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Abstract: The Internet of Things (IoT) is promising to transform a wide range of fields. However, the
open nature of IoT makes it exposed to cybersecurity threats, among which identity spoofing is a typ-
ical example. Physical layer authentication, which identifies IoT devices based on the physical layer
characteristics of signals, serves as an effective way to counteract identity spoofing. In this paper, we
propose a deep learning-based framework for the open-set authentication of IoT devices. Specifically,
additive angular margin softmax (AAMSoftmax) was utilized to enhance the discriminability of
learned features and a modified OpenMAX classifier was employed to adaptively identify authorized
devices and distinguish unauthorized ones. The experimental results for both simulated data and real
ADS–B (Automatic Dependent Surveillance–Broadcast) data indicate that our framework achieved
superior performance compared to current approaches, especially when the number of devices used
for training is limited.

Keywords: Internet of Things; cybersecurity; physical layer identification; deep learning; open-set
classification

1. Introduction

The Internet of Things (IoT), which enables communication and interaction between
various devices, promises to transform a wide range of fields. IoT devices primarily transmit
information via wireless means, the open nature of which exposes the IoT to cybersecurity
threats [1]. One typical cybersecurity threat, identity spoofing, which refers to the action
of assuming the identity of some other device, decreases the availability of resources and
can be dangerous in critical infrastructures [2]. By using spoofing identities, attackers can
gain unauthorized access to internal networks and interfere with communication between
authorized devices, which threatens the security of the wireless network. Therefore, the
network administrator must identify authorized IoT devices and reject connections from
unauthorized devices (Figure 1).

To prevent identity proofing, physical layer authentication (PLA) [3], which is also
known as non-cryptographic device identification (NDI) [4], identifies IoT devices based
on the physical layer characteristics of their transmitted signals. The feasibility of PLA
is based on the fact that the electronic circuits of devices possess specific imperfections
that are determined by production and manufacturing processes. PLA is analogous to
speaker recognition [5] in the sense that they both concern the characteristics of components
that emit signals, regardless of the content of the signals. PLA serves as an effective tool
against identity spoofing as it identifies devices using the physical layer characteristics
of signals that stem from hardware imperfections, which cannot be counterfeited, in
theory. Compared to cryptographic approaches for authentication, PLA does not require
sophisticated key management procedures and is hard to deceive. Therefore, PLA has
received a lot of attention in the past few years.
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Figure 1. An example of device identification in the IoT.

Existing approaches to PLA can be divided into two categories: hand-crafted features-
based approaches and deep learning-based approaches. The approaches that are based on
hand-crafted features focus on extracting distinctive features from received signals using
expert knowledge, such as I/Q quadrature modulation defects [6], statistics regarding
time–frequency energy distribution [7–10], and complexity measurement [11,12]. These
approaches require significant prior knowledge and achieve limited accuracy. In response,
deep learning-based approaches, which learn to identify devices from data, have been
extensively studied recently and have shown prominent advantages [13–18]. While most
existing work has focused on classification among a closed set of known devices, the
approaches that have been developed are impractical in the prevention of identity proofing
since they may simply identify an unseen device as the most similar authorized device.
Open-set authentication is more feasible in this scenario as it not only identifies known
devices, but also rejects unseen transmitters. Although approaches for the open-set authen-
tication of IoT devices have been proposed in the last two years [19–23], their performances
still remain to be improved when the number of authorized devices for training is limited.

In this paper, we propose a novel deep learning framework for the accurate open-set
authentication of IoT using limited authorized devices. The framework leverages the
strengths of additive angular margin softmax (AAMSoftmax) [24], which promotes the
discriminability of features that are learned by neural networks, and OpenMAX [25], which
can effectively reject unknown classes. The codes are available at https://github.com/
huangkeju/AAMSoftmaxOpenMax (accessed on 19 February 2022). The contributions of
this paper are summarized as follows:

• We propose to adopt AAMSoftmax to enhance the discriminability of features that
are learned by neural networks, so that the features of unseen devices are distributed
away from those of authorized devices;

• We propose a modified OpenMAX method, namely adaptive class-wise OpenMAS,
so that it can be combined with AAMSoftmax and unseen IoT devices can be distin-
guished adaptively based on the features that are learned by neural networks;

• We propose a framework that leverages the strengths of AAMSoftmax and OpenMAX
for the open-set authentication of IoT devices. The evaluations of both simulated
data and real ADS–B data show that the proposed framework was advantageous

https://github.com/huangkeju/AAMSoftmaxOpenMax
https://github.com/huangkeju/AAMSoftmaxOpenMax
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for open-set IoT authentication, especially when the number of devices for training
was limited.

The remainder of this paper is organized as follows. Works related to open-set IoT
authentication are discussed in Section 2. The problem is formulated in Section 3 and
the proposed framework is presented in Section 4. Section 5 presents the performance
evaluation and Section 6 concludes the paper. The current literature comparison can be
found in Table 1.

Table 1. A comparison to the current literature.

(Loss Function of) Feature Extractor Classifier

[19] GAN GAN
[20,23] Angular Softmax Distance-Based

[22] Softmax Disc, DClass, OvA, OpenMAX, Autoencoder
Our work Additive Angular Margin Softmax Adaptive Class-Wise OpenMAX

2. Related Works
2.1. Background

The open-set authentication of IoT devices has not been investigated until recently.
Generally, the open-set authentication of IoT devices is achieved using a feature extractor
and a classifier (Figure 2). The feature extractor is a neural network that outputs the features
of the input signals. The feature extractor network is trained to learn features that are
discriminative for different devices. The classifier builds boundaries for the learned features
of each authorized device at the training stage, so that it can predict whether a sample
belongs to an authorized device.

Feature

Extractor
Classifier

Training signals of 

authorized devices

Testing signal

Feature

Extractor
Classifier

Training Stage

Testing Stage

Unknown 

Device

Figure 2. The open-set authentication of IoT devices.
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2.2. Feature Extractor

In [19], a generative adversarial network (GAN) was utilized to identify rogue trans-
mitters. However, training a GAN is not trivial and requires a large amount of data.
In [23], hypersphere projection was used to learn more separable features in angular space,
which was inspired by methods used in face recognition technology [26]. Similarly, the
zero-bias layer proposed by [20] also projects features to hypersphere, but with an addi-
tional dense layer for faster convergence. In this paper, we propose to learn features not
only in angular space, but also with an additive margin, which could further enhance the
discirminability of features. The loss function that we adopted, i.e., AAMSoftmax, was
first proposed in face recognition technology [24] and has also been applied in speaker
recognition technology [27,28]. Moreover, neither [20,23] considered the classifier design
for open-set authentication and simply distinguished unseen devices based on distance
from authorized devices. However, the distance threshold to reject unseen transmitters can
be hard to determine and may influence the final performance. Therefore, we propose to
employ a modified OpenMAX classifier that can work with AAMSoftmax and adaptively
distinguish unseen devices.

2.3. Open-Set Classifier

In [21], a novel approach was proposed for the outlier detection of Wi-Fi devices and
ADS–B signals. A classifying neural network predicts slices of a packet and the statistics
of those predictions are then compared to a threshold to determine whether the packet
is from an unknown device. Compared to the approach that is based on this threshold,
the OpenMAX employed in this paper used an activation vector to incorporate more
information, which led to an improved performance [25]. In [22], five different open-set
recognition approaches, namely a discriminator (Disc), discriminating classifier (DClass),
one-vs.-all classifier (OvA), OpenMAX, and an autoencoder, were compared thoroughly
using a Wi-Fi dataset. As Disc and DClass rely on known outlier sets for training, which
require more data from additional emitters in practice, they were not considered in our
evaluation. Autoencoders were also not considered because they do not make use of labels
and usually lead to a moderate performance. Although OvA achieved a better performance
than OpenMAX in the experiments of [22], we found that OvA fails when the unseen device
is much more similar to one of the authorized devices than the others, which is common
when training with limited authorized devices. By contrast, OpenMAX is less sensitive
to the number of authorized devices and works more preferably in this setting, which is
discussed in detail in Section 4. Furthermore, both [21,22] simply used softmax to train the
neural network and did not consider ways to obtain more discriminative features in order
to achieve a better performance.

3. Problem Definition

We considered a finite set of devices for authentication given by A = {A1, A2,. . . , AK},
where K denotes the total number of devices. A subset of A, denoted as AT , represents
the authorized devices. Without loss of generality, we assumed AT = {A1, A2,. . . , AKT},
where KT denotes the number of devices for authorization and KT < K. The dataset for
training could be defined as DT = {(xn, yn)N

n=1}, where N denotes the number of training
samples. xn represents the nth sample of the dataset, which contained L complex sampling
points, i.e., xn ∈ CL. yn is the corresponding identity of sample xn and yn ∈ {1, 2,. . . , KT}.
A neural network with parameters Ω was trained using DT for open-set authentication.
The neural network, which could be viewed as a mapping function FΩ : CL → RKT+1,
mapped the signal x from any device of A to its prediction score p. The ith element of p,
p(i), indicates the probability that x is from Ai of authorized devices AT when i <= KT
and represents the probability that x is from an unauthorized device when i = KT + 1.
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4. Proposed Framework

The neural network FΩ could be viewed as the combination of a feature extractor
Gφ and a classifier Cψ, i.e., FΩ(x) = Cψ(Gφ(x)), where φ and ψ denote the parameters of
the feature extractor and the classifier, respectively. The feature extractor Gφ : CL → RM

transformed signal x into a feature vector of dimension M, while the classifier Cψ : RM →
RKT+1 mapped the feature vector to the corresponding prediction score p. In this paper, we
propose to utilize AAMSoftmax to train the feature extractor and use a modified version
of OpenMAX as the classifier. The whole training process was divided into two stages
(Figure 3). In the first stage, the feature extractor was trained using the AAMSoftmax loss
function without the classifier. In the second stage, the OpenMAX classifier was trained
using the fixed feature extractor.
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Figure 3. The training stages of the proposed framework. First, the feature extractor is trained by
AAMSoftmax. Then, the OpenMAX classifier is updated with the fixed feature extractor.

4.1. Feature Extractor with AAMSoftmax

Typically, neural networks for classification are trained by minimizing the cross en-
tropy between the prediction score and the true label:

L = − 1
N

N

∑
n=1

KT

∑
i=1

I(i = yn) ln pn[i], (1)

where I is the indicator function, pn is the prediction score of sample xn, and f n, i.e., f n =
Gφ(xn) denotes the feature vector of xn extracted by Gφ. A vanilla approach to obtaining
the prediction score based on f is to use a dense layer followed by the softmax function:

pn[i] =
ew>i f n

∑KT
j=1 ew>j f n

, (2)
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where W = [w1, w2,. . . , wKT ] ∈ RKT×M are the weights of the dense layer. Combining
Equations (1) and (2), the loss function with softmax becomes:

LSo f tmax = − 1
N

N

∑
n=1

ln
ew>yn f n

∑KT
j=1 ew>j f n

. (3)

However, it has been demonstrated that the neural network can easily minimize the
softmax loss function by manipulating the norms of the weights and feature vectors [20,23].
More specifically, the neural network may pay more attention to easily classified samples
and classes by increasing their norms and neglect samples and classes that are hard to
discriminate by decreasing their corresponding norms. Therefore, the feature vectors
trained by this approach are not necessarily well separated, especially for devices with
similar characteristics, and the performance of open-set authentication may be limited. To
address this issue, an approach that was inspired by research in face recognition technology
learns features in angular space, i.e., calculates the cross entropy loss after hypersphere
projection [23]:

LA = − 1
N

N

∑
n=1

ln
ew′>yn f ′n

∑KT
j=1 ew′>j f ′n

, (4)

where
w′i =

wi
‖wi‖

, (5)

f ′n = s
f n
‖ f n‖

, (6)

where ‖·‖ denotes L2 norm and s > 0 is a hyperparameter that determines the radius of
the hypersphere. A similar approach was proposed by [20], with addition of one dense
layer in the feature extractor for faster convergence.

Although learning features in angular space helps to improve performance, this
approach only requires the features of different devices to be separable and does not
enforce the features of the same device to be compact. As a consequence, the features of
samples from authorized devices may occupy most of the angular space, leaving limited
space for unseen devices. In this paper, we propose to utilize AAMSoftmax [24], a more
advanced method used in face recognition technology, to learn features in angular space
with an additive margin, so that learned features are more compact for the same device
and more discriminative for different devices. To introduce AAMSoftmax, we first rewrote
the loss function LA as:

LA = − 1
N

N

∑
n=1

ln
es cos θn [yn ]

∑KT
j=1 es cos θn [j]

, (7)

where θn denotes the angle vector of f n, with θn[j] denoting the angle between f n and wj.
The AAMSoftmax loss function was obtained by adding a margin to the angles:

LAAM = − 1
N

N

∑
n=1

ln
es(cos(θn [yn ]+m))

es(cos(θn [yn ]+m)) + ∑KT
j=1,j 6=yn

es cos θn [j]
, (8)

where m > 0 is a hyperparameter that determines the additive angular margin. As m is
equivalent to the geodesic distance margin penalty in the normalized hypersphere, it can
enforce an evident gap between different classes. Generally, a larger m value leads to more
separable features, but may also make the network more difficult to converge.

AAMSoftmax can be minimized using a stochastic gradient descent algorithm. This
approach provides a simple way to further improve the discriminability of features with
negligible computational overheads. After training with AAMSotmax, the learned fea-
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tures are supposed to be more compact for the same class and more discriminative for
different classes.

4.2. Classifier of Adaptive Class-Wise OpenMAX

With the discriminative features learned by Gφ, another issue is to classify the signals
of authorized devices and accurately distinguish the signals of unseen devices using only
the training signals from authorized devices. Two approaches, namely one-vs.-all (OvA)
and OpenMAX, are typically used to achieve this goal [22].

OvA trains one binary classifier network for each authorized device. More specifically,
for the authorized device Ai ∈ AT , the binary classifier Ci is trained to predict the proba-
bility of the signal transmitted by Ai, with other authorized devices considered as outliers.
During inference, signals are predicted as from Ai when Ci outputs the highest probability
and the probability is higher than the threshold δ. Otherwise, signals are predicted as
from unseen devices when all classifiers output probabilities lower than δ. Although OvA
achieves a better performance than OpenMAX in [22], we claim that the performance of
OvA can degrade when the characteristics of the unseen device are much more similar to
one certain authorized device than others. Unfortunately, this circumstance is unexcep-
tional, especially when the number of authorized devices is limited, as demonstrated in
Figure 4.

A1

A2

A3

Unknown Device

Classifier1

Classifier2
Classifier3

(a)

A1

A2
A3

Unknown Device

(b)

Figure 4. A demonstration of OvA and OpenMAX. Authorized devices are depicted as circles and
unknown devices are depicted as squares. The dotted lines depict the boundaries of the classifiers.
(a) Ova; (b) OpenMax.

Contrary to OvA, OpenMAX distinguishes unseen devices by modeling the distri-
butions of the outliers of each authorized device using extreme value theory (EVT), thus
OpenMAX is not sensitive to the number of authorized devices. Although OpenMAX
was proposed for networks trained with softmax, we adjusted OpenMAX for networks
trained by AAMSoftmax with minimal changes. Furthermore, as the original OpenMAX
uses the same tail size for all classes, which may lead to performance degradation, we
adaptively chose different tail sizes for each class and named the modified approach as
adaptive class-wise OpenMAX.

The procedure for training adaptive class-wise OpenMAX is summarized in Algorithm 1.
To model the distributions of the tail samples, OpenMAX first computed the feature centers
of each class:

µk =
∑N

n=1 I(yn = k) f n

∑N
n=1 I(yn = k)

, (9)

where µk denotes the center of an authorized device Ak, k = 1, 2, . . . , KT . Then, we
calculated the distance distributions of each authorized device and denoted the set of
features belonging to device Ak as Sk, i.e., Sk = { f n|yn = k}. As the feature extractor Gφ

was trained in angular space using AAMSoftmax, the distance was measured based on
cosine similarity:
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Algorithm 1 The training algorithm for adaptive class-wise OpenMAX.

Input: Set of extracted features and corresponding labels {( f n, yn)N
n=1}, with KT classes.

Output: mean feature vector of each class µk, Weibull model of each class ρk.
1: for k = 1 to KT do
2: Compute mean vector of class k, µk;
3: Find features belonging to class k,

Sk = { f n|yn = k};
4: Fit Weibull model of class k with adaptively chosen tail size γk,

ρk = f it({dC( f , µk)| f ∈ Sk}, γk);
5: end for
6: Return means µk and models ρk

dC( f , µ) =
1
2
(1− cos( f , µ)), (10)

cos( f , µ) =
f>µ

‖ f‖‖µ‖ . (11)

Basically, a larger distance implied that the sample was far from its respective center.
The distance distribution of Ak, i.e., {dC( f , µk)| f ∈ Sk}, was used to fit the corresponding
Weibull model, which was then employed to predict the probability of an outlier.

Note that we adaptively chose the tail size for each authorized device instead of
pre-defining one tail size for all devices, as proposed in the original OpenMAX. The tail
size defines the number of the largest distances for Weibull model fitting. A small tail size
may lead to an inaccurate model, while a large tail size may increase the probability of
misidentifying signals from authorized devices as unseen signals. Therefore, we adaptively
chose the tail size by finding the largest tail size for each authorized device that the fitted
model correctly and identified 99% of the training signals.

The inference procedure of adaptive class-wise OpenMAX is listed in Algorithm 2.
We denoted the feature of the test sample x as f , i.e., f = Gφ(x). Different from the
original OpenMAX, where the closed-set prediction score can be obtained by softmax on
the activation vector, we computed the closed-set prediction score q by using softmax on
the scaled cosine similarity between the feature f and each class center µk:

qk =
es cos( f ,µk)

∑KT
k=1 es cos( f ,µk)

, k = 1, 2, . . . , KT . (12)

The closed-set prediction score q was then revised to obtain the open-set prediction
score q̂. Another adjustment to our algorithm was that we fixed the the number of top
classes to revise in the original OpenMAX, hyperparameter α, as 1 for clarity. The results of
the pre-experiment also proved that setting α = 1 led to the desirable performance. With
α = 1, we only needed to consider the class that f was closest to, i.e., k̂ = argmaxk(qk). The
trained Weibull model of Ak̂ produced the probability of f being an outlier of Ak̂ based on
the distance between f and its center: ω = ρk̂(d( f , µk̂)). Then, q̂k̂ and q̂KT+1 were revised
according to qk̂ and ω, with other elements unchanged and the guarantee that ∑KT+1

k=1 q̂k = 1.
Finally, predictions for open-set authentication could be made with q̂.
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Algorithm 2 The inference algorithm for adaptive class-wise OpenMAX.

Input: feature f of the test sample.
Require: mean feature vector of each class µk, Weibull model of each class ρk.
Output: q̂, the prediction score of the test sample.
1: Compute the closed-set prediction score q;
2: Let k̂ = argmaxk(qk), compute the probability the test sample is an outlier of class k̂,
ω = ρk̂(dC( f , µk̂));
3: Revise the prediction score as q̂:

q̂k = qk, for k = 1 to KT and k 6= k̂,
q̂k̂ = (1−ω)qk̂,
q̂KT+1 = ωqk̂;

4: Return q̂

5. Performance Evaluation

The proposed framework was evaluated using both simulated data and real Automatic
Dependent Surveillance–Broadcast (ADS–B) data. The use of AAMSoftmax for training the
feature extractor was compared to the use of the conventional softmax and ASoftmax [23],
while the OpenMAX classifier was compared to an OvA classifier.

5.1. Evaluation Dataset
5.1.1. Simulated Dataset

The simulated dataset was used as a toy problem. We generated a dataset of eight
devices, denoted as AS = {AS

1 , AS
2 ,. . . , AS

8}. The signals of each device were generated
with unique pairs of I/Q gain imbalance parameter G and carrier leakage parameter ξ to
simulate physical imperfections [29], as listed in Table 2. Although I/Q gain imbalance
and carrier leakage do not cover all of the factors that can lead to emitter impairments,
the generated dataset could reflect the properties of different approaches to some extent.
The signals were modulated with quadrature phase shift keying (QPSK) with a symbol
rate of 64 k symbols/sec, sampled at a frequency of 1024 kHz. We generated 4000 samples
for each device, with each sample containing 1024 sampling points, i.e., 64 symbols. We
used 3000 samples from each device for training and the remaining 1000 samples from
each device for testing.

Table 2. The parameters of the simulated devices.

Devices AS
1 AS

2 AS
3 AS

4 AS
5 AS

6 AS
7 AS

8

G 0.9608 1.0408 0.9608 1.0408 0.9802 1.0202 0.9608 1.0408
ξ(10−2) 1 + 2j 1 + 2j −2− 2j −2− 2j 1 + 2j 1 + 2j 1 1

5.1.2. ADS–B Dataset

The real-word ADS–B dataset was provided by [30] and included 107 devices, i.e.,
AR = {AR

1 , AR
2 ,. . . , AR

107}. There were roughly 400 samples for each device. Each signal
was transformed into a 32 by 32 by 3 tensor by the preprocessing approach of [30]. We used
60% of the dataset for training and the remaining 40% for testing.

5.2. Evaluation Using the Simulated Dataset

The backbone of ResNet [31] was employed as the feature extractor for the simulated
dataset, which was composed of nine convolutional layers, as shown in Figure 5. The
feature extractor took a sample of 1024 I/Q sampling points as input and outputted a
feature vector of dimension 512. The networks were trained by softmax and AAMSoftmax,
both at learning rate of 10−4 for 100 epochs. The batch size for training was set as 100. The
hyperparameters of AAMSoftmax were set as s = 10 and m = 1.0. Then, both feature
extractors were used to train an OvA and the OpenMAX classifiers, resulting in four
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combinations, namely softmax + OvA, AAMSoftmax + OvA, softmax + OpenMAX, and
AAMSoftmax + OpenMAX. The threshold δ of the OvA was set as 0.99 in all combinations.

Input(2×1024)

ConvBlock(64,3,2)

Conv1d(64,3,2)

ConvBlock(128,3,2)

ConvBlock(256,3,2)

ConvBlock(512,3,2)

GlobalAvgPool1d

Output(512)

D
o
w

n
S

am
p
le

Conv1d(128,3,2)

BatchNorm

ReLU

Conv1d(128,3,1)

BatchNorm

Add

ReLU

ConvBlock

Figure 5. The architecture of the feature extractor for the simulated dataset.

5.2.1. Comparison of Overall Performance

For each combination, we successively chose one device in AS to be the unseen device
and the remaining seven devices to be the authorized devices. The macro averaged F1
scores [32] for the different combinations are shown in Table 3. Basically, using the OvA
classifier led to a mediocre performance, regardless of whether the feature extractor was
trained by softmax or AAMSoftmax, which could have been caused by defects in the
OvA classifier. When OpenMAX was combined with softmax, the desirable performance
was achieved when AS

3 , AS
4 , AS

7 or AS
8 was chosen as the unseen device. However, the

combination of OpenMAX and AAMSoftmax showed a superior performance regardless
of the choice of unseen device. One reason for this performance gap could be that the
parameters of AS

5 and AS
6 were close to AS

1 and AS
2 , respectively, making them hard to

separate when trained by softmax.

Table 3. The F1 scores of different combinations

Unknown Device AS
1 AS

2 AS
3 AS

4 AS
5 AS

6 AS
7 AS

8

Softmax + OvA 0.8333 0.8333 0.8369 0.8552 0.7376 0.8303 0.8333 0.8331
AAMSoftmax + OvA 0.7842 0.8333 0.8438 0.9391 0.8315 0.8149 0.8326 0.8331
Softmax + OpenMAX 0.8766 0.7308 0.9628 0.9637 0.6010 0.8328 0.9451 0.9741

AAMSoftmax + OpenMAX 0.9695 0.9629 0.9688 0.9623 0.9654 0.9716 0.9658 0.9679

5.2.2. Comparison of Feature Extractors

We compared the predictions of the OvA and OpenMAX classifiers based on the
features learned by AAMSoftmax and with AS

3 as the unseen device. The features obtained
by the AAMSoftmax training were visualized using t-SNE [33], with different colors corre-
sponding to the true identities and predictions of different devices, as shown in Figure 6. It
was shown that the learned features could properly separate different devices, including
the unseen device. However, OvA misclassified most samples of the unseen device AS

3 as
AS

7 , the parameters of which were closest to AS
3 , as shown in Table 2. OpenMAX correctly

distinguished most samples of the unseen device, although a few samples of other devices
were misidentified. This comparison revealed that the OvA classifier was ineffective when
the unseen device was more similar to one certain authorized device than others, while
OpenMAX was less vulnerable to this condition.
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(a) (b) (c)

Figure 6. Visualizations of the true identity and predictions of the classifiers. AS
3 is in brackets to

denote that it is the unseen device. (a) True identity; (b) Predicitions of the OvA; (c) Predicitions
of OpenMAX.

5.2.3. Comparison of Classifiers

The distributions of the feature distances of softmax and AAMSoftmax were compared
to verify the discriminability of the learned features. Assuming AS

j was chosen as the unseen

device and one of the authorized devices AS
i was chosen as the reference device, three

sets of distances, namely intra-distances U , inter-distances I , and open distances O, were
calculated as follows:

U = {d( f S
n, µS

i )|y
S
n = i}, (13)

I = {d( f S
n, µS

i )|y
S
n 6= i and yS

n 6= j}, (14)

O = {d( f S
n, µS

i )|y
S
n = j}, (15)

where U denotes the set of distances between the features of AS
i and the feature center of

AS
i , I denotes the set of distances between the features of other authorized devices and

the feature center of AS
i , and O denotes the set of distances between the features of the

unseen device AS
j and the feature center of AS

i . For softmax, d( f , µ) = dE( f , µ) = ‖ f − µ‖,
i.e., Euclidean distance, and for AAMSoftmax, d( f , µ) = dC( f , µ), i.e., cosine distance. We
selected i = 2 and j = 6 for demonstration, since AS

2 was highly similar to AS
6 . The densities

of the distance distributions are shown in Figure 7. Not surprisingly, the intra-distances and
inter-distances were distributed apart from each other, regardless of whether the feature
extractor was trained by softmax or AAMSoftmax. However, when the feature extractor
was trained with softmax, the distribution of open distances was highly overlapped with
intra-distances, implying that the features were incapable of accurately separating AS

2
samples from those of the unseen device AS

6 . As for features learned by AAMSoftmax,
although the distribution of open distances was still close to that of the intra-distances, they
were evidently more separable and demonstrated less overlapping.

5.2.4. Comparison of Different Combinations

The confusion matrix of different combinations is shown in Figure 8, with AS
6 used

as the unseen device. The approaches using softmax were inferior at distinguishing the
samples of the unseen device AS

6 due to the fact that the features from the unseen device
were overlapped with authorized devices, as shown previously. The combination of
AAMSoftmax and OvA could also not distinguish the unseen device correctly because
the learned features of the unseen device AS

6 were still much closer to AS
2 than to the

other authorized devices and the OvA failed in this condition. Only the combination
of AAMSoftmax and OpenMAX correctly identified the unseen device, at the cost of a
slightly decreased performance concerning authorized devices. The results of the different
combinations verified the significance of combining AAMSoftmax with OpenMAX.
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(a)

(b)

Figure 7. The comparison of the distance distribution of the features. ”Intra dist” indicates the
distance distribution of the features from the same device with respect to the reference device, “Inter
dist” indicates the distance distribution of the features from other authorized devices, and “Open
dist” indicates the distance distribution of the features from the unknown device. (a) Softmax;
(b) AAMSoftmax.
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Sensors 2022, 22, 2662 13 of 17

AS
1 AS

2 AS
3 AS

4 AS
5 AS

7 AS
8 (AS

6)
True identity

A
S 1

A
S 2

A
S 3

A
S 4

A
S 5

A
S 7

A
S 8

(A
S 6)

Pr
ed

ict
io
n

991 0 0 0 0 0 0 0

0 994 0 0 0 0 0 995

0 0 997 0 0 0 0 0

0 0 0 993 0 0 0 0

0 0 0 0 995 0 0 0

0 0 0 0 0 998 0 0

0 0 0 0 0 0 997 0

9 6 3 7 5 2 3 5

(c)

AS
1 AS

2 AS
3 AS

4 AS
5 AS

7 AS
8 (AS

6)
True identity

A
S 1

A
S 2

A
S 3

A
S 4

A
S 5

A
S 7

A
S 8

(A
S 6)

Pr
ed

ict
io
n

961 0 0 0 0 0 0 0

0 993 0 0 0 0 0 0

0 0 949 0 0 0 0 0

0 0 0 962 0 0 0 0

0 0 0 0 953 0 0 0

0 0 0 0 0 974 0 0

0 0 0 0 0 0 971 0

39 7 51 38 47 26 29 1000

(d)

Figure 8. The confusion matrix of the different combinations. AS
6 is in brackets to denote that it is

the unseen device. (a) Softmax+OvA; (b) AAMSoftmax+OvA; (c) Softmax+OpenMAX; (d) AAMSoft-
max+OpenMAX.

5.3. Evaluation Using the Real ADS–B Dataset

We used the network of [20] as the feature extractor, with the addition of a dropout
layer, as shown in Figure 9. The feature extractor took a sample of 3× 32× 32 tensor as
input and outputted a feature vector of dimension 64. The network was trained by softmax,
ASoftmax, and AAMSoftmax, all at learning rate of 10−4 for 100 epochs. The batch size
for training was set as 128. The hyperparameter of the OvA was set as δ = 0.9 and the
hyperparameters of AAMSoftmax were set as s = 3 and m = 1.0. As the feature extractor
ended with a fully connected layer, it was equivalent to the zero-bias layer approach [20]
when trained by ASoftmax. Then, all of the feature extractors were used to train the
OvA and OpenMAX classifiers, resulting in six combinations. For each combination, we
successively selected 5, 10, 21, 32, 43, and 54 devices as the authorized devices and the
remaining devices as unseen devices.
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Figure 9. The architecture of the feature extractor for the real ADS–B dataset.

5.3.1. Performance Comparison

The performance of each setting was assessed using the average of ten different runs,
with a random selection of authorized devices and a random initialization of network
parameters. The results are shown in Figure 10, with the bars indicating the averages of
the different runs and the error bars denoting the standard deviation. Figure 10a displays
the F1 scores of the devices, including authorized and unseen devices when using different
combinations. All combinations performed better with more authorized devices, implying
that the network could learn more discriminative features with more authorized devices,
which coincided with research in face recognition technology [34]. Although approaches
using the OvA classifier achieved a comparable performance with a large number of
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authorized devices, they performed poorly with limited authorized devices regardless
of the loss function that was used to train the feature extractor, confirming that the OvA
classifier relied heavily on the number of authorized devices, as discussed previously. For
approaches using the OpenMAX classifier, softmax + OpenMAX achieved a mediocre
performance in all settings, while ASoftmax + OpenMAX and AAMSoftmax + OpenMAX
achieved evidently superior performances, with AAMSoftmax + OpenMAX performing
modestly better than ASoftmax + OpenMAX. Therefore, the discriminability of extracted
features was critical for OpenMAX to perform successfully. By comparing the recall of
authorized devices in Figure 10b and the recall of unseen devices in Figure 10c, it is
illustrated that AAMSoftmax + OpenMAX was successful at distinguishing unknown
devices while satisfactory at identifying authorized devices.
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Figure 10. The performances of different combinations. (a) F1 score of all devices; (b) Recall of
authorized devices; (c) Recall of unknown devices.
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5.3.2. Effects of Hyperparameters

We first evaluated the effects of δ, the hyperparameter of the OvA classifier. The F1
scores of Softmax + OvA and AAMSoftmax + OvA with different δ values are shown in
Figure 11. When δ increased form 0.1 to 0.9, the performance increased. However, when δ
increased to 0.99 and further to 0.999, the performance of a limited number of authorized
devices increased but the performance decreased with a large number of authorized devices.
Therefore, we claim that 0.99 was the proper value of δ. Nevertheless, the performances
with limited authorized devices were mediocre compared to OpenMAX classifier regardless
of the value of δ, which further proved the defects of the OvA classifier.
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Figure 11. The F1 scores of softmax + OvA and AAMSoftmax + OvA with different δ values.
(a) Softmax+OvA; (b) AAMSoftmax+OvA.

The hyperparameters of AAMSoftmax, i.e., s and m, were also evaluated. The F1 scores
of AAMSoftmax + OpenMAX with different s and m values are shown in Figure 12. Large
s/m values could weaken the penalty of feature compactness and lead to less discriminative
features, while large m/s values could punish the features too much and make the network
hard to converge. Fortunately, AAMSoftmax was tolerant of the hyperparamters to some
extent and the desirable performance could be achieved within a certain range of s and m.
As AAMSoftmax was equivalent to ASoftmax when s = 1.0 and m = 0.0, it was evident
that AAMSoftmax was better than ASoftmax with appropriately selected s and m values.
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Figure 12. The F1 scores of AAMSoftmax + OpenMAX when trained by 21 authorized devices with
different s and m values.



Sensors 2022, 22, 2662 16 of 17

6. Conclusions

In this paper, we proposed a novel framework for the open-set authentication of
Internet of Things using limited authorized devices for training. Our contributions were as
follows. Firstly, the AAMSoftmax loss function was utilized to train the feature extractor
for more discriminative features. Secondly, an adaptive class-wise OpenMAX classifier
was proposed for accurate open-set authentication based on learned features. Thirdly, we
verified the superiority of the AAMSoftmax + OpenMAX approach through experiments
with both simulated data and real-world ADS–B data. The experiments showed that
AAMSoftmax + OpenMAX achieved a better performance than the other approaches, with
an F1 score of 0.91 for the open-set authentication of 107 airborne transponders when only 10
of them were used for training. A remaining challenge of physical layer authentication is the
robustness of the learned features [4]; for example, changing wireless channel conditions
can degrade authentication accuracy prominently [35]. Our future work will focus on
enhancing the robustness of the features.
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