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Traditional machine learning-based intrusion detection often only considers a single algorithm to identify intrusion data, lack of
the flexibility method, low detection rate, no handing high-dimensional data, and cannot solve these problems well. In order to
improve the performance of intrusion detection system, a novel general intrusion detection framework was proposed in this
paper, which consists of five parts: preprocessing module, autoencoder module, database module, classification module, and
feedback module. *e data processed by the preprocessing module are compressed by the autoencoder module to obtain a lower-
dimensional reconstruction feature, and the classification result is obtained through the classification module. Compressed
features of each traffic are stored in the database module which can both provide retraining and testing for the classification
module and restore these features to the original traffic for postevent analysis and forensics. For evaluation of the framework
performance proposed, simulation was conducted with the CICIDS2017 dataset to the real traffic of the network. As the ex-
perimental results, the accuracy of binary classification and multiclass classification is better than previous work, and high-level
accuracy was reached for the restored traffic. At the last, the possibility was discussed on applying the proposed framework to
edge/fog networks.

1. Introduction

1.1. Background. In recent years, the widespread use of
computers and networks and the emergence of new tech-
nologies such as big data, internet of things, and cloud
computing have prompted new threats in this modern
complex environment; there has been a significant increase
in the number of malicious activities. *e need to protect
network resources from cyber threats has been growing, and
the intrusion detection system (IDS) is critical in the
cybersecurity to achieve robust protection against cyber
attackers; IDS enables us to detect, identify, and recognize
anomalous behaviors caused by intruders in networks and
computer systems. Machine learning (ML) methods can be
used for prediction and classification by learning features in
advance. Based on training approach of the classifier, IDS

can be divided into supervised and unsupervised; supervised
learning learns labeled training samples as much as possible
in order to be able to predict data outside the training sample
set; unsupervised learning is learning training samples
unlabel to discover the structural knowledge in the training
sample set. Some techniques have been applied to intrusion
detection by researchers [1], for instance, random forest (RF)
[2], support vector machine (SVM) [3], k-nearest neighbor
(KNN) [4], or artificial neural network (ANN) [5].

Application of the deep neural network (DNN) in the
field of intrusion detection has become a hot-point, and
many researchers paid much attention for the application,
convolutional neural network (CNN) [6], for example, deep
reinforcement learning (DRL) [7] and hybrid DNN struc-
ture [8, 9]. DNN as an effective method is evolved from the
shallow neural network (SNN), a branch of ANN, and also
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the focus of deep learning research. Differing from tradi-
tional SNN with more network hierarchies, DNN has
stronger ability to model or abstract representations and can
simulate more complex models. DNN has hence great po-
tential in realizing effective data representation to construct
useful methods.

Autoencoder (AE) as a model for feature extraction will
be the focus in this study. AE is an unsupervised DNN that
learns features in an unsupervised learning manner from
unlabeled data. Two basic structures are included in AE, i.e.,
encoder and decoder. *e encoding layer reduces the di-
mension by compressing the input data, which can reduce
the number of nodes in the output layer and use it for feature
reduction.*e decoding layer attempts to obtain the original
data by decoding the encoded data. Typically, the number of
nodes in the input layer is equal to the number of nodes in
the output layer. Since the unlabeled data are used for
training, the reconstruction error can be obtained directly by
comparing the reconstruction output with the original in-
put, and the optimal AE model is obtained by minimizing
the loss of the reconstruction output through layer-by-layer
training.

If we add the L1 norm to the AE, constraining the
number of nodes in each layer (most of which should be 0
and only a few of which should not be 0), following that the
Sparse Autoencoder (SAE) model can be obtained. *e
expressions obtained each time are as sparse as possible
because sparse expressions tend to be more efficient than
others.

1.2. Problem Statement. Traditional ML-based intrusion
detection often only considers using a single algorithm to
identify intrusion data, which has problems such as rigid
methods, low detection rates, and high-dimensional data.
How to design a good intrusion detection framework to
adapt to the modern Internet environment and how to
flexibly and extensively combine different machine learning
technologies to solve problems are problems worth con-
sidering. *is paper focuses on the design of such a general
intrusion detection framework to improve the performance
of various aspects of intrusion detection.

DNN can achieve effective representations that improve
the classification results of traditional supervised machine
learning algorithms. Although several approaches that rely
on deep learning techniques are effective, they are still
limited by time complexity.

Inspired by the autoencoder (AE) model, we have
conducted some studies using the AE model in the actual
application scenarios of IDS. AE helps to reconstruct the
input feature and transform it into a hyperspace repre-
sentation associated with the input data, reduce the impact
of high-dimensional redundant features, and reduce training
complexity. We combined AE with the supervised machine
learning algorithm to significantly improve the performance
of the classification task.

In this research, we propose a novel intrusion detection
framework that can solve the above problems, which con-
sists of five parts: preprocessing module, autoencoder

module, database module, classification module, and feed-
back module. *e preprocessed data are compressed by the
SAE model of the AE module to obtain a lower-dimensional
reconstruction feature, and the classification result is ob-
tained through the classification module. *e compressed
features of each traffic are stored in the database of the
database module, which we call it feature library.*is library
can provide retraining and testing for the classification
module and can also restore these features to the original
traffic for postevent analysis and forensics.

1.3.KeyContributions andPaperOrganization. In summary,
the paper’s main contributions are as follows:

(1) We propose a novel intrusion detection framework
to improve classification capabilities. Simulta-
neously, the retraining of the classifier in the clas-
sification module is realized through the database
module and the feedback module so as to ensure the
high accuracy rate of the classification module
continuously.

(2) We developed a novel classification method by
combining SAE and RF. Our approach realizes the
potential of effective representation and dimen-
sionality reduction to improve the classification
results for traditional ML algorithms in binary and
multiclass classification.

(3) We take full use of the characteristics of the SAE
model, combined with the feature library in the
database module, to restore the flow before com-
pression, which can be used for postevent analysis
and forensics.

(4) We evaluate our proposed framework using the
CICIDS2017 dataset and give the training and testing
times. Compared with different methods in the re-
lated work using the same dataset, we have achieved
the best value in the binary and multiclass
classification.

*e remainder of the paper is organized as follows.
Section 2 states the selection criteria for the relevant work
and introduces these research studies. Section 3 briefly
describes the dataset used to evaluate our proposed
framework and some of the preprocessing required for the
subsequent experiments. Section 3 focuses on our proposed
framework and the principles involved in it. In Section 4, we
evaluate the performance of our approach based on the
experimental results and compare it with some previous
work. *e application of IDS to edge/fog networks is dis-
cussed in Section 5. Finally, Section 6 summarizes and
discusses future directions.

2. Related Work

*epurpose of this section is to review recent work related to
the design of intrusion detection systems. *e selection
process was based on certain criteria as follows:

(1) Novel framework
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(2) Relevant to the CICIDS2017 dataset

(3) Recent and relevant to the autoencoder

2.1. Improved Algorithm. Many improved algorithms have
been applied to intrusion detection systems to improve the
detection capabilities, and these approaches show better
performance than single learning methods. Elbasiony et al.
[10] presented a hybrid detection framework based on data
mining classification and clustering techniques that used a
random forest algorithm together with a weighted k-means
algorithm to construct a hybrid framework that chose
anomalous clusters by injecting known attacks into un-
certain connected data, which is evaluated on the KDD’99
dataset to achieve a 98.3% detection rate. Authors in [11]
presented a framework for automatic intrusion detection
that employed the affinity propagation (AP) algorithm to
understand the behavior of objects by dynamically clustering
stream data, automatically label data and adapting to normal
changes in behavior, and identifying anomalies. *e test
results show that better results were achieved compared with
the adaptive sequential Karhunen–Loeve method and static
AP as well as three other static anomaly detection methods.
Yao et al. [12] proposed a hybrid multilevel data mining-
based intrusion detection framework (HMLD), which the
authors claimed can detect both known and unknown at-
tacks. *e KDDCUP99 dataset was used to evaluate the
performance of HMLD, and experimental results showed
that HMLD could achieve 96.70% accuracy. Although
[10–12] have all achieved good results with the KDD99
dataset, these datasets are outdated and contain not only
normal data but also overly simple attack data, making it
difficult to use these datasets to simulate today’s highly
complex network environment. Using these algorithms to
analyze malicious traffic in relatively new datasets is also
difficult to achieve the desired effect.

In [13], a network attack detection method that com-
bined stream computing with deep learning was proposed.
*e method used sliding windows to mine frequent patterns
to form pattern library quickly detects whether there are
malicious behaviors in the data stream and used classifi-
cation algorithms based on deep belief networks and support
vector machines (DBN-SVMs) to improve accuracy. *e
authors only used the data on Tuesday in the CICIDS2017
dataset for 5 classifications, which cannot reflect the real
situation, whereas we use all the data in this dataset and
made 15 classifications.

Min et al. [14] proposed an autoencoder-based frame-
work for network intrusion detection. *e framework used
clustering loss (or classification loss) and reconstruction loss
jointly trained by the unsupervised clustering module (or
classification module) and autoencoder to obtain a more
cluster-friendly feature representation for better clustering
results.

2.2. Focus onDataQuality. Moreover, the researchers found
that the performance of intrusion detection was also de-
pendent on the quality of the training data. *e authors in

[15] eliminated irrelevant features using genetic algorithm
feature selection techniques and using Bayesian networks as
a base classifier for predicting attack types, and the method
has 98.2653% accuracy on the NSL-KDD dataset. Gu et al.
[16] obtained new transformed training data by trans-
forming the original feature into a logarithm marginal
density rate, SVM ensemble was then used to build the
intrusion detection model, and the model was evaluated on
the NSL-KDD dataset to achieve 99.41% accuracy. *e
training complexity of SVM is highly dependent on the size
of the dataset, requiring large amounts of memory and a lot
of training time, and the method improves detection rates
without taking time into account.

Ahmim et al. [17] proposed three different classifier-
based hierarchical intrusion detection systems based on
reduced error pruning (REP) tree, JRip algorithm, and
Forest PA.*e first and second methods took the features of
the dataset as input and classified the network traffic as
attack/benign; the third classifier took the output of the first
classifier, second classifier, and the features of the initial
dataset as input. Evaluation using the CICIDS2017 dataset
showed that the model obtained 96.665% accuracy. Kumar
et al. [18] used random forest regression technique to select a
subset of attributes from the original set, and then the se-
lected set of important features were used in the trained
classifier to solve the problem of low detection rate. Com-
pared with [17, 18], our method has higher accuracy.

Authors in [19] used the concept of self-learning to train
deep neural networks to perform feature extraction by
pretraining the network, combining raw and extracted
features to train SAE. Nathan et al. [20] designed a stacked
nonsymmetric deep autoencoder for unsupervised feature
learning, using the RF as a classifier, while also reducing the
training time required for training. *e method was eval-
uated using the benchmark KDD Cup’99 and NSL-KDD
datasets, which showed better performance in terms of
accuracy for binary classification. *e main drawback of this
method being that the dimensionality reduction mechanism
does not considered.

In [9], CNN and long short-term memory (LSTM)
network extracted, respectively, the spatial features of single
packets and the temporal features of the data stream, and the
hybrid network extracted features from the network data to
analyze the network traffic. Experiment was conducted on
the CICIDS2017 dataset, and the results showed that this
approach achieved an overall accuracy of 98.67%. As far as
the results are concerned, their 7 classification results are
lower than our 15 classifications, and they also face the same
problem as the literature [8] mentioned in the next
subsection.

2.3. Features Dimensionality Reduction Approaches. Faced
with high-dimensional and large-volume data, it has always
been the focus of network intrusion detection research.
Althoughmany unsupervised learning-based approaches for
network intrusion detection have been proposed in recent
years, some of them still have limitations and problems.
Predictions from high-dimensional learning have redundant
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features, thus reducing classification accuracy in the raw
dataset. In [21], using SAE for feature learning and soft-max
regression for classification evaluated models of classes 2, 5,
and 23 using the NSL-KDD benchmark dataset, respectively.
But, this result seems to be somewhat poor even under
multiclassification with the accuracy of less than 80%.

*e model proposed in [22] uses SAE to obtain
reconstructed new feature representations, using SVM for
classification and reducing the training and testing time, and
the method was evaluated on the NSL-KDD dataset with
99.416% accuracy and 99.396% accuracy for binary and
multiclass classification, respectively. *e method improved
the SVM accuracy and reduced the training and testing time
required; however, both the time provided in their work and
the results obtained from simulations in our experimental
environment are unacceptable. We focus on overall per-
formance, not just the improvement of classification results.

Abdulhammed et al. [23] used AE and principal com-
ponent analysis (PCA) to reduce the feature dimensionality
of the CICIDS2017 dataset. *e low-dimensional features
generated by the two techniques were then used to construct
various classifiers to detect malicious attacks. *e low-di-
mensional features were then used to construct various
classifiers, such as RF, Bayesian networks, linear discrimi-
nant analysis (LDA), and quadratic discriminant analysis
(QDA) to design IDS. *e authors converted the source IP
address (source IP) and destination IP address (destination
IP) into integer representations to train the model; however,
some of the features of the dataset (e.g., Source IP and
Timestamp) mentioned in the literature above will make the
model adapt to a specific dataset when training the model
using the CICIDS2017 dataset; in fact, in separate experi-
ments in [24] on whether to use IPs as features for training,
the final detection rate differed by 3%.

In [8], a multimodal sequential intrusion detection
method with a special structure for progressive networks was
proposed, which composed of a multimodal deep autoen-
coder (MDAE) and an LSTM. By designing the special
structure of a hierarchical progressive network, the method
can integrate feature information at different levels in
network connections and simultaneously automatically
learn temporal information between adjacent network
connections. LSTM is used to learn the temporal features of
the dataset so that specific types of attacks are correlated with
time (e.g., on a Friday morning, the attacks are all port
scans), which is not true law. Models can exhibit high
performance for test datasets, but the results always seem to
be reduced when analyzing actual network traffic.

2.4. Novel Perspective. We are committed to developing an
approach with high classification performance and gener-
alization, and some researchers are gradually starting to
make some attempts. Yin et al. [25] proposed a GAN-based
intrusion detection framework to improve the performance
and generalization of classifiers, which used adversarial
training to enhance the classifiers and generated false label
samples continuously using a generative model to assist the
classifiers in improving their detection performance.Madani

and Vlajic [26] studied the contamination based on anomaly
detection in the adaptive detection intrusion system, using
autoencoder reconstruction error as a metric for anomaly
detection, using training time and test temporal metrics to
evaluate the performance of the model, using NSL-KDD
datasets for performance evaluation, and maintaining a
stable detection situation while reducing the contamination
level of the training dataset to less than 2% compared with a
PCA-based IDS. *e two work analyze the problem from a
novel perspective but are still a bit far from the practical
phase.

3. Proposed Framework

In this section, we will introduce the proposed framework
and its workflow. *e proposed intrusion detection
framework is mainly composed of five parts: preprocessing
module, autoencoder module, database module, classifica-
tion module, and feedback module; the various functional
modules are maintained to build a powerful intrusion de-
tection framework, which has high accuracy and low
training complexity. *e proposed framework is shown in
Figure 1, in which different functions are represented using
different colored lines; the black line represents the main
process of the detection function, the orange line represents
the process involved in retraining, and the green line rep-
resents the process of restore function, where the blue two-
way arrows represents the processes that crosses with other
functions.

3.1.Workflow. Before that, we first describe each module in
the framework separately and then present the three main
functions that the entire framework is based on these
modules.

(1) Preprocessing module: the raw traffic collected from
the network is processed in a predetermined way
(Section 4.2) to obtain the initial data

(2) Autoencoder module: the module is mainly com-
posed of an SAE model, which processes the data,
removes the unimportant features in the data, and
obtains the reconstructed low-dimensional features

(3) Database module: the module consists of a database,
which serves as a data storage and dumps center for
the entire framework; the database is continuously
updated and can be used for other subsequent
operations

(4) Classification module: this module mainly uses su-
pervised algorithms to classify traffic, determine
whether to an attack, and then whether a warning is
given based on the results

(5) Feedback module: this module adjusts its functions
through the machine’s output status and alarm
information

3.1.1. Detection Function. *e data collector collects the raw
traffic from the network, processes it through the
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preprocessing module, and then extracts the features
through autoencoder module. *is reconstructed low-di-
mensional feature is used as input to the classification
module. It is also stored in the database module, where the
trained classifier in the classification module predicts the
input and finally outputs the results.

3.1.2. Retraining Function. Obviously, the training data
may not cover all possible normal execution and abnormal
behavior patterns which may change over time. We used
the results of the evaluation metrics in the classification
module, the administrator’s analysis of the machine
output for status, and alarm information to determine
whether the classifier needs to be updated. If it is judged to
need updating, the administrator gives a feedback to the
classification module and relabels the false alarm entries
and stores it in the database; the classification module
retrieves the data from the database module to retrain the
classifier and then re-evaluates the classifier until the
training is complete.

3.1.3. Restore Function. For a successful intrusion detection
system, it can not only accurately identify possible intrusions
but also provide a basis for the formulation of network
security strategies. We make full use of the features of the
autoencoder model and use the features stored in the da-
tabase module to restore the original traffic, which is con-
venient for subsequent analysis and forensics by the
administrator.

3.2. Sparse Autoencoder. Figure 2 gives a simple SAE
training diagram; suppose we have N input and output
nodes and M hidden layer nodes, first input
x � (x1, x2, . . . , xn) tries to get an equal output
x̂ � (x̂1, x̂2, . . . , x̂n), i.e., x � x̂. Compress x into a lower-
dimensional hidden layer representation that consists of one
or more hidden layers a � (a1, a2, . . . , am) and then map
the hidden representation a to the reconstructed output x̂.
*e output of the neurons in each hidden layer can be
calculated by

ali � f gli( ) � f ∑n
j�1

Wl−1
ij · al−1j + bl−1i

 , (1)

where ali denotes the i
th node of the hidden layer l, and the

dimension of the hidden layer weight matrix denotes
W ∈ Rm×n, with a bias vector b ∈ Rm. We choose Clevert
et al. [27] as the activation function (see equation (2)) where
we α take 1.0.

f(z) �
α ez − 1( ), z< 0,
z, z≥ 0.

{ (2)

Using the back propagation algorithm to find the best
values of the weight matrix W and the bias vector b, the
function to minimize the loss is represented as follows:

Jsparse(W, b, x, x̂) �
1

2s
∑s
i�1

‖x̂ − x‖2 +
λ

2
∑ls−1
l�1

∑m
i�1

∑n
j�1

Wl
ij( )2

+ β∑m
i�1

KL ρ ‖ ρ̂i( ).
(3)

*e first term represents the average sum-of-square
errors for all s input data; the second term is the weight decay
term, with the parameter λ to control the weight in a
particular layer to avoid overfitting, while ls represents the
total number of layers; the last term is the sparsity penalty
term; for KL distance, which imposes a constraint in the
hidden layer to maintain a low average activation value, the
value of b controls the weight of the sparsity penalty term,
and the KL distance represents here difference value between
the two vectors; it can be seen from the constraint function
expression that the larger the difference between the mean ρ
and the desired sparsity mean ρ̂i, the larger the penalty,
ensuring that this sparsity has the effect of making ρ̂i close to
ρ, as it ensures sparse activation of the training data against
any given node in the hidden layer, thereby reducing the
dependency between features. *e output average of the
hidden layer nodes is solved as follows:

ρ̂i �
1

s
∑s
l�1

ali x
(l)( )[ ]. (4)
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Besides, we noticed that removing redundant features
cannot blindly reduce the dimensionality in [28]; the authors
used AE to reduce the features to below 30; the accuracy of
the model continued to decrease. Similarly in the literature
[23], reducing the dimensionality to around 59, there were
significant fluctuations in the performance of each classifier.
In this paper, an SAE with two encoders and two decoders
was used, with 79 nodes in the input layer, equal to the total
number of features in the dataset. *e first hidden layer of
the SAE reduces the dimensionality to 68 features and re-
duces the features to 64 in the second hidden layer. After
training the parameters, the final model can perform the
classification task at the final stage. Algorithm 1 gives the
pseudocode of the SAE training process.

3.3. Classification Algorithm. In the classification module,
we used RF as the main algorithm of the classification
module, and random forest is an ensemble method com-
posed of decision trees. In the experimental stage, we also
used decision tree (DT) for comparison experiments to
verify the performance of RF.

Random forests have several advantages: as the number
of trees in the forest increases, the variance of the model
decreases while the bias remains constant; resistance to
overfitting; the number of control and model parameters is
small; and there is no need to select features because they can
use a large number of potential attributes.

A DT is a tree structure (which can be binary or non-
binary tree). Each of its nonleaf nodes represents a test on a
feature attribute, each branch represents the output of this
feature attribute on certain value domain, and each leaf node
stores a category. *e process of making a decision using a
DT involves starting from the root node, testing the cor-
responding feature attribute in the item to be classified, and
selecting the output branch according to its value until it
reaches the leaf node, where the category stored in the leaf
node is used as the decision result. Classification and re-
gression tree (CART) is chosen as the DT algorithm for this
experiment (see [29] for details of CART).

CART is a binary tree, which uses the binary segmen-
tation method to cut the data into two parts to enter the left
subtree and right subtree, respectively. And, each nonleaf
node has two children, so CART has one more leaf nodes
than nonleaves. In CART classification, the Gini index is
used to select the best features for data partitioning, and Gini
describes purity, the smaller the value, the higher the purity
and the better the features. We select the attribute that
minimizes the Gini index after division in the candidate set
as the optimal subattribute; each iteration in CART reduces
the Gini coefficient. For sample set D, the number is |D|.
Suppose there are K classes and the kth class is |Ck|, then the
Gini index expression for sample set D is

Gini(D) � 1 −∑K
k�1

Ck
∣∣∣∣ ∣∣∣∣
|D|

( )2. (5)

For sample D, the number is |D|, which divides D into
|D1|, |D2|, . . ., |Dn| n parts according to certain value a of

feature A; then, under the condition of feature A, the Gini
index expression for sample set D is

Gini(D, A) �∑n
i�1

Di

∣∣∣∣ ∣∣∣∣
|D|

Gini Di( ). (6)

Algorithm 2 gives the basic process for CART creation,
which involves following variable selection criteria and
splitting criteria to grow the tree until the stopping criteria is
met.

Random forest works on the concept of fair elections
because the result is based on the predictions of several
independent DTs, and a group of DTs with the same pre-
diction will outperform a single DT. For classification, the
prediction is the majority vote, and for regression, the
prediction is the mean. It uses a random subset of a given
data set and a random subset of features to create an in-
dividual DT so that the individual DT is barely correlated
with each other, and the lower correlations between trees
become more independent.

For feature selection, the random forest technique as-
signs weights to different features based on the degree to
which a particular feature reduces the accuracy of the in-
dividual DT classification. *e fact that the dependent
variable has a low weight is due to the fact that the random
forest technique ensures that the correlations between in-
dividual DT are small. Algorithm 3 gives the normal tree
structured classifier generation process.

4. Experimental Results

Classification performance is a core function of IDS; in this
section, we focus on evaluating classification performance
and the experimental validation of our proposed approach.
We first described in detail the CICIDS2017 dataset used for
the experiments and its corresponding preprocessing, gave
the metrics and the experimental environment used for the
evaluation, and compared and analyzed the experimental
results. Finally, we performed a simple test of the restore
function of the framework.

4.1. CICIDS2017 Dataset. Most current datasets are out-
dated and unreliable (some commonly used for intrusion
detection evaluation are KDD’99 [30] and KDD-NSL [31]);
some of which lack the diversity and volume of traffic to
cover a wide range of known attacks, while others ano-
nymize packet payload data and do not reflect current
trends.

In order to best reflect the real traffic scenarios and
updated attack methods in real networks, we chose the
dataset CICIDS2017 [32], which contains the latest benign
generic attack traffic representative of the real network
environment. *is dataset constructs the abstract behavior
of 25 users based on HTTP, HTTPS, FTP, SSH, and e-mail
protocols to simulate the real network environment
accurately.

*e CICIDS2017 dataset was collected based on real traces
of normal and malicious activity in the network traffic. *e
total number of records in the dataset is 2,830,743.*e normal
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activity traffic contains 2,273,097 records (about 80.3% of the
data) and malicious behavior traffic records 557,646 records
(about 19.7% of the data). *e distribution of each tag set for
the entire dataset is given in Figure 3. *e CICIDS2017 dataset
is a labeled dataset with 85 features that contain class labels (last
column) corresponding to the traffic state. *ese features are
listed in Table 1. *e CICIDS2017 dataset is one of the unique
datasets containing the latest attacks, and we used this dataset
to test and evaluate the ideas presented.

4.2. Data Preprocessing. For the preprocessing of data, in
addition to regular operations (such as handing values or
nonnumber types, encoding labels, and so on), in the
CICIDS2017 dataset, some features make the model adapt to
a specific dataset after training, which affects the general-
ization ability of the model, so we removed the “Flow ID,”
“Source IP,” “Source Port,” “Destination IP,” and “Time-
stamp” features among them.*erefore, the total number of
features we use contains 79 features.

Input: training dataset
Output: trained SAE model
Initialization: W, b, λ, β, ρ
Step 1: perform forward propagation on all input samples
Step 2: calculate the output of each node a in the hidden layer (equation (1))
Step 3: calculate the output error of the cost function (equation (3))
Step 4: updating the weights and biases of each layer using the backpropagation algorithm to reduce errors
Step 5: repeat Step 2, 3, and 4 until the reconstruction error is minimum
End

ALGORITHM 1: *e training procedures of SAE.

Input: training dataset D
Output: CART
N: threshold of the number of samples in node. n: number of samples in the node
G: Gini index threshold for D
Gini (D): Gini index of D
Based onD, starting from the root node, if n<N or Gini (D)<G or nomore features, recursively perform the following operations on
each node to construct a binary tree
For each feature A, for each of its possible values a, the split will be into D1 and D2 based on whether the test for A� a, and use
equation (6) to calculate Gini (D, A)
Among all possible features A and all its possible segmentation points a, the feature with the smallest Gini index and its
corresponding segmentation point are selected as the optimal feature and the optimal segmentation point
Generate two subnodes from the current node and assign the training dataset to the two subnodes according to the features
Return CART

ALGORITHM 2: CART creation process.

Input: training dateset
Output: tree structured classifier
S: number of training samples
M: number of features. m: number of features input (m<<M)
N: number of trees generated
If the tree to be generated is less than N,
Step 1: from the S training samples, take samples S times in a way with a put-back sampling to form a training set
Step 2: use unselected samples to make predictions and evaluate their errors
Step 3: for each node, m features are randomly selected
Step 4: according to these m features, calculate the best split method
Step 5: grow to be largest extent possible without pruning

Return tree structured classifier

ALGORITHM 3: *e tree classifier generation process.
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Several features in the dataset have a wide range between
the maximum value and minimum value, such as “Flow
Duration,” “Fwd IAT Total,” “Idle Mean,” and other fea-
tures. *ese feature values are not suitable for processing.
*erefore, we normalized these features by using equation
(7) to map all feature values to the range [0, 1].

xi �
xi − xmin
xi − xmax

, (7)

where xi denotes the value of a certain feature and xmin and
xmax represent the minimum and maximum values of this
feature.

Benign
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Figure 3: Distribution of labels in the CICIDS2017 dataset.

Table 1: Features of each network traffic in CICIDS2017.

No. Feature

1 Flow ID
2 Source IP
3 Source port
4 Destination IP
5 Destination port
6 Protocol
7 Timestamp
8 Flow duration
9 Total fwd packets
10 Total backward packets
11 Total length of fwd packets
12 Total length of bwd packets
13 Fwd packet length max
14 Fwd packet length min
15 Fwd packet length mean
16 Fwd packet length std
17 Bwd packet length max
18 Bwd packet length min
19 Bwd packet length mean
20 Bwd packet length std
21 Flow bytes/s
22 Flow packets/s
23 Flow IAT mean
24 Flow IAT std
25 Flow IAT max
26 Flow IAT min
27 Fwd IAT total
28 Fwd IAT mean
29 Fwd IAT std
30 Fwd IAT max
31 Fwd IAT min
32 Bwd IAT total
33 Bwd IAT mean
34 Bwd IAT std
35 Bwd IAT max
36 Bwd IAT min
37 Fwd PSH flags
38 Bwd PSH flags
39 Fwd URG flags
40 Bwd URG flags

Table 1: Continued.

No. Feature

41 Fwd header length
42 Bwd header length
43 Fwd packets/s
44 Bwd packets/s
45 Min packet length
46 Max packet length
47 Packet length mean
48 Packet length std
49 Packet length variance
50 FIN flag count
51 SYN flag count
52 RST flag count
53 PSH flag count
54 ACK flag count
55 URG flag count
56 CWE flag count
57 ECE flag count
58 Down/up ratio
59 Average packet size
60 Avg fwd segment size
61 Avg bwd segment size
62 Fwd header length
63 Fwd avg bytes/bulk
64 Fwd avg Packets/bulk
65 Fwd avg bulk rate
66 Bwd avg bytes/bulk
67 Bwd avg Packets/bulk
68 Bwd avg bulk rate
69 Subflow fwd packets
70 Subflow fwd bytes
71 Subflow bwd packets
72 Subflow bwd bytes
73 Init_Win_bytes_forward
74 Init_Win_bytes_backward
75 act_data_pkt_fwd
76 min_seg_size_forward
77 Active mean
78 Active std
79 Active max
80 Active min
81 Idle mean
82 Idle std
83 Idle max
84 Idle min
85 Label
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In this study, the dataset was divided into training and
testing sets in the ratio of 7 : 3.

4.3. Evaluation Metrics. *e detection module as the main
function of the framework needs to evaluate the perfor-
mance of the framework accurately; we used four metrics to
evaluate the performance of the classification module: ac-
curacy, recall, preference, and F1-score, which are widely
used to evaluate the performance of intrusion detection
techniques. *eir formulas are as follows.

Accuracy (Acc): it is defined as the ratio of correctly
classified samples to the total number of samples, which
represents the overall performance of the model.

Acc �
TP + TN

TP + TN + FP + FN
. (8)

Recall (Re) or detection rate (DR): it is defined as the
ratio of the number of samples correctly classified into a
certain class to the actual number of samples of this class.

Re � DR �
TP

TP + FN
. (9)

Precision (Pr): it is defined as the ratio of the number of
samples correctly identified as a category to the number of
samples identified as such.

Pr �
TP

TP + FP
. (10)

F1-score (F1) or F-measure (FM): it is defined as the
harmonic mean of Precision and Recall.

F1 � FM �
2 · Pr · Re

Pr + Re
. (11)

All these evaluation metrics are derived from the four
values found in the confusion matrix (Table 2), and for each
type of sample, TP is the number of samples correctly
classified as that type, TN is the number of samples correctly
classified as not that type, FP is the number of samples
misclassified as that type, and FN is the number of samples
misclassified as not that type.

4.4. Experimental Environment. *e details of all experi-
mental implementation configurations are shown in Table 3.

4.5. Results and Discussion. Our experiment was conducted
to investigate the performance of our proposed framework
in both binary and multiclass classification and to verify the
effectiveness of the low-dimensional features extracted by
our method using the CICIDS2017 dataset. Moreover, we
calculated training and testing times to evaluate the validity

of our model. Figures 4 and 5 show the performance of the
algorithm using different parameters (here, we consider DT
as a tree RF model) on the values of the four evaluation
metrics in binary andmulticlass classification. Tables 4 and 5
give the training and testing times of the algorithms with
different parameters in binary and multiclass classification.
From these figures and tables, we can see that different
parameter algorithms (except DT) have subtle differences in
performance against different attacks; however, there are big
differences in the training and testing time of RF, especially
for RF-50 trees and RF-100 trees, where the training and
testing time is almost doubled. A better algorithm can detect
more attacks in shorter time and more adapt to the modern
Internet; we choose the appropriate algorithm based on the
evaluation metrics and time; RF-10 trees are undoubtedly
the most suitable classifier.

Tables 6 and 7 provide a detailed summary of the
proposed framework in terms of Accuracy, Precision, Recall,
and F1-score, respectively. Table 6 describes the detailed
results for binary classifications (Bengin and Abnormal),
and Figure 6 is the corresponding confusion matrix, where
681,564 samples were correctly identified as benign traffic
and 167,012 samples were correctly identified as abnormal
traffic. Table 7 gives the results of the evaluation of various
types of traffic, showing that our approach can identify 15
different types of attacks; Figure 7 illustrates the corre-
sponding confusion matrix, and checking the confusion
matrix shows the difference. Although the wrong category is
detected, the traffic that is still classified as an attack is
greater than the traffic that is classified as benign. Attack
samples like Infitration, Heardtbleed, and Sql Injection have
too few records than other attack samples, but all of them
were identified.

We also validated the superiority of our model by
comparing its performance with the classification ap-
proaches used in related research. Tables 8 and 9 present a
comparison of the proposed framework with related work
and some traditional MLmethods mentioned in their paper.
Table 8 focuses on the comparison between the two clas-
sification results of the related work, while Table 9 is a
comparison between the related work using multiclass
classification results. Our proposed framework outperforms
previous studies in terms of Accuracy, Precision, Recall, and
F1-score.

4.6. Additional Test for Restore Function. We used the
compressed traffic in the database and restored it to the
original traffic using SAE. Compared with the classification
results of the original traffic, we obtained 91.83% accuracy in
binary classification and 91.65% accuracy in the multiclass
classification.

Table 2: Confusion martrix.

Predicted class

Malicious Benign

Actual class
Malicious True positive (TP) False negative (FN)
Benign False positive (FP) True negative (TN)
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Table 3: Experimental environment.

Software/hardware Details

OS Windows 10
CPU Intel (R) Core (TM) i5-4200H CPU @ 2.80Hz
RAM 8GB
Anaconda 4.8.3
Python 3.7.3
Keras 2.2.4

0.99885 0.9989 0.99895 0.999 0.99905 0.9991 0.99915 0.9992 0.99925 0.9993

RF-10 trees

RF-20 trees

RF-50 treese

RF-100 trees

DT

0.99924
0.99924
0.99924
0.99924

0.99902
0.99902
0.99902
0.99902

0.99927

0.99928
0.99928
0.99928
0.99928

0.99928
0.99928
0.99928
0.99928

0.99927
0.99927
0.99927

F1-score

Recall

Precision

Accuracy

Figure 4: Performance of the algorithm for the values of the four metrics using different parameters in binary classification.

RF-10 trees

RF-20 trees

RF-50 treese

RF-100 trees

DT

0.9984 0.9985 0.9986 0.9987 0.9988 0.9989 0.999 0.9991

0.99898

0.99898
0.99894

0.99893

0.99893

0.99865
0.99865

0.99865
0.99868

0.99899

0.99899
0.99894

0.99898
0.99898

0.99902
0.99897

0.99903
0.99899

0.99903
0.99896

F1-score

Recall

Precision

Accuracy

Figure 5: Performance of the algorithm for the values of the four metrics using different parameters in multiclass classification.

10 Security and Communication Networks



5. Discuss the Application of IDS to Edge/
Fog Networks

*e development of technology and realistic demands has
extended the cloud computing paradigm to the edge of the
network, thus realizing various new applications and ser-
vices, while facing security and privacy issues. Although our
research has successfully demonstrated the effectiveness of
the framework and the technology has led to better results in
several evaluation metrics of IDS as well as in classification
speed, IDS also needs to adapt to the new network archi-
tecture [33]. IDS is rapidly developing towards edge/fog
networks, and the most likely application of this generic

intrusion detection framework we have developed to edge
networks is to split some of these modules, removing the
database module and the feedback module and embedding
the rest in edge devices. Using only binary classification,
from our experimental results, where the trained model in
our experimental environment was able to process 849,223
traffic within 25 seconds (time for feature extraction and
classification), the main drawback compared with the use of
feature extraction methods in the literature [34] is that
dimensionality reduction is not considered. By deploying
the complete framework in the cloud, the restore function
serves to some extent to check for duplicate data coming
from multiple devices. *e cloud completes the retraining

Table 4: Training and testing time for different parameters of the algorithm in binary classification.

Method Training time (sec) Testing time (sec)

RF-10 trees 246.689 1.696
DT 420.419 0.364
RF-20 trees 502.758 2.734
RF-50 trees 1266.263 6.465
RF-100 trees 2546.473 13.109

Table 5: Training and testing time for different parameters of the algorithm in multiclass classification.

Method Training time (sec) Testing time (sec)

RF-10 trees 291.551 3.138
DT 386.454 0.387
RF-20 trees 502.952 4.434
RF-50 trees 1209.425 10.573
RF-100 trees 2425.976 20.507

Table 6: Evaluation results for various types of traffic under binary classification.

Accuracy: 0.9992

Precision Recall F1-score

Bengin 0.9996 0.9994 0.9995
Abnormal 0.9978 0.9983 0.9981
Weighted avg 0.9992 0.9992 0.9992

Table 7: Evaluation results for various types of traffic under multiclass classification.

Accuracy: 0.9990

Precision Recall F1-score

Bengin 0.9996 0.9995 0.9995
Bot 0.9142 0.8492 0.8805
DDos 0.9999 0.9997 0.9998
Dos goldeneye 0.9984 0.9793 0.9887
Dos hulk 0.9963 0.9993 0.9978
Dos slow http test 0.9963 0.9891 0.9927
Dos slow loris 0.9960 0.9908 0.9934
FTP-Patator 1.0000 0.9983 0.9992
Heartbleed 1.0000 0.3333 0.5000
Infiltration 1.0000 0.2727 0.4286
PortScan 0.9997 0.9999 0.9998
SSH-patator 0.9943 0.9853 0.9898
Web attack-brute force 0.6808 0.8872 0.7704
Web attack-sql injection 1.0000 0.1667 0.2857
Web attack-XSS 0.4655 0.1378 0.2126
Weighted avg 0.9989 0.9990 0.9989
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with data from its own database and data transmitted from
the Edge IDS and updates the parameters downwards. Edge
IDS is independent of each other; by continuously learning
new parameters from Cloud IDS, Edge IDS can update and
upgrade their detection rules as the network security status
changes, avoiding conflicts between Edge IDSs. Compared
with [35], we use 14 different attack samples to validate our
method; in terms of algorithm, there are some uncertainties

in the gene immune detection algorithm; we use the more
mature RF algorithm for classification; the RF algorithm and
its improved algorithms are widely used in intrusion de-
tection and showed good performance [36]. However, it still
has certain limitations and challenges [37], such as multi-
source data, false alarm response, and so on. Indeed, edge
computing brings benefits and also poses challenges for the
design of new IDS.
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Figure 6: Confusion matrix of binary classification.
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6. Conclusion and Future Work

A novel framework of intrusion detection was proposed and
discussed, which is comprised of five modules: pre-
processing module, autoencoder module, database module,
classification module, and feedback module. *e pre-
processed data were compressed by the SAEmodel of the AE
module to obtain a lower-dimensional reconstruction fea-
ture, and the classification result was obtained through the
classificationmodule.*e compressed features of each traffic
were stored in the database of the database module; this
library can provide retraining and testing for the classifi-
cation module and can also restore these features to the
original traffic for postevent analysis and forensics. *e

performance of framework proposed was evaluated with the
CICIDS2017 dataset to simulate the real traffic of the net-
work. *e proposed framework, shown by experiment re-
sult, provided higher accuracy than other similar work and
traditional ML methods, especially in the case of multiclass
classifications. In the upcoming time, effort will be made to
improve the two functions, the restore function and
retraining function, turning retraining function into adap-
tive update so as to reduce manual intervention, whereas
getting traceable effect in restore function. Furthermore, this
research will serve as the basis for further research and
investigation to enable the development of effective IDSs
that can be used in a complex network (e.g., edge networks)
environment.

Table 8: Comparison of the proposed framework in the binary classification with related work using CICIDS2017 dataset evaluation and
some of the traditional ML approaches mentioned in their papers.

Reference +method Accuracy Precision Recall F1-score

[8]

MDAE+LSTM 0.9990 0.9990 0.9980 0.9990
Naive Bayes 0.3130 0.3000 0.9790 0.4590

SVM 0.7990 0.9920 0.3280 0.4930
DNN 0.9310 0.8270 0.9740 0.9840
MDAE 0.9140 0.8980 0.8020 0.8400
LSTM 0.9980 0.9990 0.9970 0.9980

[24] DNN+without IPs 0.9677

[18] Feature selection + ID3 0.9515 0.9500 0.9500 0.9500

[23] PCA+RF 0.9960 0.9880 0.9970
AE+RF 0.9950 0.9850 0.9960

Our approach 0.9992 0.9992 0.9992 0.9992

Note. *e best values are in bold, and missing value means not provided in reference.

Table 9: Comparison of the proposed framework in the multiclass classification with related work using CICIDS2017 dataset evaluation and
some of the traditional ML approaches mentioned in their papers.

Reference +method Accuracy Precision Recall F1-score Remark

[8]

MDAE+LSTM 0.9860 0.9860 0.9960 0.9860

8 classification

Naive Bayes 0.2500 0.7670 0.2500 0.1880
SVM 0.7990 0.7570 0.7990 0.7230
DNN 0.9480 0.9650 0.9480 0.9530
MDAE 0.9040 0.9920 0.9000 0.9110
LSTM 0.9700 0.9680 0.9860 0.9730

[17]

DT+ rule-based 0.9967 0.9448

15 classification

RF 0.9559 0.9305
REP tree 0.9340 0.9164

Multilayer Perceptron 0.8524 0.7783
Naive Bayes 0.7453 0.8251

Jrip 0.9447 0.9340
J48 0.9348 0.9199

[13] DBN-SVM 0.9774 0.9768 0.9768 Use only Tuesday’s dataset with 5 classification

[9]
CNN+LSTM 0.9867 0.9721 0.9332

7 classificationCNN 0.9844 0.9646 0.9311
LSTM 0.9683 0.9421 0.9097

[23]
PCA+RF 0.9880 0.9890 0.9880 0.9880

15 classification
AE+RF 0.9950 0.9950

Our approach 0.9990 0.9990 0.9989 0.9989 15 classification

Note. *e best values are in bold, and missing value means not provided in reference.
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