
FINAL REVISION 1

A Novel Framework for Backstepping-Based
Control of Discrete-Time Strict-Feedback Nonlinear

Systems with Multiplicative Noises
Min Wang, Zidong Wang, Hongli Dong and Qing-Long Han

Abstract—This paper is concerned with the exponential mean-
square stabilization problem for a class of discrete-time strict-
feedback nonlinear systems subject to multiplicative noises. The
state-dependent multiplicative noise is assumed to occur ran-
domly based on a stochastic variable obeying the Gaussian white
distribution. To tackle the difficulties caused by the multiplicative
noise, a novel backstepping-based control framework is developed
to design both the virtual control laws and the actual control
law for the original nonlinear system, and such a framework
is fundamentally different from the traditional n-step predictor
strategy. The proposed design scheme provides an effective way
in establishing the relationship between the system states and the
controlled errors, by which a noise-intensity-dependant stability
condition is derived to ensure that the closed-loop system is
exponentially mean-square stable for exactly known systems. To
further cope with nonlinear modeling uncertainties, the radial
basis function neural network (NN) is employed as a function
approximator. In virtue of the proposed backstepping-based
control framework, the ideal controller is characterized as a
function of all system states, which is independent of the virtual
control laws. Therefore, only one NN is employed in the final
step of the backstepping procedure and, subsequently, a novel
adaptive neural controller (with modified weight updating laws)
is presented to ensure that both the neural weight estimates and
the system states are uniformly bounded in the mean-square sense
under certain stability conditions. The control performance of the
proposed scheme is illustrated through simulation results.

Index Terms—Nonlinear systems, discrete-time strict-feedback
systems, backstepping-based control, adaptive control, neural
networks, multiplicative noises

I. I NTRODUCTION

As a class of nonlinear systems in the triangular form
[15], [31], the strict-feedback nonlinear systems (SFNSs) have
attracted a great deal of attention in the past two decades
since SFNSs are capable of modeling many practical systems
such as hypersonic flight vehicles [41], chemical reaction
processes [23] and marine surface vessels [5]. It is well known
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that, as a breakthrough technique in nonlinear control theory,
the backstepping procedure [19] has become an extremely
powerful tool for solving control problems of SFNSs. By
applying the backstepping procedure, a systematic control
design framework has been constructed for continuous-time
SFNSs and a large number of results have been reported in
the literature, see e.g. [3], [8] and the references therein. For
deterministic SFNSs, the adaptive control strategies have been
developed to identify uncertain/unknown system parameters
[3], [17], [27]. Also, by combining neural networks (NNs)
and fuzzy logic systems, approximated-based adaptive control
schemes have been developed in [22], [39], [48] to handle
nonlinear uncertainties. These methods have been further
extended to continuous-time SFNSs with different phenomena
including, but are not limited to, partial immeasurable states
[26], [33], various time-delays [12], [37], [45], and state/output
constraints [1], [4], [16], [32]. To deal with the control problem
of a more general class of nonlinear systems, a specific back-
stepping procedure has been elegantly developed in [28] for
generalized triangular systems with periodic dynamics. Based
on the converse input-to-state stability Lyapunov theorems, the
result in [28] has been successfully extended to generalized
triangular systems withdeterministic disturbances in [6], [7].

For decades, stochastic control has proven to be an active
area of the mainstream research in control theory simply
because stochastic noises are often inevitable in system mod-
eling. Compared with the fruitful results ondeterministic
SFNSs, the corresponding results onstochastic SFNSs have
been relatively fewer. So far, some efforts have been made to
solve the control problem for the stochastic nonlinear systems
by using the quartic Lyapunov function in combination with
the Itô’s differentiation rule. For example, an interesting in-
verse optimal control scheme [8] has been proposed to ensure
the asymptotic stability in probability for SFNSs with stochas-
tic disturbances. By applying the backstepping procedure and
the stochastic small-gain theorem, an output-feedback adaptive
controller has been developed in [40] for stochastic SFNSs
in the presence of unknown parameters. By combining func-
tion approximation and backstepping techniques, an adaptive
tracking control scheme has been put forward for a class of
stochastic SFNSs with unknown functions [2]. Subsequently,
some adaptive control schemes have been developed to achieve
the closed-loop stability in probability for stochastic SFNSs
exhibiting certain system constraints [35].

It should be pointed out that almost all existing results
concerning SFNSs have been exclusively on thecontinuous-
time case. In contrast to the rich body of literature available
on continuous-time systems, only a few results have been
obtained for discrete-time SFNSs despite their importance in
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modeling nowadays popular communication-based networked
systems. In fact, many dedicated mathematical tools for
continuous-time SFNSs cannot be directly exploited in the
discrete-time case [11], [44], [47]. For example, the stability
analysis based on traditional Lyapunov functions becomes
extremely intractable for discrete-time SFNSs because the
difference of the Lyapunov function in the discrete-time setting
is inherently nonlinear, which makes it very difficult to de-
sign an appropriate controller to compensate/eliminate system
uncertainties. In particular, if we were to directly apply the
backstepping procedure to discrete-time SFNSs, the future
state information is likely to appear in the controller, which
would violate the local causality and lead to the infeasibility
of the control scheme [11]. To resolve the causality contra-
diction issue, a seminal control scheme has been proposed in
[44] for discrete-time SFNSs with unknown parameters. The
presented method [44] is suitable for those systems that can be
transformed into the parametric strict-feedback form [47]. By
then-step-ahead predictor method and function approximation
technology, a systematic design framework [11], [13] has
been proposed to solve the control problem for more general
discrete-time SFNSs, where the basic idea is to convert the
discrete-time SFNSs into then-step-ahead predictor model and
then design the control scheme for such a transformed system.
With help of the elegantn-step-ahead predictor method, some
extensions have been developed for more general nonlinear
systems with different phenomena including the non-affine
form [34], [41], unknown control directions [42], and input
nonlinearities [24].

Up to now, all the aforementioned results for discrete-time
SFNSs have been limited todeterministic systems without
consideration of stochastic noises. As a matter of fact, many
practical systems are subject to stochastic disturbances due
to random abrupt variations such as sudden environmental
changes, component failures, and changing subsystem inter-
connections [10], [14], [36]. As a consequence, it is of both
theoretical significance and practical importance to study the
control problem for discrete-time SFNSs under stochastic nois-
es. From a methodological viewpoint, unlike the continuous-
time case, there is a lack of appropriate mathematical tools
capable of analyzing how the stochastic phenomenon affect
the dynamical behaviors of discrete-time stochastic SFNSs.
Recently, an initial effort has been made in [29] to address
the stabilization problem for a class of discrete-time output-
dependent nonlinear stochastic system withadditive noises
(that is independent of states), and some interesting results
have been obtained under certain rather stringent assumptions
(e.g. perfect system model and output-dependent nonlinear
functions). On the other hand, it is often the case in prac-
tice that the stochastic noises encountered exert influence on
system states [25]. Such kind of noises is referred to as the
multiplicative noises (also called Itô-type noises) that not only
affect system stability but also complicate the corresponding
dynamic analysis [9], [10], [46].

So far, there have been very few (if not none) available
results on the control problem for discrete-time SFNSs subject
to multiplicative noises due probably to the technical chal-
lenges identified as follows. First, within the usual Lyapunov-
stability-based framework, the multiplicative noise enters into
the difference of a Lyapunov function that leads to an addi-
tional state-dependent term. Recall that a Lyapunov function

is normally constructed based on the controlled error. In this
case, it becomes fundamentally difficult to obtain a stability
criterion (in probability) with both system states and controlled
errors appeared in the difference of the Lyapunov function.
To overcome such a difficulty, some dedicated techniques
have to be developed to characterize the system states by the
controlled errors without inducing much conservatism. An-
other challenge stems from the unknown nonlinear modeling
dynamics that cannot be simply approximated by the neural
network (NN) in each step of backstepping because of the
recursively accumulated approximation errors. Note that, as
such errors become larger, it is more difficult to represent the
system states by the controller errors which would invalidate
the backstepping-based design in the sense of multiplicative
noises. As such, the main motivation of this paper is to tackle
the identified challenges by establishing a novel yet feasible
control framework.

Motivated by the discussions made above, we will launch
a major study on the stability analysis and controller design
issues for a class of discrete-time SFNSs subject to the multi-
plicative noises. The noises, which are dependent on all system
states, are driven by the Gaussian white noise sequence. Such
kind of multiplicative noises is, for the first time, discussed in
the control issue of discrete-time SFNSs. By combining the
backstepping procedure with the Lyapunov stability theory, a
novel backstepping control scheme is developed to provide
a sufficient condition on the mean-square stability of the
closed-loop systems, and the corresponding results are further
extended to the systems with unknown modeling dynamics
approximated by the radial basis function (RBF) NNs. The
main contributions of the paper are highlighted as follows.

1) A novel backstepping-based control framework, which
is essentially different from then-step-ahead predictor
method, is proposed to successfully establish the relation-
ship between the system states and the controlled errors
so as to facilitate the stability analysis with respect to the
multiplicative noises.

2) The proposed new framework is based on the original
stochastic controlled system (rather than the transformed
n-step-ahead predictor model), which effectively avoids
the effects on the closed-loop stability from the pre-
diction errors. Meanwhile, the causality contradiction is
also overcome by using the new variable substitution
technology to obtain the future information.

3) A novel adaptive neural control scheme is developed
by using only one neural approximator. Such a scheme
not only avoids the delays of neural weight updating
law caused by the classicaln-step-ahead predictor model
but also simplifies the algorithm implementation, thereby
improving the transient-state performance and reducing
the computational burden.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider the following discrete-time strict-feedback nonlin-
ear system with multiplicative noise










xi(k + 1) = gi(xi(k))xi+1(k) + fi (x̄i(k)) , 1 ≤ i ≤ n− 1

xn(k + 1) = gn(xn(k))u(k) + fn (x̄n(k)) + h (x̄n(k))ω(k)

y(k) = x1(k)
(1)
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where x̄i(k) = [x1(k), x2(k), · · · , xi(k)]
T ∈ R

i, i =
1, · · · , n, y(k) ∈ R andu(k) ∈ R denote the state vector, the
system output and the control input, respectively.ω(k) ∈ R

is a Gaussian white noise sequence with statistical properties
E(ω(k)) = 0 andE(ω2(k)) = 1. gi(xi(k)) ∈ R, fi(x̄i(k)) ∈
R (i = 1, 2, · · · , n) andh(x̄n(k)) ∈ R are smooth nonlinear
functions withfi(0) = 0, h(0) = 0.

For convenience, we introduces the following notations:
C := D means thatD is denoted asC, and‖.‖ denotes the
Euclidean norm of a vector, namely,‖x̄i(k)‖ =

√

x̄Ti (k)x̄i(k).
Assumption 1: The nonlinear functionsfi(x̄i(k)) ∈ R

(i = 1, 2, · · · , n− 1) andh(x̄n(k)) ∈ R satisfy the Lipschitz
condition.

Assumption 2: the smooth nonlinear functiongi(xi(k))
(i = 1, 2, · · · , n) satisfies the controllable condition0 < g

i
≤

|gi(·)| ≤ gi, in which g
i

and gi are two positive constants.
Without losing generality,gi(·) (i = 1, 2, · · · , n) is assumed
to be positive in this paper.

The primary objective of this paper is to design a
backstepping-based state-feedback controller for the system
(1) satisfying Assumption 1 such that, in the presence of the
multiplicative noises, all of the closed-loop states are expo-
nentially mean-square (EMS) stable, and the non-causality
problem resulting from backstepping design is simultaneously
avoided.

Remark 1: It should be noticed that some elegant control
schemes [11], [13], [24] have been developed for discrete-
time SFNSs with bounded disturbances that are assumed to
be deterministic. In practice, however, the disturbance often
occurs randomly due to sudden environment changes that rely
on system states, which gives rise to the multiplicative noise.
It should be pointed out that, in the presence of multiplicative
noise h (x̄n(k))ω(k), the control system (1) is inherently
stochastic and is therefore impossible to be transformed into
then-step ahead predictor model for solving the non-causality
problem by the traditional predictor methods [11], [13], [24].
As such, a novel control framework has to be sought to
overcome the essential difficulties caused by multiplicative
noiseh (x̄n(k))ω(k).

Notice that nonlinear functions can be approximated by
many function approximators such as polynomials, artificial
NNs and fuzzy logic systems, where the NN approximators
integrate well with the Lyapunov-stability-based nonlinear
control framework. In this paper, the following RBF NN is
employed as a function approximator:

fnn(Z(k)) =WTS(Z(k)) (2)

where Z(k) ∈ ΩZ ⊂ R
m is the input of RBF N-

N, ΩZ is a compact set,W = [W1,W2, · · · ,Wq]
T ∈

R
q is the adjustable weight vector withq > 1 be-

ing the node number of hidden layer, andS(Z(k)) =
[S1(Z(k)), S2(Z(k)), · · · , Sq(Z(k))]

T ∈ R
q is the basis

function vector. In this paper,Si(Z(k)) is selected as the

Gaussian functionSi(Z(k)) = exp
[

−(Z(k)−ςi)
T (Z(k)−ςi)

r2

]

,
where i = 1, · · · , q, ςi ∈ R

m and r ∈ R are the center and
width of the Gaussian function, respectively.

As shown in [30], the RBF NN (2) with sufficiently large
node numberq can approximate any smooth functionf(Z(k)),
R

m → R, to any accuracy over a compact setΩZ ⊂ R
m:

f(Z(k)) =W ∗TS(Z(k)) + δ(Z(k)), ∀Z(k) ∈ ΩZ (3)

whereW ∗ is an optimal constant weight vector,δ(Z(k)) is the
approximation error and satisfiesδ(Z(k)) ≤ ε with ε being
an arbitrarily small constant.

In order to verify the stability of the closed-loop system with
multiplicative noise, a sufficient condition on the mean-square
stability [43] is recalled as follows.

Lemma 1: [43] Define η(k) = [η1(k), η2(k), · · · ,
ηn(k)]

T ∈ R
n and letV (η(k)) be a Lyapunov function. If

there exist real scalarsλ1 > 0, λ2 > 0, ρ ≥ 0 and0 < ψ < 1
such that

λ1‖η(k)‖
2 ≤ V (η(k)) ≤ λ2‖η(k)‖

2 (4)

and

E{V (η(k + 1))|η(k)} − V (η(k)) ≤ −ψV (η(k)) + ρ (5)

then the sequenceη(k) is EMS stable and satisfies

E{‖η(k)‖2} ≤
λ2
λ1

‖η(0)‖2(1− ψ)k +
ρ

λ1ψ
(6)

whereη(0) ∈ R
n is the given initial condition.

From Lemma 1, the sequenceη(k) is EMS stable ifρ = 0,
andη(k) is EMS bounded ifρ > 0.

III. B ACKSTEPPING-BASED CONTROL FRAMEWORK FOR

EXACTLY KNOWN MODEL

For clarity purposes, this section focuses on the case that
the system model (1) is exactly known, that is, the system
dynamicsfi(x̄i(k)) ∈ R andgi(x̄i(k)) ∈ R in (1) are known
for i = 1, 2, · · · , n. It should be pointed out that the presence
of the multiplicative noiseh(x̄n(k))ω(k) in (1) not only
affects the stability but also complicates the establishment of
the stability criteria for the closed-loop system. Furthermore,
the causality contradiction constitutes another major obstacle
encountered in the controller design of discrete-time SFNSs
using the backstepping procedure. To deal with the stability
and causality issues simultaneously, a novel control framework
is proposed in this section for the system (1) with exact model
information by combining the backstepping strategy and the
variable substitution.

To start with, let us first introduce the following coordinate
transformations:

{

z1(k) = x1(k)

zi(k) = xi(k)− αi−1(k), i = 2, 3, · · · , n
(7)

where the functionαi−1(k) is the virtual control law to be
designed later. Based on the coordinate transformations (7), the
following n-step recursive design procedure is used to derive
the virtual control laws and the actual control law.

Step 1: Taking the error variablez1(k) = x1(k) into
consideration, its difference alongz2(k) = x2(k) − α1(k) is
calculated as follows:

z1(k + 1) =g1(x1(k))x2(k) + f1 (x1(k))

=g1(x1(k))

[

z2(k) + α1(k) +
f1 (x1(k))

g1(x1(k))

]

. (8)

Constructing the virtual control law

α1(k) = −
f1 (x1(k))

g1(x1(k))
:= F1(z1(k)) (9)
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we have

z1(k + 1) = g1(x1(k))z2(k) := G1(z1(k))z2(k). (10)

According to the Assumption 1 and Assumption 2, it is not
difficult for one to figure out thatF1 (z1(k)) also satisfies the
Lipschitz condition.

Step 2: Noting z2(k) = x2(k) − α1(k), its first difference
along (1) and (7) is

z2(k + 1) = g2(x2(k))

[

z3(k) + α2(k) (11)

+
f2 (x̄2(k)) − α1(k + 1)

g2(x2(k))

]

.

To overcome the causality contradiction caused byα1(k +
1), the termα1(k + 1) is characterized along (9) and (10) as

α1(k + 1) = F1 (z1(k + 1)) = F1 (G1(z1(k))z2(k)) (12)

Substituting (12) into (11) gives

z2(k + 1) = g2(x2(k))

[

z3(k) + α2(k) (13)

+
f2 (x̄2(k))− F1 (G1(z1(k))z2(k))

g2(x2(k))

]

.

Next, constructing the second virtual control

α2(k) = −
f2 (x̄2(k))− F1 (G1(z1(k))z2(k))

g2(x2(k))
(14)

yields

z2(k + 1) = g2(x2(k))z3(k)

= g2(z1(k), z2(k) + α1(k))z3(k) (15)

:= G2(z2(k))z3(k).

To facilitate the stability analysis, we will show that the vir-
tual controlα2(k) can be characterized as a function of error
variablesz1(k) and z2(k). Firstly, notingz1(k) = x1(k) and
according to (9), we haveα1(k) = F1 (z1(k)). It then follows
from x2(k) = z2(k)+α1(k) thatx2(k) = z2(k)+F1 (z1(k)).
Therefore,f2 (x̄2(k)) as well asg2(x2(k) can be regarded as
a function of the variablesz1(k) andz2(k). Subsequently, the
virtual controlα2(k) is rewritten as

α2(k) = −
f2 (z1(k), z2(k) + F1(z1(k)))− F1 (G1(z1(k))z2(k))

g2(z1(k), z2(k) + F1(z1(k)))

:= F2 (z̄2(k)) (16)

where z̄2(k) = [z1(k), z2(k)]
T ∈ R

2. According to Assump-
tion 1 and Assumption 2, it can be concluded that the function
F2 (z̄2(k)) satisfies the Lipschitz condition.

Step i (3 ≤ i ≤ n− 1): Defining zi(k) = xi(k)− αi−1(k),
and using (1), we have

zi(k + 1) = gi(xi(k))

[

zi+1(k) + αi(k)

+
fi (x̄i(k))− αi−1(k + 1)

gi(xi(k))

]

. (17)

Applying the similar analysis as in Step 2 and according to
(16), we obtainαi−1(k) by a recursive design as follows:

αi−1(k) =− fi−1(x̄i−1(k))/gi(x̄i−1(k))

+ Fi−2

(

G1(z1(k))z2(k)), G2(z̄2(k))z3(k)),

· · · , Gi−2(z̄i−2(k))zi−1(k)
)

/gi(x̄i−1(k))

:=Fi−1(z̄i−1(k)) (18)

where

z̄i−1(k) = [z1(k), z2(k), · · · , zi−1(k)]
T ∈ R

i−1.

To this end, the termαi−1(k + 1) in (17) along (18) is
expressed as

αi−1(k + 1) = Fi−1 (z̄i−1(k + 1)) . (19)

From (10) and (15), it can be recursively obtained that
zj−1(k + 1) = Gj−1(zj−1)zj(k), j = 2, 3, · · · , i. Therefore,
z̄i−1(k + 1) can be further characterized as the function of
z̄i(k). Based on the above analysis, the termαi−1(k + 1)
including the future information̄zi−1(k + 1) can be rewrit-
ten using the current error variables̄zi(k), which is shown
specifically as follows:

αi−1(k + 1) = Fi−1(G1(z1(k))z2(k), G2(z2(k))z3(k),

· · · , Gi−1(zi−1)zi(k)) (20)

:= Fi−1(Gi−1(zi−1)zi(k)) (21)

where Gi−1(zi−1)zi(k) = [G1(z1(k))z2(k), · · · ,
Gi−1(zi−1)zi(k)]

T , Gj(zj(k)) = gj(z1(k), z2(k) +
α1(k), · · · , zj(k) + αj−1(k)), j = 1, 2, · · · , i− 1.

Subsequently, constructing thei-th virtual control law

αi(k) = −
fi (x̄i(k))− Fi−1(Gi−1(zi−1)zi(k))

gi(xi(k))
(22)

we have

zi(k + 1) = gi(xi(k))zi+1(k) := Gi(zi(k))zi+1(k) (23)

Similarly, noticingxi(k) = zi(k)+αi−1(k) with αi−1(k+1)
described by (20), it can be obtained that the virtual control
αi(k) in (22) can be characterized as a function of error
variableszj(k), j = 1, 2, · · · , i. As a result, we rewriteαi(k)
as follows:

αi(k) = Fi (z̄i(k)) (24)

whereFi (z̄i(k)) denotes

Fi (z̄i(k)) =−
[

fi
(

z1(k), z2(k) + F1(z1(k)), · · · , zi(k)

+ Fi−1(z̄i−1(k))
)

− Fi−1(Gi−1(zi−1)zi(k))
]

/

gi
(

z1(k), z2(k) + F1(z1(k)), · · · , zi(k)

+ Fi−1(z̄i−1(k))
)

. (25)

Step n: For zn(k) = xn(k)− αn−1(k), its difference is

zn(k + 1) =gn(xn(k))

[

u(k) +
fn (x̄n(k))− αn−1(k + 1)

gn(xn(k))

]

+ h (x̄n(k))ω(k). (26)

From (23) and (24), the termαn−1(k + 1) is expressed as

αn−1(k + 1) =Fn−1 (z̄n−1(k + 1))

=Fn−1(Gi−1(zi−1)zi(k)) (27)

where Fn−1 (z̄n−1(k)) is given in (25) with i =
n − 1, and Gn−1(zn−1)zn(k) = [G1(z1(k))z2(k), · · · ,
Gi−1(zn−1)zn(k)]

T . Substituting (27) into (26) gives

zn(k + 1) = gn(xn(k))

[

u(k) +
fn (x̄n(k))

gn(xn(k))
(28)
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−
Fn−1(Gi−1(zi−1)zi(k))

gn(xn(k))

]

+ h (x̄n(k))ω(k).

For clarity, the ideal actual controlleru(k) is denoted as
u∗(k), that is, u(k) := u∗(k) when the system model (1)
is exactly known. Subsequently, constructing the ideal actual
controller as follows:

u
∗(k) =

−fn(x̄n(k)) + Fn−1(Gi−1(zi−1)zi(k))

gn(x̄n(k))
(29)

we have

zn(k + 1) = h (x̄n(k))ω(k). (30)

Up to now, we have completed the backstepping-based
controller design.

Lemma 2: Consider the coordinate transformation (7), the
virtual control law (9), (16) and (24). Under the Assumption
1 and Assumption 2, we have

|xi(k)| ≤ |zi(k)|+ LF,i−1‖z̄i−1(k)‖, i = 2, 3, · · · , n (31)

whereLFi−1
is a Lipschitz constant of the nonlinear function

Fi(zi(k)) in (25).
Proof: From the coordinate transformation (7), it is

obtained thatx1(k) = z1(k), xi(k) = zi(k) + αi−1(k).
The virtual control lawαi(k) is characterized asFi(zi(k)).
According to the equation (9), (16) and (24), it is easy to figure
out thatFi(0) = 0 (i = 1, 2, · · · , n − 1). For F1(z1(k)), one
has the following property holds under the Assumption 1 and
Assumption 2.

|F1(z1(k))| =

∣

∣

∣

∣

f1(z1(k))

g1(z1(k))

∣

∣

∣

∣

≤
|f1(z1(k))|

g
i

≤ LF1
|z1(k)|

(32)

whereLF1
= Lf1/g1, Lf1 is the Lipschitz constant of the

nonlinear functionf1(z1(k)). It can be concluded from (9) and
(32) thatF1(z1(k)) satisfies the Lipschitz condition. Referring
to the definition ofF2(z̄2(k)), one has

|F2(z̄2(k))| ≤
|f2 (z1(k), z2(k) + F1(z1(k))) |

g
2

+
|F1 (g1(z1(k))z2(k)) |

g
2

. (33)

Since f2(·) and F1(·) satisfy the Lipschitz condition, it is
finally obtained that.

|F2(z̄2(k))| ≤ LF2
‖z̄2(k)‖ (34)

where LF2
= max

{

Lf2

√

max{1 + 2L2
F1
, 2}, LF1

ḡ1

}

/g
2
,

Lf2 is the Lipschitz constant off2(·). Thus,F2(z̄2(k)) also
satisfies the Lipschitz condition. Recursively, one has

|Fi(z̄i(k))| ≤ LFi
‖z̄i(k)‖ (35)

where

LFi
= max

{

LFi−1
max

{

g1, · · · , gi−1

}

,

Lfi

g
i

√

max

{

θ1, θ2, · · · , θi

}

}

,

θ1 = 1 + 2
i−1
∑

j=1

L2
Fj
, θm = 2 + 2

i−1
∑

j=m

L2
Fj
,

i = 2, 3, · · · , n− 1; m = 2, 3, · · · , i

with LFi
being a Lipschitz constant of the nonlinear function

Fi(z̄i(k)). Consequently, the relationship betweenxi(k) and
zi(k) is derived as

|xi(k)| = |zi(k) + αi−1(k)|

≤ |zi(k)|+ LFi−1
‖z̄i−1(k)‖

wherei = 2, 3, · · · , n− 1.
Theorem 1: Consider the closed-loop system consisting of

the discrete-time strict-feedback nonlinear systems (1) with
multiplicative noiseh(x̄n(k))ω(k), Assumptions 1-2, the vir-
tual control law (22) and the actual controller (29). For any
given initial condition, the closed-loop system is EMS stable
if there exist constantspi > 0 and 0 < ψ < 1 such that the
following conditions hold

pi − pi−1g
2
i−1 − pnLi − piψ ≥ 0, i = 1, 2, · · · , n (36)

where p0 = 0, g0 = 0, gi−1 is the upper bound of the
nonlinear functiongi−1(x̄i−1(k)), andLi > 0 is to be defined
later which relies on Lipschitz constants of nonlinear functions
h(x̄n(k)) andfi (x̄i(k)) with i = 1, 2, · · · , n− 1.

Proof: Construct the following Lyapunov function

V (k) =
n
∑

i=1

piz
2
i (k) (37)

wherepi (i = 1, 2, · · · , n) is a positive design constant.
By defining λ1 = min{p1, p2, · · · , pn} and λ2 =

max{p1, p2, · · · , pn}, it is easily obtained thatλ1‖z(k)‖2 ≤
V (k) ≤ λ2‖z(k)‖

2, which means the chosen Lyapunov
function (37) satisfies Lemma 1. Then, the difference of (37)
along (10), (15), (23) and (30) is given by

∆V (k) =E {V (k + 1)|z(k)} − V (k) (38)

=−

n
∑

i=1

(

pi − pi−1g
2
i−1(x̄i−1(k))

)

z2i (k)

+ E

{

pn [h(x̄n(k))ω(k)]
2
}

≤pnh
2(x̄n(k))−

n
∑

i=1

(

pi − pi−1g
2
i−1

)

z2i (k) (39)

wherep0 = 0.
It is seen from (38) that the non-zero unbounded func-

tion h(x̄n(k)) makes the stability analysis for (1) extremely
difficult. To overcome such a difficulty, the key issue is
to characterize the functionsh(x̄n(k)) by using the error
variableszi(k) (i = 1, 2, · · · , n). Noticing h(0) = 0 and
Assumption 1, there exists a positive constantLh such that

|h (x̄n(k)) − h(0)| ≤ Lh‖x̄n(k)‖. (40)

Substituting (40) into (38) and referring to the Lemma 2,
we have

∆V (k) ≤pnL
2
h

n
∑

i=1

x2i (k)−

n
∑

i=1

(

pi − pi−1g
2
i−1

)

z2i (k)

≤− ψV (k)−

n
∑

i=1

(

pi − pi−1g
2
i−1
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− pnLi − piψ
)

z2i (k) (41)

whereψ is a constant satisfying0 < ψ < 1, L1 = L2
h(1 +

2
∑n−1

j=1 L
2
Fj
), Li = 2L2

h(1+
∑n−1

j=i L
2
Fj
), i = 2, 3, · · · , n−1,

and Ln = 2L2
h. It is clearly shown from (41) that, if the

condition (36) holds, then (41) is rewritten as

∆V (k) = E {V (k + 1)|z(k)} − V (k) ≤ −ψV (k). (42)

According to Lemma 1, we can conclude from (42) that the
closed-loop system is EMS stable.

Remark 2: Theorem 1 provides a sufficient condition for
the mean-square stability of discrete-time SFNSs (1) with
multiplicative noiseh(x̄n(k))ω(k). It is worth pointing out
that the proposed method is quite different from the existing
ones used in [11], [13], [24] for systems without multiplicative
noises. In this paper, some specific efforts have been devoted
to deal with the difficulties in stability analysis caused by the
multiplicative noiseh(x̄n(k))ω(k). Firstly, the virtual control
law αi(k) is recursively designed based on the original system
(1) rather than the traditional predictor model. By using the
variable substitution, the virtual control lawαi(k) is expressed
in (24) as a function of errorszj(k), j = 1, 2, · · · , i. By
combining the coordinate transformations (7), Assumption 1
and Lemma 2, the system state|xi(k)| is bounded by a linear
combination of‖zj(k)‖, j = 1, 2, · · · , i. As a result, the
term L2

h

∑n

i=1 x
2
i (k) resulting from the multiplicative noise

h(x̄n(k))ω(k) can be bounded by
∑n

i=1 Liz
2
i (k) in (41).

Based on these dedicated efforts mentioned above, the stability
condition (36) is derived to ensure that the discrete-time
SFNSs (1) subject to multiplicative noises is EMS stable. It
should be noticed that the key idea of our developed approach
is to make the system statexi(k) bounded by the errorszj(k),
j = 1, 2, · · · , i.

Notice that the stability condition (36) can be simplified
and Assumption 1 can be simultaneously relaxed if the multi-
plicative noise in system (1) is replaced with the following
three cases: the special multiplicative noiseh(x1(k))ω(k),
the additive noiseω(k), or the deterministic bounded external
disturbanced(t). Based on the proof of Theorem 1, it is easy
to obtain the following two corollaries.

Corollary 1: Consider the system (1) subject to the mul-
tiplicative noise h(x1(k))ω(k), in which fi(x̄i(k)) (i =
1, 2, · · · , n) are not required to satisfy the Lipschitz condition.
By designing the same virtual control laws (22) and the
actual controller (29) as in Theorem 1, for any bounded
initial condition, the closed-loop system is EMS stable if
h(x1(k)) satisfies the Lipschitz condition and the constants
are appropriately chosen such that

p1 − pnL
2 − piψ > 0, pi − pi−1g

2
i−1 − piψ ≥ 0 (43)

where i = 2, 3, · · · , n, pi > 0, 0 < ψ < 1, L > 0 is the
Lipschitz constant of the functionh(x1(k)), gi−1 is the upper
bound of the nonlinear functiongi−1(xi−1(k)).

Corollary 2: Consider the system (1) by replacing the mul-
tiplicative noiseh(x̄n(k))ω(k) with the additive noiseω(k)
(or bounded external disturbanced(t)), in which fi(x̄i(k))
(i = 1, 2, · · · , n) are not required to satisfy the Lipschitz
condition. By designing the same virtual control laws (22) and
the actual controller (29) as in Theorem 1, for any bounded
initial condition, the closed-loop system is EMS stable (or

uniformly ultimately bounded) if the following conditions are
satisfied

pi − pi−1g
2
i−1 − piψ ≥ 0, i = 1, 2, · · · , n (44)

wherep0 = g0 = 0, pi > 0 (2, · · · , n), 0 < ψ < 1, andgi−1

is the upper bound of the nonlinear functiongi−1(xi−1(k)).

IV. BACKSTEPPING-BASED ADAPTIVE NEURAL CONTROL

DESIGN FORNONLINEAR MODELING UNCERTAINTIES

In this section, we will extend the results obtained in Section
III to systems with modeling uncertainties within the same
framework in order to better reflect the engineering practice.

Assumption 3: The system dynamicsfi(x̄i(k)) ∈ R and
gi(x̄i(k)) ∈ R (i = 1, 2, · · · , n) are unknown and smooth
nonlinear functions.

From Assumption 3, the virtual control lawsαi(k) in (22)
and the ideal actual control lawu∗(k) in (29) cannot be
implemented since it contains the unknown dynamics of the
system. Notice that the proposed control scheme in Section
III makes all functions be passed down and lumped in the
actual ideal controlleru∗(k) in (29). Based on such an
analysis, we would only need one NN to approximate the
ideal controlleru∗(k) consisting offn (x̄n(k)), gn(x̄n(k))
and Fn−1 (g1(x1(k))z2(k), · · · , gn−1(x̄n−1(k))zn(k)) if the
controlled error variableszi(k) (i = 2, 3, · · · , n) can be
characterized by a function of system statesxi(k) (i =
1, 2, · · · , n). Noticing thatz2(k) = x2(k)− α1(k) and

α1(k) = −f1 (x1(k)) /g1(x1(k))

we havez2(k) = x2(k) + f1 (x1(k)) /g1(x1(k)). To facilitate
the construction of a recursive formula betweenzi(k) and
xi(k), let

φ2(x̄2(k)) = x2(k) + f1 (x1(k)) /g1(x1(k))

which meansz2(k) = φ2(x̄2(k)). Since z3(k) = x3(k) −
α2(k) with α2(k) given in (14), it can be derived that

z3(k) = x3(k) +
[f2(x̄2(k)) − F1 (g1(x1(k))φ2(x̄2(k)))]

g2(x̄2(k))
.

Similarly, it follows from (7) and (22) that

zi(k) =xi(k) + fi−1(x̄i−1(k))/gi−1(x̄i−1(k))

− Fi−2

(

g1(x1(k))φ2(x̄2(k)), g2(x̄2(k))φ3(x̄3(k)),

· · · , gi−2(x̄i−2(k))φi−1(x̄i−1(k))
)

/gi−1(x̄i−1(k))

:=φi(x̄i(k)) (45)

wherei = 2, · · · , n, andF0(.) = 0.
From (45), the ideal controlleru∗(k) in (29) is rewritten as

the function of all system states as follows:

u∗(k) =− fn(x̄n(k))/gn(x̄n(k))

+ Fn−1

(

g1(x1(k))φ2(x̄2(k)), g2(x2(k))φ3(x̄3(k)),

· · · , gn−1(xn−1)φn(x̄n(k))
)

/gn(x̄n(k)). (46)

It is easily seen from (46) that the ideal controlleru∗(k) in (29)
can be regarded as a function of statesxi(k) (i = 1, 2, · · · , n)
which does not rely on the virtual control lawαi(k). Moreover,
according to the definition ofFn−1(.) in (25) and Assumption
3, we know thatu∗(k) is a smooth function. As a result,u∗(k)
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in (29) can be approximated to arbitrarily accuracy over a
compact setΩ ⊂ R

n by RBF NN (3) as follows:

u∗(k) =W ∗T (k)S(x̄n(k)) + δ(x̄n(k)), ∀x̄n(k) ∈ Ω (47)

whereW ∗ ∈ R
q is an ideal constant weight vector,δ(x̄n(k))

is the approximation error and satisfiesδ(x̄n(k)) ≤ ε, andε
is an arbitrarily small constant.

Substituting (47) into (28), we have

zn(k + 1) =gn(x̄n(k))
[

u(k)−W ∗TS(x̄n(k))− δ(x̄n(k))
]

+ h (x̄n(k))ω(k).

By designing the following adaptive neural controller

u(k) = ŴT (k)S(x̄n(k)) (48)

we have

zn(k + 1) =gn(x̄n(k))
[

W̃T (k)S(x̄n(k))− δ(x̄n(k))
]

(49)

+ h (x̄n(k))ω(k)

where Ŵ (k) is the estimate of the ideal neural weightW ∗

andW̃ (k) = Ŵ (k)−W ∗ is the estimate error.
In order to verify the mean-square boundedness of the

neural weight estimate error̃W (k), the neural weight update
law is chosen as

Ŵ (k + 1) = (1− σ)Ŵ (k) +
γS(x̄n(k))z1(k)

1 + ‖S(x̄n(k))‖2z21(k)
(50)

where γ > 0 is the design parameter andσ > 0 is the
modification coefficient. By using (50) and taking̃W (k) =
Ŵ (k)−W ∗ into account, we derive the neural weight estimate
error dynamics as follows:

W̃ (k + 1) = W̃ (k) +
γS(x̄n(k))z1(k)

1 + ‖S(x̄n(k))‖2z21(k)
− σŴ (k).

(51)

Remark 3: From (46), the ideal controlleru∗(k) in (29) has
been transformed into a function of all system statesx̄n(k)
by recursively characterizing the errorzi(k) as φi(x̄i(k)) in
(45). As a result, the controlleru∗(k) in (46) is independent
of the virtual control lawsαi(k) in (22). Therefore, only
one RBF NN in (47) is applied to approximate the ideal
controlleru∗(k) in (46) since the virtual control lawsαi(k)
are just used in the intermediate design process which does
not need to be implemented in practice. Compared with
existing methods with multiple neural approximators [11],
[13], [24], the developed controller (48) and (50) can be easily
implemented with significantly reduced computational burden.

Next, we first show that the neural weight estimate error is
EMS bounded via the Lyapunov stability analysis.

Theorem 2: Consider the neural weight estimate error dy-
namics (51). Suppose that the neural weightŴ (0) is initialized
in a compact setΩ and updated by (50). Then, the neural
weight estimate error̃W (k) is EMS bounded provided that
design parameters satisfy0 < γ < 1, 1

4̺ < σ < 0.5, and
̺ > 1.

Proof: Choose the following Lyapunov function

VW̃ (k) = W̃T (k)W̃ (k) (52)

whose first difference along the weight estimate error dynam-
ics (51) is given by

∆V
W̃
(k) = E

{

V
W̃
(k + 1)|W̃ (k)

}

− V
W̃
(k)

= E

{

2γW̃ T (k)S(x̄n(k))z1(k)

1 + ‖S(x̄n(k))‖2z21(k)
− 2σW̃ T (k)Ŵ (k)

+
γ2‖S(x̄n(k))‖

2z21(k)

[1 + ‖S(x̄n(k))‖2z21(k)]
2
+ σ

2‖Ŵ (k)‖2

−
2γσŴ T (k)S(x̄n(k))z1(k)

1 + ‖S(x̄n(k))‖2z21(k)

}

. (53)

Using W̃ (k) = Ŵ (k)−W ∗, we have

2W̃T (k)Ŵ (k) = W̃T (k)W̃ (k)+‖ŴT (k)‖2−‖W ∗‖2. (54)

It follows that the first difference of∆VW̃ (k) along the above
equation is

∆V
W̃
(k) = E

{

2γW̃ T (k)S(x̄n(k))z1(k)

1 + ‖S(x̄n(k))‖2z21(k)
− σW̃

T (k)W̃ (k)

+
γ2‖S(x̄n(k))‖

2z21(k)

[1 + ‖S(x̄n(k))‖2z21(k)]
2
− σ(1− σ)‖Ŵ (k)‖2

−
2γσŴ T (k)S(x̄n(k))z1(k)

1 + ‖S(x̄n(k))‖2z21(k)
+ σ‖W ∗‖2

}

. (55)

By observing

‖S(x̄n(k))‖
2z21(k)

1 + ‖S(x̄n(k))‖2z21(k)
≤ 1

and using the following inequalities

2γW̃T (k)S(x̄n(k))z1(k)

1 + ‖S(x̄n(k))‖2z21(k)
≤
W̃T (k)W̃ (k)

4̺
+ ̺γ2

γ2‖S(x̄n(k))‖
2z21(k)

[1 + ‖S(x̄n(k))‖2z21(k)]
2 ≤

γ2

4

−
2γσŴT (k)S(x̄n(k))z1(k)

1 + ‖S(x̄n(k))‖2z21(k)
≤ σ2‖Ŵ (k)‖2 +

γ2

4

we have

∆VW̃ (k) ≤ −

(

σ −
1

4̺

)

W̃T (k)W̃ (k) + σ‖W ∗‖2

− σ(1 − 2σ)‖Ŵ (k)‖2 + (0.5 + ̺)γ2. (56)

By selecting the design parameters to satisfy the following
conditions

1

4̺
< σ < 0.5, 0 < γ < 1, ̺ > 1 (57)

one has

∆VW̃ (k) ≤ −βW̃T (k)W̃ (k) + ρw (58)

whereρw = σ‖W ∗‖2 + (0.5 + ̺)γ2, β = σ − 1
4̺ . It follows

easily from (57) that0 < β < 1. According to Lemma 1, the
weight estimate error̃W (k) is EMS bounded and satisfies

E{‖W̃ (k)‖2} ≤
λ2
λ1

‖W̃ (0)‖2(1− β)k +
ρw
λ1ψ

:= Φw

whereW̃ (0) is the given initial weight vector,0 < λ1 < 1,
λ2 > 1.
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Now, we are in the position to state the main result, which
shows the uniform boundedness in probability of all closed-
loop signals by using the proposed adaptive neural controller
(48) with weight update law (50).

Theorem 3: Consider the closed-loop system consisting of
the discrete-time strict-feedback nonlinear system (1) under
Assumptions 1 and 3, the actual controller (48), and the weight
update law (50) with design parameters satisfying (57). For
any given initial condition, the closed-loop system in the
presence of multiplicative noise is EMS bounded if there exist
positive constantspi > 0, 0 < ψ < β < 1 andµ > 1 such
that the following conditions hold:

pi − pi−1g
2
i−1 − 2pnLi − piψ > 0, µβ − 4png

2
ns

2 − µψ > 0
(59)

wherei = 1, 2, · · · , n, p0 = 0, Li > 0 andβ are respectively
defined in (41) and (58).

Proof: Construct the Lyapunov function as follows:

Vzw(k) = Vz(k) + µVW̃ (k) (60)

whereVz(k) =
∑n

i=1 piz
2
i (k), VW̃ (k) is given in (52), andpi

andµ are constant coefficients. The difference ofVz(k) along
(10), (23) and (49) is given by

∆Vz(k) = E {Vz(k + 1)|z(k)} − Vz(k)

≤4png
2
nW̃

T (k)W̃ (k)‖S(x̄n(k))‖
2 + 4png

2
nε

2

+ 2pnh
2 (x̄n(k)) −

n
∑

i=1

(

pi − pi−1g
2
i−1

)

z2i (k).

(61)

Along the similar line for (40)-(41) and noticing
‖S(x̄n(k))‖ ≤ s (s is a bounded value) given in [21],
we have

∆Vz(k) ≤ 4png
2
ns

2W̃T (k)W̃ (k) + 4png
2
nε

2

+ 2pn

n
∑

i=1

Liz
2
i (k)−

n
∑

i=1

(

pi − pi−1g
2
i−1

)

z2i (k)

= −

n
∑

i=1

(

pi − pi−1g
2
i − 2pnLi

)

z2i (k)

+ 4png
2
ns

2W̃T (k)W̃ (k) + 4png
2
nε

2. (62)

By combining (58) and (62), the first difference ofVzw(k)
in (60) is derived as follows:

∆Vzw(k) = E{∆Vz(k)} + E{∆VW̃ (k)}

≤ −

n
∑

i=1

(

pi − pi−1g
2
i−1 − 2pnLi

)

z2i (k) + µρw

− (µβ − 4pns
2g2n)W̃

T (k)W̃ (k) + 4png
2
nε

2. (63)

If the constant coefficients are appropriately chosen such
that the conditions (59) hold, then we have

∆Vzw(k) ≤ −ψVzw(k) + ρxw (64)

whereρxw = µρw + 4png
2
nε

2. According to Lemma 1, the
closed-loop signalszi(k) andW̃ (k) are EMS bounded. Since
W̃ (k) = Ŵ (k)−W ∗, it is clear thatŴ (k) is also uniformly
ultimately bounded in probability. Sincez1(k) = x1(k), we
know thatx1(k) is bounded in probability. From the coordinate

transformations (7), we havez2(k) = x2(k) − α1(k). Noting
that α1(k) = −f1 (x1(k)) /g1(x1(k)) with f1 (x1(k)) and
g1(x1(k)) being smooth functions,α1(k) is bounded and,
furthermore, we know thatx2(k) is also bounded. Using the
similar analysis, it can be concluded thatxi(k) (3 ≤ i ≤ n)
andu(k) are bounded in probability. Therefore, all the signals
in the closed-loop system are EMS bounded.

Remark 4: In this paper, we develop a new backstepping-
based control framework for a class of discrete-time SFNSs
(1) with the multiplicative noise. Such a framework is fun-
damentally different from the traditional ones using predictor
methods proposed in [11], [13], [24]. By using the variable
substitution technology and building the relationship between
the system statesxi(k) and the controlled errorszi(k), the
proposed framework overcomes the difficulty in the stability
analysis caused by the multiplicative noises, avoids time delays
in the neural weight updating law, and reduces the computa-
tional burden by employing one RBF neural approximator.

V. SIMULATION RESULTS

In this section, two examples are given to show the validity
and applicability of the proposed schemes, respectively, on a
second-order SFNS and a direct-current motor.

A. Numerical Example

To illustrate the effectiveness of the proposed schemes, we
first consider a class of discrete-time SFNSs with multiplica-
tive noises as follows:
{

x1(k + 1) = g1 (x1(k)) x2(k) + f1 (x1(k))

x2(k + 1) = g2 (x̄2(k)) u(k) + f2 (x̄2(k)) + h (x̄2(k))ω(k)
(65)

where x1(k) and x2(k) are the system states,u(k) is the
system input,ω(k) is a Gaussian white noise sequence sat-
isfying E(ω(k)) = 0 and E(ω2(k)) = 1, fi (x̄i(k)) and
gi (x̄i(k)), i = 1, 2, represent nonlinear dynamics chosen
as f1 (x1(k)) = x21(k)/(1 + x21(k)), f2 (x̄2(k)) = x2(k) +
(0.2x1(k)−0.6x2(k))/(1+x

2
1(k)+x

2
2(k)), g1 (x1(k)) = 0.5+

0.2 sin(x1(k)), g2 (x̄2(k)) = 1+0.8 cos(x1(k)), andh (x̄2(k))
is a randomly occurring nonlinearity. In the simulation, we
selecth (x̄2(k)) = Lx2(k) cos(x1(k)) whereL is a Lipschitz
constant which is regarded as the intensity of the multiplicative
noiseh (x̄2(k))ω(k), andx̄2(k) = [x1(k), x2(k)]

T . It is easily
checked that Assumption 1 is satisfied.

Case 1: Backstepping-Based ControlIn this case, the func-
tions fi (x̄i(k)) and gi (x̄i(k)), i = 1, 2, are exactly known
and can be used to construct the ideal controller. For given
initial statesx1(0) = 0.2 and x2(0) = 0.5, the simulation
is performed by using the backstepping-based idea controller
(29). WhenL = 1, the closed-loop state curves are depicted
in Fig. 1. Fig. 1 clearly illustrates that the proposed strategy
achieves a satisfactory control performance. To evaluate how
the intensityL of h (x̄2(k))ω(k) affects the control perfor-
mance, the simulation is performed by selectingL = 0.3,
L = 1 andL = 1.5, respectively. The corresponding results
are shown in Figs. 2-4. Fig. 2 and Fig. 3 display the responses
of x1(k) andx2(k). The control input signalu∗(k) is shown
in Fig. 4. From Figs. 2-4, the intensityL of the multiplicative
noise h (x̄2(k))ω(k) affects the control performance of the
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closed-loop system to a certain extent. Specifically, the con-
vergence rate of system states becomes faster as the value of
L reduces.
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Fig. 1. State curves of the closed-loop system for Section V-A.
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Fig. 2. State curvesx1(k) for Case 1 in Section V-A.
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Fig. 3. State curvesx2(k) for Case 1 in Section V-A.

Case 2: Adaptive Neural ControlIn this case, we consid-
er that the system (65) contains the modeling uncertainties
f1 (x1(k)) andf2 (x̄2(k)). To handle the modeling uncertain-
ties, the adaptive neural controller (48), (50) is employed to
guarantee the closed-loop stability. In the simulation, design
parameters are chosen asγ = 0.1 and σ = 0.45, the
Gaussian RBF NN̂WT (k)S(x̄2(k)) is constructed with neural
nodesq = 81, the width0.12 and the centers evenly spaced
on [−0.1, 0.7] × [−0.1, 0.7], the initial conditions are set as
x1(0) = 0.2 and x2(0) = 0.5, and the initial weight vector
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Fig. 4. Control input signalu∗(k) for Case 1 in Section V-A.

Ŵ (0) ∈ R
81 is chosen as a vector with each element being

a standard uniform distributed random value divided by10.
For different given Lipschitz constantsL = 0.3, L = 1,
and L = 1.5, simulation results are shown in Figs. 5-7.
From Figs. 5-7, all the closed-loop signals are EMS bounded.
Moreover, it can be seen from Figs. 5-7 that the smaller
intensity of the multiplicative noiseh (x̄2(k))ω(k) reaches
a better control performance, which is consistent with the
stability criteria (36), (59). In terms of computing time, we
remove the noise termh(x̄2(k))ω(k) in (69) and compare
the control scheme proposed by this paper with the classical
n-step-ahead predictor method [11]. In the same computing
capacity environment, for the same 10000 steps simulation, it
takes 1.06 seconds to adopt this paper method and 8.67 sec-
onds to adopt the classicaln-step-ahead predictor method [11].
This comparison shows that the proposed scheme with only
one NN approximator can extremely reduce the computational
burden.
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Fig. 5. State curvesx1(k) for Case 2 of Section V-A.

B. A DC Motor System

To demonstrate that the proposed approach can be applied
to practical systems, we consider a DC motor system [20] sub-
ject to multiplicative noises. The continuous-time dynamical
system of the DC motor driven by white noise is described as
follows:







dq1 = q2dt

dq2 =

[

u− g1q2 − g2(q̄2)

J

]

dt−
h(q̄2)

J
dw

(66)
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Fig. 6. State curvesx2(k) for Case 2 of Section V-A.
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Fig. 7. Control input signalu(k) for Case 2 of Section V-A.

whereq1 andq2 denote respectively the motor angular position
and velocity,u is the motor torque,w is a standard Wiener
process,q̄2 = [q1, q2]

T , J denotes a known moments of
inertia, g1 is a viscous friction, andg2(q̄2) andh(q̄2) denote
respectively a nonlinear friction and a randomly occurring
nonlinear function, while satisfyingg2(0) = 0 andh(0) = 0.

Subsequently, by definingxi = qi, i = 1, 2, and using
the first-order Taylor expansion, the DC motor system (66) is
discretized as follows:






x1(k + 1) = x1(k) + Tx2(k)

x2(k + 1) = x2(k) +
T

J
[u(k) + f2(x̄2(k))− h(x̄2(k))w(k)]

where the sampling period is chosen asT = 0.1, f2(x̄2(k)) =
−g1x2(k)− g2(x̄2(k)), x̄2(k) = [x1(k), x2(k)]

T , andw(k) is
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Fig. 8. Motor state curves for the known dynamics.
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Fig. 9. Motor state curves for the unknown dynamics.

a standard Gaussian white noise sequence. In the simulation,
system parameters and nonlinear functions are selected asJ =
0.5, g1 = 0.1, g2(x̄2(k)) = 0.2x1(k)/(1 + x21(k) + x22(k)),
and h(x̄2(k)) = Lx2(k) cos(x1(k)) with L = 4. From the
definition of f2(x̄2(k)) and h(x̄2(k)), the DC motor system
in a discrete-time form satisfies Assumption 1.

The simulations are performed for both the exact model and
the unknown model. Choose the initial statesx1(0) = 0.1
and x2(0) = 0.2. For the exact model, Fig. 8 shows that
the proposed method (29) ensures the mean-square asymptotic
convergence of the motor angular position and velocity. For
the model with unmodeled dynamicsf2(x̄2(k)), the adaptive
neural control scheme (48), (50) is used for the DC motor
system (66). In the simulation, we choose design parameters
γ = 0.1 and σ = 0.45, construct the Gaussian RBF NN
ŴT (k)S(x̄2(k)) with Ŵ (0) = 0.01, neural nodesq = 105,
the neural width0.15 and the centers evenly spaced on
[−0.1, 0.3]× [−1.5, 0.5]. Fig. 9 illustrates the fact that the pro-
posed adaptive neural control scheme obtains a good control
performance even though the considered system (66) contains
unmodeled dynamicsf2(x̄2(k)).

Remark 5: It can be seen from (57) that the mean-square
bounds of state estimate errors depend on design parameters
γ, σ as well as the node number of RBF NN. In the
simulation studies, two principles are taken to achieve good
control performance. First of all, the design parameters satisfy
1
4̺ < σ < 0.5, 0 < γ < 1. Secondly, the node number of
RBF NN is chosen large enough to obtain good approximation
performance.

VI. CONCLUSION

In this paper, a novel backstepping-based control framework
has been proposed for a class of discrete-time SFNSs subject
to the multiplicative noise. By effectively building the relation-
ship between system states and controlled errors, the proposed
framework has simultaneously dealt with the non-causality
problem resulting from backstepping design and the difficulty
in stability analysis caused by the multiplicative noises. With
the help of the proposed framework and exact model informa-
tion, two kinds of sufficient conditions have been derived to
guarantee that the closed-loop system with respect to different
multiplicative noises is asymptotically stable in the mean-
square sense. When the system under consideration is not
exactly modeled, an RBF NN has been employed to approx-
imate the ideal controller, and then a novel adaptive neural
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control scheme has been developed to derive the stability
criteria in probability. Such a control scheme not only ensures
the mean-square boundedness of the considered systems with
modeling uncertainties, but also reduces the computational
burden as well as facilitates the implementation using only one
neural approximator. The numerical example and DC motor
system subject to multiplicative noises have been simulated,
respectively, to demonstrate the validity and applicability of
the proposed scheme. Furthermore, it is expected that the
proposed results can be extended to more general DTSFNSs
with different phenomena including prescribed performances
[5], [16], constrained network resources [10], [36] and time-
delays [37], [45]. The learning mechanism [38], [39] can be
also envisaged to be embedded in the framework developed
in this paper.
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