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Abstract—In recent years scientific workflows have been 
used for conducting data-intensive and long running 
simulations. Such simulation workflows have processed and 
produced different types of data whose quality has a strong 
influence on the final outcome of simulations. Therefore 
being able to monitor and analyze quality of this data during 
workflow execution is of paramount importance, as 
detection of quality problems will enable us to control the 
execution of simulations efficiently. Unfortunately, existing 
scientific workflow execution systems do not support the 
monitoring and analysis of quality of data for multi-scale or 
multi-domain simulations. In this paper, we examine how 
quality of data can be comprehensively measured within 
workflows and how the measured quality can be used to 
control and adapt running workflows. We present a quality 
of data measurement process and describe a quality of data 
monitoring and analysis framework that integrates this 
measurement process into a workflow management system.  

Key words: workflow management system; e-science; 
simulation workflow; quality of data; monitoring and analysis 

I. I. INTRODUCTION 
Workflows are compositions of tasks by means of data 

or causal dependencies that are carried out on a computer 
by using a workflow management system (WfMS) [1]. In 
recent years, the workflow technology has been widely 
applied to the scientific domain, and scientific workflows 
for e-science are well covered in [2].  

Simulations, as a subset of scientific applications, are 
compositions of complex calculations and data 
management tasks. Therefore, workflows have been 
widely used in simulations to simplify the execution and to 
reduce errors made by humans. For example, workflows 
have been used in finite element method (FEM)-based 
simulations [3] [4]. Several scientific WfMSs have already 
been created to carry out scientific and simulation 
workflows, such as Askalon [5], Kepler [6], Pegasus [7], 
Taverna [8], Triana [9], and Trident [10]. However, most 
WfMSs do not measure, monitor and analyze quality of 
data (input, intermediate result, and output) associated 
with workflows in a comprehensive way to support the 

control of the execution of complex scientific workflows 
based on monitored quality of data (QoD) at runtime.  
There is a lack of generic methods to measure QoD within 
the invoked applications or workflow activities. The 
reason for this is that in the scientific area the usage of 
generic data quality concepts is at the beginning [11]. That 
is surprising, since unacceptable QoD in long-running 
scientific applications leads to huge waste of computing 
resources and human effort without reaching any 
simulation goal. In order to obtain exact and reliable 
simulation results, the quality of all processed data must be 
guaranteed to an acceptable degree. 

In the business domain different concepts for data 
quality are established, such as methods for measuring 
quality metrics [12]. Stimulated by these methods, we 
investigate and adopt them for simulation workflows 
which typically have complex data dependencies [4].  In 
this paper, we first present a novel QoD measurement 
process. We have identified fundamental concepts to 
implement this process with the aim to control and to adapt 
the workflow execution. We characterize in general how 
simulation workflows can be driven by QoD. Second, we 
present a novel QoD monitoring and analysis framework 
that realizes our QoD measurement process and integrates 
them into WfMSs. We present different mechanisms 
which can be used to evaluate QoD metrics for simulation 
workflows and describe the usefulness of our framework 
through a real-world FEM-based simulation. To our best 
knowledge, this is the first effort on supporting the 
monitoring and analysis of QoD metrics for scientific 
workflows in a comprehensive way, as existing scientific 
WfMSs focus only on time-based performance monitoring 
and analysis.  

The rest of this paper is organized as follows: Section 
II describes the background and related work. Section III 
presents our QoD measurement process. In section IV we 
present our QoD monitoring and analysis framework. 
Experiments demonstrating our concepts and framework 
are shown in section V. We conclude the paper and outline 
our future work in section VI. 



II.  BACKGROUND AND RELATED WORK 
Several scientific WfMSs have been developed, such 

as Askalon [5], Kepler [6], Pegasus [7], Taverna [8], 
Triana [9], and Trident [10]. Most of them include a 
special component for or integrate with a tool for 
monitoring and analysis of workflows. Typically, such a 
component or tool can provide detailed information about 
execution status and performance of workflows at different 
levels, such as activities and workflow regions. However, 
only Kepler and Taverna support the monitoring and 
analysis of QoD metrics, activities, or workflow regions, 
but in a quite limited way. Na'im et al. [13] described an 
approach based on Kepler to define data quality threshold 
values as well as to monitor and visualize QoD findings 
during runtime. However, there is no detail technique of 
how to measure and analyze QoD metrics. Missier et al. 
[14] presented on top of Taverna the Qurator workbench 
that can use given QoD findings to control scientific 
workflows. Qurator assumes that quality evidence is 
presented so that quality assertions can be made but 
Qurator does not measure QoD metrics.  

Many methods exist in scientific domains to measure 
QoD in a specific context. Most of them depend on a 
specific application and cannot be used in a general- 
purpose simulation WfMS. Gray et al. [15] calls for the 
control of QoD in simulations and for the development of 
QoD-aware applications. They refer in particular to FEM-
based simulations – without making any concrete 
implementation suggestion.  In this paper, we include 
different methods to evaluate QoD and we make evaluated 
QoD metrics available for other related applications. 

Batini and Scannapieco [12] consider that data quality 
consists of six main dimensions: accuracy, completeness, 
currency, timeliness, volatility, and consistency. Those 
dimensions can be used in business as well as in the 
scientific applications. In practice, the term data quality is 
used with several meanings as well as weights in both 
domains and must be regarded specifically respective to 
the application domain. Nevertheless, data quality can be 
measured and expressed in general as a value or a set of 
values [12], for example by using metrics defining a 
concrete algorithm for the determining of the data quality. 
In this paper, we are focusing on analyzing and evaluating 
QoD metrics within simulation workflows that has not 
been considered before, by modifying and extending 
concepts in [12] to separate the measurement from other 
components. 

As has already been pointed out, the term data quality 
is used in many different domains and each domain has its 
own interpretation of its meaning and appliance. For 
example, in many scenarios the completeness of data is 
associated directly with the quality of the data regarding 
completeness (e.g. [12]). In other domains the 
completeness has maybe only a characteristic meaning and 
must be explored in a special context to analyze the 
effective data quality, i.e. a single value describing the 
completeness of data can lead to different data quality 
values – each value interpreted in and dependent on a 
special context. Because of that we can interpret a high 
value of completeness as a bad quality, when our 

algorithm prefers a low level of completeness to work best 
to get a result very fast. Therefore, we should not mix the 
analysis and evaluation of data characteristics with that of 
data goodness, but separate them in different phases of the 
same process. This example shows a big problem every 
domain has to deal with: The ambiguity of the term – what 
is quality of data? The lack of clarity leads to 
misunderstandings, especially when different domains 
with different views have to work together. To solve these 
problems, we present a well-defined process to measure 
QoD in a consistent manner. First, we identify building 
blocks for data quality driven simulation workflows in a 
more abstract way. After that, we are focusing on 
implementation based on the so-called conventional 
workflow architecture. 

III.  QUALITY OF DATA MEASUREMENT 
PROCESS FOR SIMULATION WORKFLOWS 

A Quality of Data Measurement Process 
In our view, QoD measurement is not a monolithically 

process that one can determine in a single step whether 
data is good or bad. We must distinguish data 
characteristics, e.g., the completeness of data, from data 
goodness, e.g., whether a value of the completeness is 
good enough for a solver to continue to process the data. 
To this end, our QoD Measurement Process (QoDMP) has 
three important principles that are described in the 
following: 

Decoupling data characteristics and the data 
goodness: Data characteristics have no judgmental value. 
Without considering them in a specific context (e.g., in a 
particular simulation purpose), they are neither good nor 
bad and describe only characteristic properties. In our 
QoDMP (see Figure 1), data characteristics are represented 
by metrics measured by our measurement and analysis 
process. Data goodness is the result of the interpretation of 
measured characteristics in a special simulation context. 
This allows the evaluation of certain characteristic 
properties depending on the context to different QoD 
values. For example, an input data can have a high QoD 
for the processing by Algorithm 1, but a low QoD for the 
processing by Algorithm 2, although there was only one 
measured characteristic (e.g. accuracy) for the input data. 
In this case, the evaluation contexts are associated with 
Algorithm 1 or Algorithm 2.  In principle, there are strong 
dependencies between measured characteristics of data, 
evaluation context and the final QoD. 

As a result of such dependencies, we divide QoDMP 
into two phases. The first phase analyzes the data for 
certain characteristics, resulting in metrics (without taking 
any context into consideration). This phase is called 
“Analysis-Phase” and returns a set of metrics that 
describes the characteristics of the data being analyzed. In 
contrast to Missier et al. [14] we do not require a partial 
order on this set. The second phase evaluates the results of 
the Analysis-Phase by considering the analysis results 
(characteristics) in a special context. This is done by 
interpretations in the “Evaluation-Phase” and results in   
the goodness of data. In this phase, we require, as well as 
Missier et al. [14], a partial order on this set. Both phases 



together determine the final QoD. Hence, the data 
goodness value represents the QoD with respect to a 
context and specific metrics. Figure 1 shows these phases. 

 
Figure 1: Two-step process to determine QoD. 

Metric analysis and interpretation processes: Metric 
analysis and interpretation processes are in principle 
implemented via algorithms. A metric measurement 
process will return metrics as input for possible 
interpretation processes.  For example, a metric measuring 
the completeness of a data set can have a value between 
0.0 (incomplete) and 1.0 (complete). A simple 
interpretation gets this value as input and evaluates 
whether the data can be used as input for a certain 
algorithm or not by simply checking if the threshold of 0.5 
is exceeded. Therefore, the interpretation context is 
implemented implicitly and directly into the interpretation 
algorithm.  There could be different interpretation 
contexts. For example, it is possible to rate high 
completeness specifically for different types of use or for 
different algorithms by different interpretations of the 
independent characteristics. Of course there are many use 
cases where an explicit interpretation of measured data 
characteristics to QoD is not needed. For example, often it 
is sufficient to take the value of completeness (assume a 
value between 0.0 and 1.0) directly as QoD without 
interpreting this value explicitly in the Evaluation-Phase 
(In this case, we could consider there is an implicitly 
interpretation using the identity function as the 
interpretation algorithm). 

Subjective and objective determination: Metric 
analyses and interpretations can also be performed 
manually by scientists. The following example describes 
the need to support manual analysis and interpretation: A 
simulation workflow iterates a calculation a million times. 
During this calculation several characteristics of the 
involved data are measured (Analysis-Phase). This 
information is aggregated and transmitted to the mobile 
phone of the responsible scientist, who can evaluate the 
data goodness (Evaluation-Phase), and pass the result 
(maybe a “Good” or a “Bad”) via user interface to the 
WfMS which decides,  based on the result,  whether to 
continue the execution or not. Hence, the concept allows 
objective metric analyses and interpretations executed by a 
machine as well as subjective metric analyses and 
interpretations performed by a human being. As soon as 
one phase is executed by a human being, the whole QoD 
determination is influenced by subjective values. We call 
this subjectively determined QoD. Otherwise, if no human 
being is involved and the complete calculation is done by a 
machine, we call this objectively determined QoD. 

So in general, we distinguish between the evaluation 
done by software and the evaluation done by human 
beings. The objective evaluation is executed automatically 

by software-based algorithms. The subjective evaluation is 
performed manually by a human activity and is based on 
expertise, instructions, regulations, and rules. If QoD is 
determined objectively any further QoD evaluation with 
the same metric analyses and interpretations, the same data 
set, and the same context will lead to the same QoD, as the 
evaluation is clearly reproducible. In the subjective case, 
QoD results can differ for each evaluation, even with the 
same conditions as above, because human beings not 
always have the same knowledge, or think, feel and act in 
the same way. Solving this non-reproducible problem is 
not our objective. Instead we focus on the integration of 
software-based and human-based determination into one 
single integrated QoD evaluation system.  

B  Fundamental concepts for QoD driven simulation 
workflows 
To develop QoD driven simulation workflows, we 

have to identify the most important building blocks that a 
suitable scientific workflow environment must support. 

Data handling: A complex simulation workflow uses 
different kinds of data represented in different formats and 
stored in different sources. Their QoD should be 
determined, as long as they have an influence on the 
simulation result, performance, and consumed resources of 
workflows. For example, the final result of a FEM-based 
simulation depends on the quality of material parameters 
(input data) and of matrix coming from solving differential 
equations (intermediate results). Because of the 
dependencies, the QoD of these types of data must be 
examined together to guarantee simulation results with an 
optimum quality.   

QoD dimensions: Different dimensions of QoD must 
be supported in simulation workflows. However, concrete 
QoD dimensions are dependent on specific simulations or 
domains. QoD dimensions can be domain-independent or 
domain-specific. Thus generic evaluation techniques as 
well as custom techniques should be supported.  

QoD measurement: As mentioned before, our 
QoDMP is divided into an Analysis-Phase and an 
Evaluation-Phase. In the Analysis-Phase specific 
characteristics will be determined. At the Evaluation-Phase 
those characteristics will be interpreted to determine the 
goodness of data, i.e. the final QoD. Given a QoD metric, 
in many cases, more than one measurement methods exist 
for the metric. Therefore, one must select the suitable 
method. Furthermore, we need to associate determined 
QoD metrics with additional meta information for 
provenance and analysis reasons, such as, for which 
workflow activity the measurement is taken, the types of 
data to be determined, the measurement technique (e.g. to 
get information about the precision of measurements), and 
the scale on which results are reported (e.g. 0.0 is bad and 
1.0 is good). The QoD measurement can be done 
automatically by software or manually by human. The 
reason is that for many scientific data, software tools 
cannot determine QoD but human expert can. Thus, both 
objective and subjective QoD metrics will exist. 

Aggregation of metrics and interpretations: To 
analyze the QoD we distinguish between basic metrics or 



interpretations and aggregated metrics or interpretations. 
Basic metrics or interpretations use one measurement or 
evaluation method that cannot be spitted meaningful. An 
aggregated metric consolidates several basic or aggregated 
metrics. The same also applies for interpretation. Hence, 
an aggregated metric or interpretation can be established 
via aggregation operators/algorithms. We support basic 
metrics and interpretations as well as the aggregation of 
metrics and interpretations. 

QoD-based control / monitoring / adaptation of 
workflow execution: During the execution of a simulation 
workflow QoD metrics must be monitored. Based on 
monitored QoD metrics simulation workflows can be 
adjusted by using different data or different algorithms. 
Therefore, it is necessary to have such controlling and 
monitoring functionalities within a WfMS. Because 
simulation workflows are typically long running 
workflows that deal with huge amount of data, using 
adjusting functionalities at runtime a QoD driven 
simulation workflow can reduce the waste of computing 
resources and human effort. The QoD based workflow 
adaptation can be done automatically by software or 
manually through human activities. 

C Methodologies by using a conventional workflow 
architecture 
To implement our QoDMP we focus on special 

properties of the conventional workflow architecture [1]. 
Nevertheless, as our approach is generic it can be adapted 
to other workflow architecture architectures, e.g. data 
flow-oriented workflow architectures. In short, 
conventional WfMSs rely on control flow-oriented 
workflow languages, such as BPEL, and separates between 
modeling and runtime environment [1]. A process model 
that describes the structure of a real world process is 

created within the modeling environment. The process 
model defines all possible paths through the workflow and 
includes the rules that define which paths should be taken. 
Additionally, it defines all actions that need to be 
performed the workflow. Examples of conventional 
scientific WfMS are Trident and [3].  

The general idea behind QoD driven simulation 
workflows based on conventional workflow architecture is 
to manipulate the set of values that determines the actual 
path through the workflow. To adjust the simulation 
workflow for QoD findings, we manipulate control flows 
by creating new activities for evaluating QoD which need 
to access data and data references. Furthermore, depending 
on specific requirements, we need to manipulate the 
internal structure of invoked services (e.g. a matrix solver 
service) in order to measure QoD within these services. 

IV. QOD MONITORING AND ANALYSIS FRAMEWORK 
FOR WORKFLOWS 

In this section we present different possibilities to 
realize and integrate our QoDMP into workflow 
environments. We developed three different mechanisms 
to measure QoD metrics: (i) by integrating QoD evaluation 
plug-ins into invoked services which perform the function 
described by workflow activities, (ii) by providing an 
independent QoD evaluation service that can be used by 
any consumer to evaluate QoD metrics, and (iii) by 
providing an extension activity executed within workflow 
engines to measure quality of data metrics.  

Figure 2 presents how QoD evaluation-relevant 
components are integrated with WfMSs. The overall 
system consists of several components working together to 
integrate our proposed QoDMP into a WfMS. These 
components can be divided into two groups: Integration 

 

Figure 2: Architecture of QoD Monitoring and Analysis Framework 



components and core components of the framework. In 
order to analyze and interpret QoD, we utilize different 
types of tasks. In the following, we describe them in detail.  

A. QoD measurement mechanisms  
The integration components are included into 

workflow engines or invoked services in order to capture 
measurements used for QoD evaluation or even QoD 
metrics. The first measurement mechanism is the 
QoDMetricEvaluation Plug-in component (Note: In this 
section evaluation stands for evaluate a metric and not for 
evaluation in the sense of interpretation such as in the 
previous section). This type of component (shown for 
Activity A in Figure 2) can be used by any individual 
invoked service of a workflow to measure QoD metrics 
within this service. The Plug-in component has to be 
instrumented into corresponding services. On the one 
hand, it helps determining some QoD metrics for data 
which cannot be seen by the workflow. Thus, it can be 
useful for long-running invoked services. On the other 
hand, it helps reducing overhead due to QoD evaluation as 
this type of plug-in can access data to be evaluated locally. 
An example of how this Plug-in can be used is the 
following: An activity implementation A is responsible for 
solving a matrix equation. At some following activities, 
the workflow needs a accuracy quality of this matrix to 
make a decision. The activity implementation A can 
measure the quality directly and send the result to the QoD 
Monitoring, Analysis and Interpretation Service. When the 
workflow needs the quality, it retrieves the quality from 
the QoD Monitoring, Analysis and Interpretation Service. 

The second measurement mechanism uses the QoD 
Monitoring, Analysis and Interpretation Service to 

determine the QoD. This service offers interfaces for any 
consumer (e.g., QoDMetricEvaluation Plug-in 
components) to send data or reference to data to the 
service. Based on that and requested QoD metrics, the 
service will return the evaluated QoD metrics. This 
mechanism is built based on previous work on evaluating 
data in Data-as-a-Service [16].    

The third measurement mechanism is performed by the 
QoDExtensionActivity component (shown in Figure 2 at 
QoD Activity Extension). This type of components is 
automatically instantiated and executed by the workflow 
engine in order to determine QoD metrics within the 
workflow. The scientist, for example, can specify which 
QoD metrics should be determined for which data flows. 
Based on that, the workflow engine will create a 
QoDExtensionActivity. A QoDExtensionActivity can 
perform the measurement of QoD metrics itself (EA1) or 
utilize the QoD Monitoring, Analysis, and Interpretation 
Service (EA2) to support its measurement. In any case, 
measured QoD metrics will be sent/stored to/in the QoD 
Monitoring, Analysis and Interpretation Service.   

B. Core components for evaluating QoD 
There are five core components interacting together to 

support evaluation of QoD metrics (shown in Figure 2 at 
Workflow QoD Evaluation Framework): The QoD 
Monitoring, Analysis, and Interpretation Service offers 
features for storing, analyzing, and interpreting QoD. For 
example, this service can be called by any application to 
measure or monitor QoD of data that the application 
passes to the service (or the reference to the data is passed 
to the service). The process of QoD measurement is 
organized by a task concept. Basically, tasks can be used 

 

Figure 3: Finite element method (FEM) based simulation workflow with data dependencies. 



to execute algorithms for determining and interpreting 
QoD. After receiving requests for analyzing QoD, the 
service passes them to the QoD Evaluation Task Manager 
which is responsible for processing the tasks. For that, the 
manager looks up the appropriate metric by calling the 
QoDMetric Catalog Management component which 
organizes all available metrics and handles the flow of 
input data. After the respective metric is found the 
manager prepare the task, processes the calculation of the 
metric and returns the measured values to the requestor. 
The system is extensible which is achieved by two 
components: QoDMetric Evaluation Plug-ins Catalog and 
QoD Evaluation Plug-in Manager. Both components work 
together and provide methods to register and search 
existing implementations of metric analysis and 
interpretation algorithms. Available QoD values can be 
sent to a QoD Visualization Tool which visualizes the 
values to the end-user (e.g. a scientist). Similarly, other 
tools can also subscribe and receive QoD metrics from the 
QoD Monitoring, Analysis and Interpretation Service. 

C. Tasks for calculating and interpreting QoD 
To analyze and evaluate data the QoD Evaluation Task 

Manager uses different types of task. First, 
MetricCalculationTasks are used to calculate QoD metrics. 
The resulting metrics can (but not have to) be evaluated by 
InterpretationCalculationTasks.  We decide to implement 
this task concept because it allows specifying a 
MetricCalculationTask whose results have to be evaluated 
by a specified InterpretationCalculationTask in one single 
message so both tasks can be transferred (and calculated) 
within one service call.  

Our service supports objective QoD analysis and 
interpretation by automatically computable algorithms as 
described above and subjective QoD metrics by human 
tasks. To support human tasks, the core system provides a 
communication interface which allows sending 
HumanTasks [17] to an external component and routes the 
results back to the corresponding task. For every objective 
task there is a corresponding subjective human task.  

Each task, whether is software-based or human-base, 
can be specified and executed in synchronous or 
asynchronous manner. If a task is executed in the 
synchronous manner, the workflow execution will wait 
until the task finishes and returns QoD metrics or 
interpretations. For asynchronous tasks, tasks can return 
QoD metrics and interpretations via callbacks 
implemented using Web services. 

V. EXPERIMENTS 
We have implemented a prototype of our framework  

and chose the BPEL-based simulation WfMS presented by 
Görlach et al. [3] that makes use of conventional workflow 
architecture specification.  

To perform experiments we conducted different 
configurations of a FEM-based simulation workflow 
presented in [4]. Figure 3 shows the workflow and data 
dependencies. For all simulations we use the physics 

specific framework PANDAS1 which supports simulations 
based on the theory of porous media (TPM) [18]. A TPM 
model with mass exchange calculates the volume fraction 
and the density function of a solid body can be used for 
different kinds of simulations, e.g. to calculate the stability 
of dyke during high water or determine structural changes 
in human tissue. Since the purpose of our experiments is to 
examine QoD metrics, not time-based performance, we 
decided to run our workflows on a Linux-based dual-core 
machine (2.6 GHz) with 3 GB main memory.  

As the result of various input data for activities 1 to 6 
in Figure 3 two FEM-based simulation having different 
physics and characteristics are executed: a ”fluid-saturated 
elastic column in an impermeable rigid tub” (EC) and a 
”rigid slab on a fluid-saturated elastic half space” (RS).  
We conducted both simulations with a set of material 
parameters (activity 2 in Figure 3) that have different 
quality. We use two basic metrics to measure QoD as well 
as to discourse data and QoD dependencies: Material 
Parameter Accuracy and Vector Condition.  

Material Parameter Accuracy: The correctness of the 
material parameter to describe the phenomenological 
behavior of the material depends on the accurate 
description of all relevant parameter. To simplify our 
experiments we focus only on the parameter “Lame 
constant”. We define a well proven Lame constant 
parameter as reference (good). After that, we multiply this 
parameter with the factor 0.9, 0.95, 1.0, 1.05 and so on 
until 1.3. Hence, the characteristics (the first step in our 
QoD measurement process) of the Material Parameter 
Accuracy (MPA:char) are 0.9, 0.95, 1.0, 1.05 and so on. In 
a next step, we make interpretations of those 
characteristics.  A simple interpretation is 1.0 divided by 
MPA:char (1.0/MPA:char) if MPA:char is greater or equal 
1.0 and MPA:char divided by 1.0  (MPA:char/1.0) 
otherwise. That implies that the accuracy, the goodness, as 
well as QoD of the changed Lame constant parameter is 
good if the values are similar to the original Lame constant 
parameter, and bad if the values vary significantly. For 
example, if MPA:char is 1.2 the goodness (MPA:good) is 
1/1.2 = 0.83. Based on domain scientist’s experience, we 
interpreted the goodness of the final QoD as:  

• good if MPA:good is between 1.0 and 0.95,  

• limited if MPA:good is between 0.94 and 0.85, 

• poor if MPA:good is between 0.84 and 0.75, 

• bad if MPA:good is lower than 0.75.  

Vector Condition: To solve a matrix equation such as 
Ax = b with numerical methods, the condition of a given 
matrix A and a given vector b determines the solving 
performance and the quality of the solution vector x. If the 
difference regarding the least absolute value and the least 
maximum value of the main diagonal of A and of vector b 
and x is ”too big” numerical errors can be estimated.  

                                                           
1 http://www.mechbau.uni-stuttgart.de/pandas/index.php 



For the sake of brevity, we represent only the Vector 
Condition (VC) of b and x. For the Vector Condition of b 
(VC_b), we define bl as the least absolute value with bl 
unequal 0 and bm as the maximum absolute value of b. 
Hence, the characteristic of vector b is the pair of values bl 
and bm. For the interpretation, first we calculate bl divided 
by bm. If bl/bm greater than 1.0-8 no numerical error must 
be estimated by using the PANDAS framework. This and 
the following numbers are based on experience. In our 
experiments, we defined the goodness and the QoD as: 

• 1.0 (good) if bl/bm is greater than 1.0-8, 

• 0.75 (limited) if bl/bm is between 1.0-8 and  
1.0-16, 

• 0.5 (poor) if bl/bm is between 1.0-16 and 1.0-20,  

• 0.0 (bad) if bl/bm is less than 1.0-20. 

 

 
Figure 4: Results of elastic column (EC) and rigid slab 
(RS) relating to the material parameter accuracy (MPA) 
and the vector condition (VC) of vector x 

The same applies for the characteristic and 
interpretation for the Vector Condition of x (VC_x). Table 
1, Figure 4 and Figure 5 summarize the results of our 
experiments.  

For short, the results show that in both simulations the 
QoD of the material parameter accuracy has no relevant 
impact on the QoD of the vector condition in relation to 
the vector b. In contrast, in the elastic column (EC) 
simulation the QoD of the material parameter accuracy has 
an impact to the QoD of the vector condition in relation to 
the vector x. Based on this finding, numerical problems 
can be detected at runtime in detail. Especially in complex 
simulation this knowledge can be used to control or adapt 
a simulation workflow. This testifies to the importance of 
QoD measurement by executing simulations with complex 
data dependencies. Note that in these experiments we 
examined only objective QoD metrics and interpretations 
and thresholds are defined for specific interpretations. 
Using such metrics to steer the workflow execution should 
be dependent on specific interpretations and is a complex 
problem which is out of scope of this paper.  

We also conducted larger-scale experiments based on a 
multi-scale and multi-domain simulation workflow that 
calculates structure changes within a human bone [19] to 
evaluate the overhead of QoD measurements. We run the 
simulation applications on a Linux-based quad-core 
machine (2.3 GHz) with 6 GB main memory and the 
workflow middleware on a Windows-based dual-core 
machine (2.3 GHz) with 6 GB main memory.  

 

 
Figure 5: Results of elastic column (EC) and rigid slab 
(RS) relating to the material parameter accuracy (MPA) 
and the vector condition (VC) of vector b 

Experiment MPA:
char 

MPA: 
good 

QoD: 
MPA 

VC_x: 
char 

VC_x: 
good 

QoD: 
VC_x 

EC 0.9 0.9 0.9 Limited 3.1-16 0.5 poor

EC 0.95 0.95 0.95 good 2.6-16 0.5 poor

EC 1.0 1.0 1.0 good 2.1-15 0.75 limited

EC 1.05 1.05 0.95 good 2.0-15 0.75 limited

EC 1.1 1.1 0.91 limited 1.1-14 0.75 limited

EC 1.15 1.15 0.87 limited 7.2-15 0.75 limited

EC 1.2 1.2 0.83 poor 2.0-16 0.5 poor

EC 1.25 1.25 0.8 poor 9.9-18 0.5 poor

EC 1.3 1.3 0.77 poor 2.6-15 0.75 limited

RS 0.9 0.9 0.9 limited 1.6-4 1.0 good

RS 0.95 0.95 0.95 good 2.2-4 1.0 good

RS 1.0 1.0 1.0 good 1.2-6 1.0 good

RS 1.05 1.05 0.95 good 1.7-4 1.0 good

RS 1.1 1.1 0.91 limited 7.0-5 1.0 good

RS 1.15 1.15 0.87 limited 6.5-5 1.0 good

RS 1.2 1.2 0.83 poor 3.1-5 1.0 good

RS 1.25 1.25 0.8 poor 1.5-5 1.0 good

RS 1.3 1.3 0.77 poor 4.8-5 1.0 good

Table 1: Results of elastic column (EC) and rigid slab (RS) 
relating to the material parameter accuracy (MPA) and 
the vector condition (VC) of vector x 



The overhead of QoD measurements strongly depends 
on the implementation of the QoD metrics. Negligible 
measurable overhead was identified if we implement the 
QoD metric Material Parameter Accuracy on the 
Windows-machine on which the workflow middleware is 
running and if we invoked the QoD task in an 
asynchronous manner. In contrast, the execution time was 
doubled if we run the QoD metric Vector Condition on the 
same system than the simulation applications, invoked the 
QoD task in a synchronous way, and stored all QoD results 
for provenance reasons on a relational database 
(PostgreSQL DB). Furthermore, we have implemented the 
evaluation of the Vector Condition as a subjective human 
task and invoked this activity in a synchronous manner. 
Hence, the speed of execution depends mostly on the time 
a scientist will need to make a decision. 

VI. CONCLUSION AND FUTURE WORK 
In this paper, we present a novel QoD measurement 

process for simulation workflows. We have described how 
this process and its components can be integrated into a 
conventional workflow management system for simulation 
workflows.  As the next step, we will continue to enhance 
our prototype and conduct experiments in larger scales, in 
particular, integration specific plug-ins for QoD metric 
evaluation and expert activities in evaluating QoD metrics. 
We will investigate the integration of our QoD framework 
into non-conventional WfMSs such as Kepler or Pegasus. 
Furthermore, we will focus on adapting and optimizing 
workflows based on QoD metrics. 
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