compared between high- and low-risk groups. Moreover, Pearson correlation analysis was
used to analyze the correlations between 22 immune cells, model genes, and independent
prognostic factors.

2.7. Susceptibility Analysis of Immune and Chemotherapeutic Drugs

The Tumor Immune Dysfunction and Exclusion (TIDE) score of each risk group was
calculated. A higher TIDE score indicates that tumor cells are more likely to induce
immune escape, thus revealing a lower response rate to ICI therapy. The rank-sum test
was employed to calculate the difference in TIDE score between the low-risk and high-risk
groups in the training set. Pearson analysis was used to analyze the correlation between
risk and TIDE scores. Finally, a ridge regression model was constructed to predict the
IC50 of the 138 cancer drugs in pRRophetic by the pRRophetic algorithm (version 0.5) [21],
according to cell line expression profiles in GDSC and gene expression profiles in TCGA.
In the training set, the Spearman correlation analysis was used to evaluate the association
between risk score and drug IC50. The IC50 of drugs that satisfied |correlation coefficient|
> 0.3 and p < 0.005 were visualized.

2.8. Expressions Validation of Model Genes

A qRT-PCR assay was used to validate the accuracy of the expression results of model
genes on 12 culture bottles with a density of 70–90%, containing 3 independent cultures
each of RWPE-1 (normal human epithelial prostate cells), PC-3, LNcap, and DU145 (PCa
cells). Total RNA for the qRT-PCR was extracted using TRIZol (Thermo Fisher, Shanghai,
China), mRNA was reverse transcribed into cDNA, and qPCR reactions were performed
using the SureScript-First-strand-cDNA-synthesis-kit (Servicebio, Wuhan, China) following
the manufacturer’s protocol. The qRT-PCR reaction consisted of 3 µL of cDNA, 5 µL of
2xUniversal Blue SYBR Green qPCR Master Mix (Servicebio, Wuhan, China), and 1 µL
each of forward and reverse primers. PCR was performed in a BIO-RAD CFX96 Touch TM
PCR detection system (Bio-Rad Laboratories, Inc., Hercules, CA, USA) under the following
thermal cycling conditions: 40 cycles at 95 ◦C for 60 s, 95 ◦C for 20 s, 55◦C for 20 s, and 72 ◦C
for 30 s with specific PCR primers shown in Supplementary Table S2. With GAPDH as the
internal control, the 2−44Ct method was used to compute gene expressions. GraphPad
Prism 5 was used to plot and calculate the statistical significance.
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2.9. Statistical Analysis

All statistical analyses based on public datasets in this study were performed in R
(Version 4.2.0), while the experimental data were analyzed in GraphPad Prism 5. Package
ggplot2 was used to plot box plot and Vacano plot, and package Pheatmap was applied to
plot heat map. The Wilcox test and Student’s t-test were performed to analyze two groups.
A log-rank test was conducted to compare the OS differences between two risk groups.

3. Results
3.1. Identification and Enrichment Analysis of DE-MR-BCRGs

We identified 132 DE-MRGs (43 upregulated, 89 downregulated) and 13 BCR-DEGs
(10 upregulated, 3 down-regulated) through differential analysis (Supplementary Table S3
and Supplementary Figure S1). Subsequently, we obtained 11 DE-MR-BCRGs by overlap
analysis, which included APOE, CDK1, CPT1B, CXCL8, CYP27A1, DNAH8, EME2, FOXH1,
KIF5A, MTFR2, and PAH (Figure 1A). The DE-MR-BCRGs were enriched in 8 GO terms and
11 KEGG pathways based on the selection threshold of p < 0.05. For instance, these genes
were primarily involved in five biological processes such as the cholesterol catabolic process,
the sterol catabolic process, the small molecule catabolic process, the steroid catabolic
process, and the organic hydroxy compound biosynthetic process, and three molecular
functions, including microtubule motor activity, monooxygenase activity, and cytoskeletal
motor activity (Figure 1B). The dot chart represents the top 10 enriched pathways in terms
of the KEGG pathways, which mainly included cholesterol metabolism, signaling pathway,
alcoholic liver disease, Salmonella infection, and cellular senescence (Figure 1C).
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Figure 1. Identification and enrichment analysis of the DE-MR-BCRGs. (A) Venn Diagrams of
DE-MRGs and BCR-DEGs. (B) GO enrichment analysis. (C) KEGG enrichment analysis.

3.2. A BCR-Based Prognostic Risk Score Model of 4 Genes Was Constructed

The univariate Cox regression analysis led to the selection of nine DE-MR-BCRGs for
LASSO analysis (Table 1). For the accuracy of the model, lambda.min (0.01027) was selected
as λ for model construction, and eight genes were screened out, including APOE, CDK1,
CPT1B, CYP27A1, DNAH8, EME2, FOXH1, KIF5A, and MTFR2 (Figure 2A). Finally, four
model genes were selected through multivariate Cox analysis: APOE, DNAH8, EME2, and
KIF5A (Figure 2B). Subsequently, to evaluate the prognostic value of the risk model, the
expression levels of the four model genes were obtained in the TCGA dataset, and the risk
score = APOE expression× 0.294748712013631 + DNAH8 expression× 0.0715331616294412
+ EME2 expression × 0.48193526167778 + KIF5A expression × 0.158063686901454. From
the ROC curves of the model, we found that the AUCs of all time periods were greater than
0.7, indicating the effectiveness of the prognostic risk score model (Figure 2C). Furthermore,
400 PCa samples were divided into high-risk (117 samples) and low-risk groups (283
samples), according to the median value of the risk scores. The K–M curves of the risk
groups revealed that the survival probability of the low-risk group was significantly higher
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(Figure 2D). When plotting the risk curve, we noticed that the extreme value of the risk
score was large (26.83), so all the risk scores exceeding the value of 10 were depicted as a
risk score of 10. Moreover, the risk curves illustrated that the high-risk group had a higher
risk score than the low-risk group, and samples in the high-risk group tended to be BRC
samples (Figure 2E). Furthermore, the heatmap also showed that the model genes were
upregulated in the high-risk group (Figure 2F).
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Figure 2. Evaluation of the risk model with risk score in the TCGA dataset. (A) LASSO regression
analysis. (B) Multivariate Cox analysis of model genes. * p < 0.05, *** p < 0.001. (C) ROC analysis of
the prognostic risk score model. (D) K–M analysis of the prognostic risk score model. (E) Scatter plot
for BCR and distribution of risk score in the TCGA dataset. (F) Heatmap of model genes expression
in the TCGA dataset.

As the number of BCR samples within 1 and 2 years in the GSE116918 dataset was
very small (only 2 and 9 cases), accounting for 3.6% of the total sample, we generated
the ROC curves for 3 and 5 years with the external validation set. Moreover, the 248 PCa
samples were separated into high-risk (49 samples) and low-risk groups (199 samples).
Consistent with the training set, the validation results demonstrated an AUC of a 3-year
ROC curve greater than 0.6, indicating that the risk model could effectively predict the
prognosis model (Supplementary Figure S2).
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Table 1. Top 9 DE-MR-BCRGs by univariate Cox regression analysis.

Characteristics HR * HR.confint.lower HR.confint.upper p

APOE 1.56 1.27 1.91 0.000018
CDK1 1.52 1.23 1.88 0.000139767
CPT1B 1.89 1.48 2.41 0.000000381
CXCL8 0.91 0.78 1.06 0.226723867

CYP27A1 0.83 0.71 0.98 0.02487276
DNAH8 1.19 1.06 1.33 0.002902725

EME2 2.15 1.67 2.77 0.000000003
FOXH1 1.72 1.36 2.16 0.0000046
KIF5A 1.35 1.14 1.6 0.000651201
MTFR2 1.69 1.36 2.11 0.00000251

PAH 0.91 0.83 1.01 0.071111128
* HR—hazard ratio.

3.3. Construction of A Nomogram

Among the five clinicopathological features, we found that the risk score was signifi-
cantly correlated with the Gleason score and clinical stage in the training set. Meanwhile,
we found that only the Gleason score and risk score were significantly correlated in the
validation set (Tables 2 and 3). Moreover, the risk score comparison between subgroups
in clinicopathological features illustrated that the risk score was significantly higher in
samples with Gleason score ≥ 7, age ≥60, and clinical stage ≥ T3 (Figure 3A). In order to
obtain the independent prognostic factors of PCa patients with BCR, the Gleason score,
age, clinical stage, and risk score of 315 PCa samples in TCGA-PARD were introduced into
univariate and multivariate Cox analyses. The results demonstrated that the p-values of
the risk score and Gleason score were less than 0.05 in both Cox analyses. Therefore, the
risk score and Gleason score were used to establish the independent prognostic model
(Table 4, Figure 3B). The AUC of the ROC curves for the independent prognostic model
was 0.813, 0.827, and 0.789 at 1-, 3-, and 5-year time nodes in the training set (Figure 3C).
Moreover, the effectiveness of the independent prognostic model was higher than the risk
model at 3- and 5-year time nodes. The AUC of the 5-year ROC curve in the validation
set was found to be 0.53, revealing that the effectiveness also increased compared with
the risk curve (Figure 3D). Finally, a nomogram of the independent prognostic model was
constructed with C-index = 0.7295, indicating that the prediction of the nomogram was
accurate (Figure 3E). Compared to age (AUC = 0.555), the factors, such as the Gleason score
(AUC = 0.739) and PSA (AUC = 0.809), showed a striking prognostic predictive efficiency
for overall survival (OS) rates in the TCGA dataset (Supplementary Figure S3A). The risk
score (AUC = 0.808) showed an excellent prognostic predictive efficiency for OS rates in the
TCGA dataset (Supplementary Figure S3B). In addition, the slopes of the 1-, 3-, and 5-year
nomogram calibration curves were close to 1, which also meant that the nomogram could
effectively predict the prognosis of PCa patients with BCR (Figure 3F).
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Table 2. Correlations between Clinicopathologic Features and the Risk Score in the Training Set.

Risk Group

Clinical Feature Sample Number High Low p-Value

PSA 386 (96.5%)
≥10 10 (2.6%) 6 4

0.5216<10 376 (97.4%) 187 189
Race 387 (96.7%)

White 333 (86.0%) 164 169
0.7277Others 54 (24.0%) 28 26

Gleason Score 400 (100%)
≥7 361 (90.2%) 189 172

0.0041<7 39 (9.8%) 11 28
Age 400 (100%)
≥60 233 (58.2%) 126 107

0.054<60 167 (41.8%) 74 93
Clinical stage 327 (81.7%)
≥T3 39 (11.9%) 26 13

0.0279<T3 288 (88.1%) 138 150

Table 3. Correlations between Clinicopathologic Features and the Risk Score in the Validation Set.

Risk Group

Clinical Feature Sample Number High Low p-Value

PSA 248
≥10 198 (79.8%) 110 88

0.9549<10 50 (20.2%) 28 22
Gleason Score 248

≥7 206 (83.1%) 121 85
0.0299<7 42 (16.9%) 17 25

Age 248
≥60 219 (49.6%) 123 96

0.651<60 29 (50.4%) 15 14
Clinical stage 223
≥T3 96 (43.0%) 55 41

0.3648<T3 127 (57.0%) 65 62

Table 4. Results of independent prognostic univariate and multivariate Cox analyses.

Characteristics HR * HR.confint.lower HR.confint.upper p

Age 0.98 0.94 1.02 0.318994167
Gleason score 2.35 1.74 3.19 0.0000000299

T stage 1.92 0.93 3.98 0.079834582
APOE 1.43 1.12 1.82 0.004250533

DNAH8 1.28 1.14 1.45 0.0000718
EME2 2.4 1.8 3.21 0.00000000295
KIF5A 1.34 1.1 1.63 0.003934716

riskscore 1.27 1.2 1.34 0
* HR—hazard ratio.
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Figure 3. Correlation analysis between the risk model and clinicopathologic features. (A) Correlation
between risk score and clinicopathologic features. The abscissa represents clinicopathologic features,
and the ordinate represents the risk score. * p < 0.05; ** p < 0.01; ns, not significant. (B) Forest plots of
univariate and multivariate Cox analyses. *** p < 0.001. (C) The ROC analysis of the independent
prognostic model in the training set. (D) The ROC analysis of the independent prognostic model in
the validation set. (E) A nomogram of the independent prognostic model. (F) Calibration curves of
the nomogram.

3.4. Correlations between Risk Score and Enriched Pathways and Terms

The Pearson correlation analysis showed three significant correlations between KEGG
pathways and the risk model. The risk model was positively correlated with Alzheimer’s
disease but negatively correlated with the PPAR signaling pathway and primary bile acid
biosynthesis. Furthermore, we found four correlations of the GO terms with the risk model,
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all of which were negative, including the cholesterol catabolic process, the organic hydroxy
compound biosynthetic pathway, the small molecule catabolic process, and the steroid
catabolic process (Table 5). The results suggested that the four model genes (APOE, DNAH8,
EME2, and KIF5A) may influence the prognosis and progression of PCa by regulating these
signaling pathways.

Table 5. Correlations between the Functional Enrichment Results and the Risk Score.

Pathway Correlation Coefficient p-Value

KEGG adipocytokine signaling pathway 0.03029407 0.59219
KEGG alzheimers disease 0.13670246 0.01518

KEGG fatty acid metabolism 0.03029407 0.59219
KEGG ppar signaling pathway −0.349770798 0.00000000017

KEGG primary bile acid biosynthesis −0.384583119 0.00000000000152
GOBP cholesterol catabolic process −0.318018926 0.00000000782

GOBP organic hydroxy compound biosynthetic process −0.318018926 0.00000000782
GOBP small molecule catabolic process −0.278421254 0.000000513

GOBP steroid catabolic process −0.318018926 0.00000000782
GOMF cytoskeletal motor activity 0.087884393 0.11956
GOMF microtubule motor activity 0.087884393 0.11956

3.5. Comparison of TME between the Risk Groups

Analysis by CIBERSORT revealed that the proportion of six immune cell types was
significantly different between the two risk groups. For instance, the proportions of resting
memory CD4+T cells, monocytes, and resting mast cells were higher in the low-risk group.
In contrast, in the high-risk group, activated memory CD4+ T cells, regulatory T cells
(Tregs), and M2 macrophages were higher (Figure 4A,B). Furthermore, it can be observed
that among the four model genes, the Gleason score, and the risk score, the strongest
positive correlation existed between APOE and M2 macrophages, and the strongest negative
correlation was found between APOE and resting memory CD4+ T cells (Figure 4C). We also
generated the correlation scatter plots for these two correlations (Figure 4D). Subsequently,
violin plots comparing the expression between the two risk groups showed that APOE and
M2 macrophages were higher in the high-risk group, while the resting memory CD4+ T
cells showed the opposite trend (Figure 4E).

3.6. Susceptibility Analysis of Immune and Chemotherapeutic Drugs

We next compared the TIDE score between the two risk groups to detect the response
to ICI. The TIDE score was higher in the low-risk group and was negatively correlated
with the risk score (Figure 5A,B). Moreover, we found positive correlations between the
risk score of the training set and the IC50 of 12 drugs (Lapatinib, Bicalutamide, Embelin,
Erlotinib, Bexarotene, A.770041, Z.LLNle.CHO, FH535, Imatinib, Cyclopamine, AZD8055,
and MG.132), indicating that PCa patients with high risk scores could be more resistant
to the 12 administered chemotherapies (Figure 5C). Resistance to chemotherapy may be
due to the poor prognosis of PCa patients with high risk scores. Moreover, the IC50 of
JNK.Inhibitor.VIII and ABT.888 were negatively correlated with the risk scores, indicating
that they could benefit patients with high DE-MRGs-based risk scores (Figure 5C).
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Figure 4. Correlation between risk scores and immune cell infiltration. (A) The relative percentage of
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0.001; **** p < 0.0001; ns-not significant. (C) Correlation analysis of model genes and immune cells.
(D) Correlation scatter plots of model genes and immune cells. (E) Differences in model genes and
immune cells between the high- and low-risk groups.



J. Clin. Med. 2023, 12, 654 12 of 21J. Clin. Med. 2023, 12, x FOR PEER REVIEW 12 of 21 
 

 

 

Figure 5. Prediction for immune and chemotherapeutic drugs susceptibility. (A) Differences in the 

TIDE score between the high- and low-risk groups. (B) Correlation scatter plots of TIDE score and 

risk score. (C) Correlation analysis of the IC50 of 14 drugs and risk score. 

3.7. Validation of the Expression of Four Model Genes by GSE70768 and GSE55945 Datasets 

The expression levels of the four model genes were validated in the GSE70768 and 

GSE55945 datasets, and the results indicated that APOE, DNAH8, and EME2 were signif-

icantly lower expressed in PCa samples compared to normal samples, while the expres-

sion levels of KIF5A showed no significance between normal and PCa samples (Figure 6). 
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3.7. Validation of the Expression of Four Model Genes by GSE70768 and GSE55945 Datasets

The expression levels of the four model genes were validated in the GSE70768 and
GSE55945 datasets, and the results indicated that APOE, DNAH8, and EME2 were signifi-
cantly lower expressed in PCa samples compared to normal samples, while the expression
levels of KIF5A showed no significance between normal and PCa samples (Figure 6).
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3.8. Validating the Expression of the Four Model Genes by qRT-PCR

The expression validation of the four model genes was performed on normal human
prostate epithelial cells and PCa cells by qRT-PCR. We found a significantly higher ex-
pression of APOE and EME2 in PCa cell line groups compared with RWPE-1. Moreover,
DNAH8 expressed significantly higher in PC-3 and DU145 than in RWPE-1, while the
expression of DNAH8 was not detected in LNcap lines. However, the expression of KIF5A
was distinctly higher in the normal prostate epithelial cell group than in all 3 PCa tissue
sample groups, which was contrary to the TCGA result (Table 6, Figure 7). Therefore,
APOE, EME2, and DNAH8 could be considered reliable and precise model genes for PCa.

Table 6. qRT-PCR Results for the 4 model genes.

Gene RWPE-1 PC-3 LNcap DU145 f Value p Value

APOE 1.0436 ± 0.3830 2.3466 ± 0.5615 3.8717 ± 0.6922 2.8600 ± 0.3614 15.5 0.0011
DNAH8 1.1212 ± 0.5931 2.4756 ± 2.7475 not detected out 6.9891 ± 1.1722 12.17 0.0024

EME2 1.0015 ± 0.2082 2.9219 ± 0.5027 5.6579 ± 0.1132 1.7273 ± 0.1614 149.5 <0.0001
KIF5A 1.0054 ± 0.1271 0.0519 ± 0.0077 0.0546 ± 0.0181 0.0787 ± 0.0058 161.3 <0.0001
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4. Discussion

The occurrence of BCR in patients with PCa after radical treatment indicates the
likelihood of distant metastasis and the development of castration-resistant prostate cancer
(CRPC) [8]. Although the advancement in salvage treatment regimens, including radiation
therapy, androgen deprivation therapy, chemotherapy, and even intensive multimodal
therapy, has improved the prognosis of patients with PCa, most still die within 2 to 4
years [22,23]. PSA and the Gleason score are well-known indicators used to predict BCR
in PCa patients and grade the risk of BCR after clinical treatment [24]. However, PCa is a
highly heterogeneous disease, and determining the prognosis of certain patients could be
challenging. Therefore, better and more accurate prognostic indicators are needed to avoid
unnecessary over-medical treatment to identify high-risk patients with BCR and guide
individual clinical treatment.

With the development of bioinformatics, studies have reported several prognostic
models based on gene signatures to predict BCR. Signatures based on multiple gene expres-
sions, including metabolic [25], immune-associated [26], and ferroptosis-related genes [27],
were highly associated with the BCR of patients with PCa. However, too many genes
in the above signatures limit their clinical application. There is still a lack of a precision
molecular targeting index to effectively predict BCR in patients with PCa. In recent years,
the alterations of mitochondrial metabolism in the tumor have been the focus of our re-
search. Mitochondria are highly evolved intracellular organelles that control cell energy
production, signaling transduction, and cell death [28]. Many core metabolic pathways
in the mitochondria, including those of amino acids, lipids, and carbohydrates, as well
as oxidative phosphorylation (OXPHOS), are essential for cancer cell proliferation [29].
The rapid proliferation of cancer requires metabolic adaptations to meet the increasing
energy demand and to cope with the oxygen-deprived microenvironment [30]. As es-
sential intermediates produced by mitochondria, NADH, NADPH, and FADH2 fuel the
electron transport chain (ETC) and OXPHOS to produce energy [11]. One well-recognized
strategy is to shift the metabolic flow from OXPHOS or respiration in the mitochondria
to glycolysis in the cytosol, also known as the Warburg effect. However, some cancers
do not follow Warburg’s rule. Studies have found that OXPHOS in the ETC provides the
major sources of energy to promote cancer proliferation, such as colon cancer [31], PCa [30],
and chronic lymphocytic leukemia (CLL) [15]. Thus, the ETC may act as a potential ther-
apeutic target for cancer. Previous research has shown that metastatic cancer maintains
high rates of O2 consumption compared with normal tissues and stimulates mitochondrial
biogenesis [31,32]. Rebane-Klemm et al. [29] used high-resolution respirometry to observe
mitochondrial respiration in 48 patients with mutated KRAS and BRAF in colorectal cancer
(CRC). The results indicated that CRC patients have a higher level of mitochondrial respi-
ration with poor survival. Furthermore, Roy et al. (15) found that the zeta-chain-associated
protein of 70 kD (ZAP-70), a mitochondrial respiration-related prognostic marker, predicted
increased maximal respiration in patients with CLL and increased sensitivity of ZAP-70+
cells to Ibrutinib treatment. Mutations in oncogenes, tumor suppressor genes (including
TP53 and bcl-2), and mtDNA variation could directly affect mitochondrial respiration and
metabolism in PCa [33,34].

Additionally, zinc ion plays a vital role in the energy metabolism of prostate epithelial
cells. Studies also showed that a decrease in zinc concentration could power OXPHOS in the
ETC during the early development of PCa [35]. Mitochondrial metabolism-related enzymes,
such as SUMO-deficient hexokinase 2, bound to mitochondria, could reduce mitochondrial
respiration and result in cancer cell proliferation [36]. The previous literature also reported
that high expression of OXPHOS-related sulfite oxidase was associated with post-operative
BCR in patients with PCa, possibly by inducing PCa cell proliferation [37]. Together,
the above findings indicate that mitochondrial respiration is cross-linked with cancer
occurrence, development, and recurrence. Hence, we constructed an MRG prognostic
model to predict the BCR in patients with PCa.
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Our study used machine learning algorithms (univariate and LASSO) to identify
the prognostic signatures associated with mitochondrial respiration, consisting of APOE,
DNAH8, EME2, and KIF5A, which have valuable and independent significance for pre-
dicting BCR. Apolipoprotein E (APOE), including E2, E3, and E4 isoforms, have pivotal
roles in mediating cholesterol and lipid uptake by cells [38]. In addition, APOE is also in-
volved in carcinogenesis since it can modulate angiogenesis, cell growth, and metastasis in
tumors [39]. Genetic polymorphisms of APOE have been reported to influence the growth
and progression of many cancers, including colon cancer [39], breast carcinoma [40], and
primary brain tumor [41]. High plasma cholesterol concentration was observed in patients
with PCa, and APOE mRNA was highly expressed in PCa cell lines and prostatectomy
specimens [42,43]. Further studies found that different APOE isotypes are associated with
varying aggressiveness of PCa cells, such as non-aggressive PCa cell lines carry the E3/E4
isotypes while aggressive ones carry the E2/E4 isotypes [44]. Utermann et al. [45] observed
that the frequency of homozygosity for the APOE ε4 allele was increased in PCa compared
with normal tissues. Furthermore, Yencilek et al. [38] demonstrated that the APOE E3/E3
genotype might be a potential risk factor for PCa and high Gleason scoring.

Genomic variations of dynein axonemal heavy chain (DNAH) family members have
been frequently reported in multitudes of malignant tumors. A variant of the DNAH11
gene, rs2285947, is a potential risk factor for ovarian and breast cancer progression [46]. In
addition, gene mutations in DNAH increase the sensitivity of patients with gastric cancer to
chemotherapy [47]. According to a genome-wide RNAi screen, Wang et al. [48] have found
that the high expression of DNAH8 contributes to a greater risk of relapse and poor survival
after prostatectomy, possibly by activating the androgen receptor signaling pathway.

EME2 can restart a stalled fork and regulate the homologous recombination repair
pathway [49,50]. In the present study, we found that EME2 may regulate mitochondrial
respiration and affect the BCR in patients with PCa. Therefore, EME2 could be a potential
therapeutic target for PCa. Further, KIF5A is a member of the kinesin family, which
can modulate the cell cycle, proliferation, and differentiation [51]. Many studies have
demonstrated that high expression of KIF5A is associated with cancer progression and a
poor prognosis, such as in bladder, lung, and breast cancers [52–54]. In addition, exome
sequencing for 64 tumor samples from 55 PCa patients demonstrated that the KIF5A
mutation was related to aggressive diseases [55]. Notably, our qRT-PCR result showed
that the expression of KIF5A is downregulated in PCa cells compared to normal prostate
epithelial cells, which is contrary to the result of the TCGA database and may be related
to tumor heterogeneity. Finally, we established a nomogram using these signatures and
clinical data and evaluated its performance to facilitate clinical decision-making. Through
the above analysis, we could suggest that these four MRGs might serve as potential novel
target genes for PCa treatment.

Additionally, GO and KEGG analysis revealed that the risk model was closely related
to the Peroxisome proliferator-activated receptor (PPAR) signaling pathway, primary bile
acid biosynthesis, the cholesterol catabolic process, the organic hydroxy compound biosyn-
thetic process, the small molecule catabolic process, and the steroid catabolic process. Perox-
isome proliferator-activated receptors (PPARs) are nuclear transcription factors that play a
vital role in regulating growth and differentiation within normal prostate and PCa cells [56].
The activation of the FABP12/PPARγ pathway induces epithelial-to-mesenchymal transi-
tion and lipid-derived energy production to promote PCa metastasis [57]. Olokpa et al. [58]
found that reduced androgen receptor function could increase the expression of PPARγ and
the anti-tumor effects of PPARγ agonists in PCa. In addition, PPARγ derived PCa growth
and metastasis by upregulating AKT3 could increase mitochondrial biogenesis levels [59].
Studies have found that the amount of cholesterol is higher in PCa cells compared to normal
cells, influencing cancer development and progression [60]. Henrich et al. [61] revealed
that reducing cholesterol in bone marrow myeloid cells can render the transduction of PCa
extracellular vesicle signaling, thus hindering the bone metastasis of PCa. It was reported
that sex steroid hormones, especially androgens (testosterone and dihydrotestosterone),
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contribute to the growth and progression of PCa [62]. Ahlering et al. [63] demonstrated that
testosterone replacement therapy after radical prostatectomy significantly reduced BCR in
patients with PCa and delayed the time to BCR. Furthermore, a new steroid compound
(steroid-based copper transporter 1 inhibitors) has also been discovered, which can sup-
press PCa cell proliferation and tumor growth by reducing copper uptake and may act as a
novel anti-cancer drug for PCa [64]. However, further research is needed to understand its
mechanisms in PCa better.

Activating the immune response to treat cancer has become the cornerstone of modern
oncology therapy. Emerging studies have explored the roles of immune cells in PCa [65,66].
Here we showed that Tregs were the most significantly enriched immune cell in the high-
risk group. In addition, activated memory CD4+ T cells and M2 macrophage cells were
higher in the high-risk group than in the low-risk group. Various immune cells, namely,
CD4+ T cells, CD8+ T cells, natural killer (NK) cells, and macrophages, are enriched in
the prostate tumor microenvironment [67]. Research showed that the reduction of T cells
was correlated with BCR and poor survival in patients with PCa [68,69], which is partly
consistent with our results.

Tregs, distinguished by specific markers (CD25, CD4, CD127, and FOXP3), play a
vital role in maintaining immune homeostasis. It is reported that Tregs are significantly
enriched in PCa tissues and associated with the progression of cancer cells [70]. Vidotto
et al. [71] observed that increased FoxP3+ Tregs were associated with PTEN deficiency and
lymph node metastasis in patients with PCa. Several possible mechanisms are involved
in cancer progression, such as Tregs inhibiting T lymphocytes’ function, NK cells, DCs,
and macrophages, or weakening the immune response by secreting immunosuppressive
cytokines such as TGF-β and interleukin-10 (IL-10) [67]. Previously, Hu et al. [72] reported
that CD4+ T cells contribute to PCa immune evasion and progression. Their team further
discovered that infiltrating CD4+ T cells could promote PCa chemotherapy resistance
by modulating the CCL5/STAT3 signaling pathway [73]. Due to nutritional deficiencies
caused by energy competition between tumor cells and immune cells, some immune cells
use lactic acid as an energy substrate. However, studies found that lactate resulting from
stromal metabolic reprogramming could modulate CD4+T cell polarization and induces
immunosuppressive behavior to promote PCa progression [74]. M2 macrophages are a
class of differentiated tumor-associated macrophages (TAMs) associated with poor clinical
outcomes in several cancers [75,76]. A recent study found a significant correlation between
M2 macrophages and Tregs; M2 macrophages can stimulate lymphocytes to develop into
Tregs to promote an immunosuppressive environment in aggressive PCa [77]. Meanwhile,
we further analyzed the correlation between immune cell infiltration and biomarkers and
found that APOE had a significant positive correlation with M2 macrophages and a negative
correlation with resting memory CD4+T cells. In anti-atherogenic, APOE can induce
macrophage conversion from M1 to M2 [78]. Furthermore, Zheng et al. [76] demonstrated
that M2 macrophages could transfer functional APOE exosomes to neighboring gastric
cancer (GC) cells and activate the PI3K-Akt signaling pathway to promote GC migration.
Therefore, APOE could become the potential target gene of immunotherapy for PCa.

Tumor Immune Dysfunction and Exclusion (TIDE) is a method to predict the immune
checkpoint blockade response using gene expression profiles. Patients with cancer and
higher TIDE scores could undergo anti-tumor immune escape [79]. Compared to PA-L1
and tumor mutation burden (TMB) indicators, the TIDE score is more accurate in predicting
the survival outcome of patients who received immune checkpoint blockade treatment [80].
We observed that the TIDE score was significantly lower in the high-risk group than in the
low-risk group, and the finding suggested that patients with PCa are more sensitive to ICB
treatment. Moreover, we also evaluated the association between the risk score and the IC50
of the cancer drugs. Our results indicated that PCa patients with high risk scores could be
more resistant to the 12 administered chemotherapies (Lapatinib, Bicalutamide, Embelin,
Erlotinib, Bexarotene, A.770041, Z.LLNle.CHO, FH535, Imatinib, Cyclopamine, AZD8055,
and MG.132). Resistance to chemotherapy may be due to the poor prognosis of patients



J. Clin. Med. 2023, 12, 654 17 of 21

with PCa. The IC50 of JNK.Inhibitor.VIII and ABT.888 were negatively correlated with the
risk score, indicating that these drugs could benefit patients with high DE-MRGs-based
risk scores. However, large samples of randomized controlled trials are needed to further
validate the effectiveness of the two drugs (NK.Inhibitor.VIII and ABT.888).

Although our study has achieved encouraging results, there are still some limitations.
Firstly, this is a retrospective analysis, and selection bias may exist in this study. Secondly,
the clinical information of some patients with PCa from the GEO dataset was incomplete.
Thirdly, although we performed a multi-faceted, multi-database validation, the amount
of data in this study was relatively small, and therefore, the analysis may be biased.
Finally, although qRT-PCR has been used to detect the expression of the four mitochondrial
respiration-related genes, further experiments in vitro and in vivo are needed to explore
the underlying mechanism behind the risk scores and BCR in PCa.

5. Conclusions

This study established a mitochondrial respiratory gene-based nomogram including
four genes and one clinical feature for BCR prediction in patients with PCa, which could
provide novel research references for further studies.

Supplementary Materials: The following supporting information can be downloaded at: https:
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MRGs and 13 BCR-DEGs. (A) Volcano plot of 132 DE-MRGs (43 upregulated, 89 downregulated). (B)
Heatmap of 132 DE-MRGs. (C) Volcano plot of 13 BCR-DEGs (10 upregulated, 3 downregulated).
(D) Heatmap of 13 BCR-DEGs; Figure S2. External validation of the risk model with high-risk and
low-risk groups in GSE116918. (A) ROC analysis. (B) K–M survival curve between high-risk and
low-risk groups. (C) Scatter plot for BCR and distribution of risk score in GSE116918. (D) Heatmap of
model genes expression in GSE116918l; Figure S3. ROC curves to predict the sensitivity and specificity
of OS in the TCGA cohort. (A) The ROC curve shows the predictive efficiency of age, PSA, and
Gleason score. (B) The ROC curve shows the predictive efficiency of the risk score, APOE, DNAH8,
EME2, and KIF5A; Table S1. Clinical characteristics of PRAD patients in the TCGA cohort and GEO
GSE116918; Table S2. Primers for qRT-PCR used in the current study; Table S3. 13 BCR-DEGs between
non-BCR and BCR samples from TCGA-PRAD.
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