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Abstract

Background: Local measurements of health behaviors, diseases, and use of health services are critical inputs into

local, state, and national decision-making. Small area measurement methods can deliver more precise and accurate

local-level information than direct estimates from surveys or administrative records, where sample sizes are often

too small to yield acceptable standard errors. However, small area measurement requires careful validation using

approaches other than conventional statistical methods such as in-sample or cross-validation methods because

they do not solve the problem of validating estimates in data-sparse domains.

Methods: A new general framework for small area estimation and validation is developed and applied to estimate

Type 2 diabetes prevalence in US counties using data from the Behavioral Risk Factor Surveillance System (BRFSS).

The framework combines the three conventional approaches to small area measurement: (1) pooling data across

time by combining multiple survey years; (2) exploiting spatial correlation by including a spatial component; and

(3) utilizing structured relationships between the outcome variable and domain-specific covariates to define four

increasingly complex model types - coined the Naive, Geospatial, Covariate, and Full models. The validation

framework uses direct estimates of prevalence in large domains as the gold standard and compares model

estimates against it using (i) all available observations for the large domains and (ii) systematically reduced sample

sizes obtained through random sampling with replacement. At each sampling level, the model is rerun repeatedly,

and the validity of the model estimates from the four model types is then determined by calculating the (average)

concordance correlation coefficient (CCC) and (average) root mean squared error (RMSE) against the gold standard.

The CCC is closely related to the intraclass correlation coefficient and can be used when the units are organized in

groups and when it is of interest to measure the agreement between units in the same group (e.g., counties). The

RMSE is often used to measure the differences between values predicted by a model or an estimator and the

actually observed values. It is a useful measure to capture the precision of the model or estimator.

Results: All model types have substantially higher CCC and lower RMSE than the direct, single-year BRFSS

estimates. In addition, the inclusion of relevant domain-specific covariates generally improves predictive validity,

especially at small sample sizes, and their leverage can be equivalent to a five- to tenfold increase in sample size.

Conclusions: Small area estimation of important health outcomes and risk factors can be improved using a

systematic modeling and validation framework, which consistently outperformed single-year direct survey estimates

and demonstrated the potential leverage of including relevant domain-specific covariates compared to pure

measurement models. The proposed validation strategy can be applied to other disease outcomes and risk factors

in the US as well as to resource-scarce situations, including low-income countries. These estimates are needed by

public health officials to identify at-risk groups, to design targeted prevention and intervention programs, and to

monitor and evaluate results over time.
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Background
There is no shortage of health-related information in the

US. However, the large number of surveys and adminis-

trative systems that collect health information at the

national level stands in contrast to the relative scarcity

of accurate and precise local-level measurements. For

example, national data sources such as the National

Health and Nutrition Examination Survey (NHANES)

and the National Health Interview Survey (NHIS) do

not provide measurements for counties or even states.

The Behavioral Risk Factor Surveillance System

(BRFSS), with a sample size of more than 414,000 in

2008, is the world’s largest ongoing national telephone

survey. Even though the survey collects data in nearly

all US counties, measurements of leading health out-

comes and risk factors at the county level are not routi-

nely produced due to small sample sizes in the majority

of counties, although the CDC has produced county-

level diabetes prevalence estimates since 2004 with most

recent estimates for 2007. For example, in 2008, more

than 80% of counties had sample sizes of less than 100.

Some states purchase enhanced BRFSS samples to gen-

erate local measurements, demonstrating demand for

this type of information, but for the majority of coun-

ties, these measurements are not available. The BRFSS

Selected Metropolitan/Micropolitan Area Risk Trends

(SMART) project analyzes selected risk factors for

Metro- and Micropolitan Statistical Areas (MMSAs)

with more than 500 respondents to identify the status

and trends of important health problems at the local

level. However, out of 3,141 US counties, only 177

MMSAs were SMART counties in 2008. On the other

hand, some projects, such as the County Health Rank-

ings [1,2], have used sparse data from a single year to

directly report on and compare counties, despite the

risks of drawing inaccurate inferences.

Small area measurement methods refer to a suite of

statistical methods aimed at filling the need for better

local information. The main procedures include direct

domain estimation, indirect domain estimation, and

small area modeling. Direct domain estimation uses

available sample units in the domain to estimate the

quantity of interest, leading to unacceptably large stan-

dard errors for small domains. Indirect estimation

implicitly makes assumptions about how domains are

related in time and/or space to increase the effective

sample size for small domains [3]. Indirect domain

estimation includes: synthetic estimators (i.e., using a

reliable estimator for a large domain to derive an esti-

mator for the small domain contained within the large

domain under the assumption that the small domain

has the same characteristics as the large domain); com-

posite estimators (i.e., weighted averages of sample

estimates for the same domain but from different

surveys); and James-Stein estimators (also called

shrinkage estimators because they shrink the mean

squared error, sometimes also used in conjunction

with the direct estimator in so-called “limited transla-

tion estimators”). In contrast to indirect domain esti-

mation, small area modeling is explicit about the

assumptions of relatedness in space and/or time and

has variably used three strategies to deal with the lim-

ited availability of survey and administrative data: pool-

ing data over several years [4,5]; borrowing strength in

space by exploiting spatial correlations [6]; and using

structured relationships with covariates to predict the

quantity of interest [7]. Few studies, however, have

used all three approaches in a consistent fashion at a

national level. Li et al [8,9] used mixed-effects models

to estimate obesity and smoking prevalence in 398

communities in Massachusetts using 1999-2005 BRFSS

data. Elliott and Davis [10] used a dual-frame estima-

tion approach to link NHIS and BRFSS data for esti-

mating adult male tobacco prevalence in 584 counties

in 1999-2000. Small area statistical methods have been

used in several studies, including one nationwide

assessment of diabetes by the CDC [7-9,11] and vacci-

nation coverage monitoring during the 2004-05 influ-

enza season in the US [12]. Recently, Caldwell et al

[13] used a Bayesian multilevel approach to estimate

2005 county-level diabetes prevalence for the popula-

tion 20 years and older, pooling 2004-2006 BRFSS data

and the county’s posterior rank distribution to identify

counties with high or low diagnosed diabetes burdens.

They used design-based direct estimates for 232 large

counties to assess the validity of the model prevalence

estimates. Congdon and Lloyd [14] applied a binary

person-level random effects regression model using

individual risk factors from the 2005 BRFSS and small

area characteristics for 32,000 ZIP code tabulation

areas. Spatial information is incorporated at the state

level. But standardized methods have otherwise not

been articulated, validated, or widely applied to health

behavior measurements in the US.

The main limitation of small area methods for local

health measurement has been the difficulty in validating

a particular approach for a given health problem. Stan-

dard approaches such as in-sample fit statistics and

cross validation are not useful in a small area setting as

they do not adequately answer the question of how well

these methods work compared to undertaking a large

sample survey in each locality. Within the limitations of

in-sample data, a variety of authors have explored the

theory and metrics for validating model estimates

[15,16]. Nevertheless, the ultimate test of predictive

validity, i.e., comparing the results against the de facto

gold standard, has rarely been implemented for small

area measurement in public health.
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In this paper, a standardized approach to small area

measurement is proposed that uses all three traditions:

using data from several years, exploiting spatial correla-

tion using estimates from neighboring counties, and

using structured relationships with area-level covariates

to inform estimates. The critical innovation is that we

create a validation environment in which the most

appropriate measurement strategy can be selected and

tailored to the data and variable under study. This

approach is illustrated by estimating Type 2 diabetes

prevalence for all counties in the US for 2008 from the

2000-2008 BRFSS.

Methods
Four Families of Statistical Models

The framework rests on four types of models that can,

in principle, be applied to any small area measurement

task. Because many determinants and patterns may be

different for males and females, we modeled each sex

separately, but they could be modeled jointly where

appropriate. The four types are the Naïve, the Geospa-

tial, the Covariate, and the Full model (cf. Table 1).

The Naïve and Geospatial models only include indivi-

dual age group (AGEij) and an optional fixed effect for

race group (RACEij) and can thus be viewed as measure-

ment models. They do not require additional covariate

data, the availability of which may be limited or

impacted by cost factors. The Covariate and Full models

draw leverage from the relationships between outcome

variable and additional domain-level covariates (denoted

by Zi in model equations 1-4). All models include a ran-

dom county intercept (δi) with an independent variance-

covariance structure, i.e., with all variances estimated

and covariances assumed to be zero. Spatial relation-

ships are not specifically incorporated into the variance-

covariance structure of the random intercepts. This is

accomplished through an additional covariate in the

Geospatial and Full models. We also tested for random

coefficients on survey year (YEARij) to allow for hetero-

geneous temporal patterns across counties using an

independent variance-covariance structure but without

improving the model fit. Lastly, the Geospatial and Full

models harness spatial patterns through an additional

covariate ( i
post ), calculated by averaging the estimated

county random intercept for neighboring counties from

the Naive and Covariate models, respectively. Neighbor-

ing counties are those counties that have a common

boundary. For island counties, no neighbors were

defined.

Thus, the basic model is a generalized linear mixed-

effects regression model with binomial outcome (Y) and

logit link function. The combinations of the four model

families and four model specifications generate a total of

16 models for each sex, which can be summarized as

follows:

Naïve model:

log
Pr( | )

Pr( | )

Y sex k

Y sex k
AGE RACE

ij ij

ij ij
ij ij

= =

− = =

= + +

1

1 1
1 2   ++ + 3

*YEARij i

Geospatial model:

log
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Table 1 The four model types and their respective specifications.

Model Family Individual Race Coefficient on Time Spatial covariate County-level covariates

Naive Excluded Fixed No No

Excluded Random No No

Included Fixed No No

Included Random No No

Geospatial Excluded Fixed Yes, from naive model No

Excluded Random Yes, from naive model No

Included Fixed Yes, from naive model No

Included Random Yes, from naive model No

Covariate Excluded Fixed No Yes

Excluded Random No Yes

Included Fixed No Yes

Included Random No Yes

Full Excluded Fixed Yes, from covariate model Yes

Excluded Random Yes, from covariate model Yes

Included Fixed Yes, from covariate model Yes

Included Random Yes, from covariate model Yes

Note: Sixteen models for men and women, respectively, were estimated and evaluated for (a) all available observations, (b) by sampling 100, 50, and 10

observations per county-year for counties with at least 900 respondents in 1996-2004. The sampling was repeated 10 times at each sampling level.
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Covariate model:
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Full model:
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The person-level predictions of the outcome Y can be

aggregated to county prevalence rates for men and

women using the US age and county race/ethnic com-

position for each sex. That is, we estimated the likeli-

hood of having the outcome of interest for one person

in each age and race/ethnic group and aggregated these

using the respective proportion of people in the age and

race/ethnic group for the given sex and the prediction

year as weights.

Test Case: Type 2 Diabetes Prevalence

The outcome variable of interest – Type 2 diabetes –

was defined as 1 if the respondent answered “yes” to the

question: “Have you ever been told by a doctor that you

have diabetes?” and zero otherwise. Pregnancy-related

temporary diabetes was also coded as zero. Missing,

refused, or don’t know answers were excluded from the

analysis.

Thus, the logit of the probability of a person j in

county i of sex k to have Type 2 diabetes (Yij = 1) is

assumed to be a linear function of the person’s age

(AGEij) and race (RACEij), survey year (YEARij), county-

level covariates Zi for the Covariate and Full models of

county educational achievement at high school and col-

lege degree levels, county poverty rate and median

annual household income adjusted for inflation, the

number of fast food restaurants per 100,000 population,

and the number of medical doctors and dentists per

1,000 population. All models include the county random

intercept (δi). The Geospatial and Full models also

include the spatial component in the form of the aver-

aged estimated county random intercept from the Naive

and Covariate models, respectively, for neighboring

counties ( i
post ).

An individual’s age and race/ethnicity are potential pre-

dictors of a person’s probability of having diabetes [11]. In

addition, the county’s general racial and ethnic composi-

tion is assumed to explain differences in diabetes preva-

lence beyond individual race/ethnicity and in conjunction

with other sociodemographic covariates in the model.

Modeling time as a fixed effect imposes the same temporal

trend on all counties. This assumption may not hold

because trends in risk may go up in some counties while

staying flat or declining in others. Therefore, we also

tested the models with random coefficients on time.

All models were implemented in the R statistical com-

puting language, version 2.10.2 [17].

Data

Individual age and race/ethnicity information was

extracted from the BRFSS and categorized into 10 five-

year age groups beginning with 30-34, 35-39, and so

forth up to 75+. The group of 50- to 54-year-olds was

the largest group and was selected as the reference cate-

gory. Race was grouped into five mutually exclusive and

exhaustive race/ethnicity categories consisting of (i)

White non-Hispanic (reference group), (ii) African

American and Black non-Hispanic, (iii) American Indian

and Alaska Native non-Hispanic, (iv) Hispanic origin,

and (v) non-Hispanic Asian, Hawaiian Native and Pacific

Islander, other race, multiple or no preferred race.

Available counties and sample sizes by year and sex are

shown in Table 2, and summary statistics of the covari-

ates are shown in Table 3.

The county-level race/ethnicity composition in the

form of the fraction of African Americans/Blacks and

the fraction of Hispanics was obtained from the NCHS

Bridged-Race population estimates vintage 2008 for

1996-2008. The educational attainment variables were

calculated as the fraction of the county population that

completed high school and the fraction with bachelor’s

degrees using 2000 Census data. Median annual house-

hold income and the county poverty rate were obtained

from the Census Bureau’s Small Area Income and Pov-

erty Estimates for 1996-2008. The number of fast food

restaurants per 100,000 population was derived from the

Census Bureau’s County Business Patterns for 1996-

2007, the 2008 CBP data were released in July 2010 and

Table 2 The number of counties and sample sizes by

survey year in the final dataset for persons aged 30

years and older.

Survey Year Counties in dataset Sample size in dataset

Men Women Men Women

1996 2,602 2,768 39,803 58,075

1997 2,698 2,811 43,750 63,420

1998 2,844 2,948 47,680 70,066

1999 2,834 2,959 50,852 75,095

2000 2,907 3,009 58,127 86,386

2001 2,955 3,016 66,065 97,325

2002 2,994 3,050 78,982 119,248

2003 3,007 3,045 84,819 130,777

2004 3,009 3,058 97,198 154,224

2005 3,018 3,064 115,878 186,306

2006 2,747 2,782 111,998 182,346

2007 2,762 2,792 134,325 225,950

2008 2,733 2,765 130,997 218,611

Total 3,140 3,140 1,060,474 1,667,829
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could not be considered for this paper, using SIC code

5812 and NAICS code 72221. The transition from SIC

to NAICS as well as NAICS revisions that took place in

the time period 1999-2007 affected the comparability of

the selected SIC and NAICS codes, and the bridge from

SIC to NAICS is not fully closed To remove the struc-

tural breaks in the time series, the county medians were

subtracted from both series, and missing fast food data

were multiply imputed using a time series cross-sec-

tional model with auxiliary information and weak priors.

The number of medical doctors and dentists was

obtained from the Area Resource Files for 1996-2008.

Unit- and area-level covariates and outcome variables

were linked by unique county five-digit FIPS codes

[18,19].

Creating a Validation Framework

To evaluate the validity of each model, a gold standard

of the outcome variable is required. The gold standard

serves as a benchmark judged to be the best available

direct estimate for the small area domain, i.e., counties

with sufficiently large sample sizes, which can be

obtained by (i) choosing small domains with large sam-

ple sizes in a single survey year, (ii) pooling multiple

survey years, or (iii) increasing domain size. We pooled

the 2000-2008 BRFSS and calculated the direct age-stan-

dardized, sex-specific BRFSS estimates for Type 2 dia-

betes prevalence, taking poststratification weights into

account and weighting each survey year equally. We

then used as our gold standard the direct, age-standar-

dized, sex-specific estimates for counties that had more

than 900 observations (by sex) in both periods 1996-

2004 and 2000-2008. The minimum sample size speci-

fied for the gold standard resulted in 121 counties for

men and 196 counties for women, and we term these

sets the validation sets.

The second step of our validation framework involves

determining the minimum sample size needed to

Table 3 Summary statistics for individual- and county-level covariates.

Variable Summary Statistic 1996-2004 2000-2008

Men Women Men Women

Age (years) Minimum 30 30 30 30

Mean 50.2 52.3 50.6 52.5

Maximum 99 99 99 99

Individual Race/Ethnicity (percent) White 76.6 76.5 73.7 74.2

Afr. American/Black 8.4 10.0 8.6 9.9

Asian 4.2 3.3 5.4 4.3

AIAN 1.0 0.9 1.1 0.9

Hispanic 9.7 9.3 11.2 10.6

County Race/Ethnicity (percent) Afr. American/Black 7.81 8.01

Hispanic 4.51 5.21

Education (percent) High school degree 34.52

Bachelor’s degree 10.22

Poverty (percent) Minimum 1.71 2.61

Mean 13.31 13.81

Maximum 42.21 39.41

Household income (thousand U.S. dollars, CPI adjusted) Minimum 19.01 20.31

Mean 45.61 43.41

Maximum 114.01 107.91

Fast food restaurants (number per 100,000 people) Minimum 5.91 5.31

Mean 66.41 71.31

Maximum 715.61 12091

Number of medical doctors per 1,000 population Minimum 01 01

Mean 27.61 27.71

Maximum 369.91 370.01

Number of dentists per 1,000 population Minimum 01 01

Mean 31.91 31.71

Maximum 396.11 396.21

Note: Statistics are shown for the periods 1996-2004 and 2000-2008. Figures are adjusted by BRFSS poststratification weight.
1Refer to midpoint of the time period, i.e., 2000 for 1996-2004 and 2004 for 2000-2008.
2Figures are based on 2000 Census data on educational achievement.
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achieve sufficient correspondence with the gold stan-

dard. For this purpose, we sampled with replacement

from the available validation set data to obtain 100, 50,

and 10 observations per county-year before fitting the

model. That is, we systematically reduced the amount of

data and information available from the counties with

large sample sizes. For other applications, appropriate

sample sizes can easily be specified. The sampling pro-

cess was repeated 10 times at each sampling level so

that the average effect of reduced sample size on model

validity can be estimated reliably.

We then ran the 16 models for each sex on the 1996-

2004 BRFSS and estimated county Type 2 diabetes pre-

valence rates for 2004. The results were compared

against the gold standard for 2004 for the validation set

using two metrics:

• Concordance correlation coefficient (CCC), which

measures agreement between two variables and cor-

respondence within groups, i.e., how strongly do

units within the same county resemble each other.

• Root Mean Squared Error (RMSE) as a measure

for the average squared difference between model

estimates and the gold standard.

The best-performing models for men and women,

respectively, were the ones with the highest CCC and

lowest RMSE. They were used in the last step to pro-

duce estimates of county Type 2 diabetes prevalence

rates in 2008 using 2000-2008 BRFSS data.

Uncertainty Bounds

We used the best-performing model and calculated

empirical 95% credibility regions, obtained by drawing

1,000 samples of the model parameters from their con-

ditional distributions and using them to generate 1,000

sets of individual probabilities of Type 2 diabetes for

one person in each county and each age-race group (or

age group if individual race was not in the model). We

aggregated those to age-standardized and race-specific

county prevalence rates using the 2000 US age distribu-

tion for the universe of 30+-year-olds and the county-

specific race composition. From the 1,000 age-standar-

dized and race-specific Type 2 diabetes prevalence rates,

we used the empirical 2.5% and 97.5% values as the

bounds for the credibility regions.

Results
Identifying the best model for estimating Type 2 diabetes

prevalence in the validation framework

Figures 1 and 2 show the CCC and RMSE, respectively,

for the best-fitting model for estimated Type 2 diabetes

prevalence in 2004 among men 30 years and older.

Shown are the CCC and RMSE at the three sampling

levels of 100 respondents per county-year (equivalent to

a sample size of 900 because we pooled nine years of

BRFSS data), 50 respondents per county-year (equivalent

to a sample size of 450), and 10 respondents per county-

year (equivalent to a sample size of 90). The markers

represent the values of the validation metrics for 10

model runs, and the coloring represents the four model

families. When the total available sample size is used,

the CCC increases to 0.83 for men and 0.85 for women

in the full model, respectively (see Additional file 1:

Tables S1 and S2). For comparison, we also show the

correlation of the gold standard with the single-year

direct 2004 BRFSS estimate, which is substantially lower

at 0.18 for men and 0.33 for women at the highest sam-

ple size and declines further as sample size goes down.

The figures look very similar for women (see Additional

file 1: Figures S1 and S2).

As illustrated in these figures, the best models for men

according to our two metrics are the Full and Covariate

models with an individual race covariate included and

fixed effects on survey year for both men and women.

Compared to the Naïve and Geospatial models, the

inclusion of additional relevant covariates significantly

improves model fit, especially at very small sample sizes

of 10 per county-year. Variations in CCC and RMSE

also increase at smaller sample sizes for the Naïve and

Geospatial models, illustrating the increasingly weakened

ability to accurately estimate the outcome variable for

small areas from pure measurement models. Although

the Geospatial model still picks up some spatial pattern

at small sample sizes compared to the Naïve model,

overall CCCs drop from initial values of about 0.82 to

between 0.57 and 0.16 at sample sizes of 50 and 10 per

county-year, while they remain, on average, at 0.7 for

the Covariate and Full models - although individual race

emerges as an important explanatory variable in the

Naïve and Geospatial models. The superiority of all four

models over the direct 2004 BRFSS estimate is dramatic.

At sample sizes of 10 per county-year, the CCC drops

to near zero for the 2004 BRFSS, and even when the full

sample is utilized, it does not exceed 0.43 for men. Add-

ing meaningful covariates can be as effective as increas-

ing the sample sizes five- to tenfold in the Naïve and

Geospatial models. This raises further questions regard-

ing the accuracy of single-year, direct survey estimates:

Any increase in sample size helps improve precision,

but including relevant covariates helps even more as

sample sizes become very small.

Results for the Best Models

The maps in Figures 3 and 4 show the magnitude and

distribution of diabetes prevalence for all US counties as

estimated from the best-performing model for men and

women in 2008.
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Men have, on average, slightly higher diabetes preva-

lence than women, although the highest levels are

observed for women. The geographical distribution of

high prevalence areas is notable and similar for men

and women. High-risk areas are concentrated along the

Mexican border in Texas and the southern states of

Louisiana, Missouri, Mississippi, and Georgia, North and

South Carolina, and southern parts of Virginia. These

areas traditionally have higher shares of African Ameri-

cans/Blacks and Hispanics, who have significant dispari-

ties in health status, in part because of lower income

and education levels and other sociodemographic

characteristics.

Parts of South Dakota, Arizona, and New Mexico that

include Native American reservations also have com-

paratively high rates of diabetes. In contrast, prevalence

is lowest in Colorado, Montana, and Wyoming. It is

likely that the demographic makeup of the population

coupled with lifestyle characteristics play a role in the

low diabetes rates of 3.6% to 9%, compared with the

national averages of 8.8% for men and 8.2% for women.

The regression coefficient estimates for the best model

for men and women, respectively, are shown in Table 4.

They are similar, and we observe an upward trend over

time, affirming the findings of steadily increasing adult-

onset diabetes prevalence [20,21]. Other strong predic-

tors include age, race/ethnicity, and survey year. Dia-

betes risk more than doubles for men and women from

ages 30-34 to 70-74. All race/ethnic groups are esti-

mated to have higher risks of diabetes than Whites, with

African Americans/Blacks and American Indians and

Alaska Natives experiencing the highest risks of 0.69

and 0.65 for men, respectively, and 0.98 and 0.93 for

women, respectively. At the county level, educational

achievement is positively correlated with lower diabetes

prevalence, especially for women. We also find a strong

spatial correlation in Type 2 diabetes prevalence.

Uncertainty intervals

The 95% empirical credibility regions for women are

shown in Figure 5. Counties with large sample sizes have

the tightest intervals, and on average, interval length

increases as the sample size decreases for the large

Figure 1 Concordance Correlation Coefficients for the estimates in 2004 of Type 2 diabetes prevalence in men aged 30 years and

older from the best-performing model and the gold standard using counties with at least 900 male respondents in the 1996-2004

BRFSS.
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Figure 2 Root Mean Squared Error for the estimates in 2004 of Type 2 diabetes prevalence in men aged 30 years and older from the

best-performing model and the gold standard using counties with at least 900 male respondents in the 1996-2004 BRFSS.

Figure 3 Diabetes prevalence for men in 2008 aged 30 years and older.
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counties. The majority of counties fall above the national

prevalence for Type 2 diabetes of 8.2% for women.

The pattern is very similar for men, as shown in Figure 6,

except for a slightly higher national prevalence of 8.8% and

wider confidence intervals due to smaller sample size.

Discussion and Conclusions
We presented a novel and generalizable methodology

for small area measurement and formal out-of-sample

validation. Our validation step also provides guidance

on the minimum sample size required for future data

collection to ensure an accurate estimate of risk factors

at the local area. We demonstrated that our methodol-

ogy can yield more accurate estimates of important

health outcomes and risk factors at the local level than

single-year, direct survey estimates or pure measurement

models. Having validated and local estimates available

can help draw attention to health determinants and sti-

mulate research and interventions.

Limitations

We have used the BRFSS to develop county measure-

ments of Type 2 diabetes prevalence by restricting the

population universe to those aged 30 and older. The

survey’s limitations need to be taken into account when

using or interpreting our results. The BRFSS is a tele-

phone survey, and results may be subject to self-report-

ing bias, although for diabetes, this bias may vary by sex

and age and is generally estimated to be relatively small,

with estimates comparable to those from NHANES and

NHIS [22]. The outcome variable also only measured

diagnosed Type 2 diabetes and is therefore likely an

underestimate of true Type 2 diabetes prevalence in the

US 30+-year-old population.

A second limitation of using the BRFSS arises from

the survey’s exclusive use of households with landline

telephone service. The BRFSS excludes households with

no telephone and cellphone-only services. However,

BRFSS data consistently provide valid and reliable data

when compared to household surveys in the US [23,24].

Moreover, the BRFSS is the only national source of local

data in the US.

In the present study, we only tested systematically for

spatial patterns for neighboring counties by averaging

residual spatial patterns across adjacent counties, i.e.,

counties that have a common border. That is, we equa-

ted adjacency with being more similar than nonadjacent

counties. This approach could be expanded in the future

by taking topological and other barriers into account

and also by considering similarity in feature space, such

as sociodemographic characteristics, urbanicity, and

other relevant factors.

Our framework hinges on the availability of large

domains for which reasonably accurate gold standards

can be computed. In our test case, the number of coun-

ties with more than 900 respondents in the pooled

Figure 4 Diabetes prevalence for women in 2008 aged 30 years and older.
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dataset was 121 (3.9% of all counties) for men and 196

(6.2% of all counties) for women. These are relatively

small numbers and can be tested for robustness using

different cutoffs for selecting the large domains. We

further assume that there is no systematic relationship

between domain size and prevalence, a reasonable

assumption in our models because the validation coun-

ties represent a variety of urban and rural, sociodemo-

graphic, and other characteristics.

With respect to our modeling approach, future

research will include the examination of models with

different variance-covariance structure in the random

effects; for example, the explicit modeling of spatial rela-

tionships in addition to or in lieu of the spatially pooled

residual county random intercept. Current software lim-

itations also limited our ability to incorporate the

BRFSS’s stratified sampling design. We did, however,

use the poststratification weights reported in the BRFSS

to calculate direct estimates. Finally, the CCC and

RMSE are only two relevant metrics for judging the

validity of the model estimates against the gold stan-

dard. Other options exist; for example, the ratio of

RMSE over the mean for studying the relative size of

estimation error.

Table 4 Summary of regression results for estimating Type 2 diabetes prevalence for men and women aged 30 and

older for the full model.

Variable Men Women

Estimate St. error Estimate St. error

Intercept -2.49 *** 0.09 -2.36 *** 0.08

Age group 30-34 -1.77 *** 0.03 -1.52 *** 0.02

Age group 35-39 -1.25 *** 0.02 -1.12 *** 0.02

Age group 40-44 -0.81 *** 0.02 -0.75 *** 0.02

Age group 45-49 -0.40 *** 0.02 -0.39 *** 0.01

Age group 55-59 0.39 *** 0.01 0.35 *** 0.01

Age group 60-64 0.66 *** 0.01 0.59 *** 0.01

Age group 65-69 0.81 *** 0.01 0.75 *** 0.01

Age group 70-74 0.91 *** 0.01 0.80 *** 0.01

Age group 75+ 0.80 *** 0.01 0.68 *** 0.01

African American/Blacks 0.69 *** 0.01 0.98 *** 0.01

Asian § 0.41 *** 0.02 0.51 *** 0.02

AIAN 0.65 *** 0.03 0.93 *** 0.02

Hispanic 0.56 *** 0.02 0.75 *** 0.01

Year 2001 0.08 *** 0.02 0.06 *** 0.02

Year 2002 0.11 *** 0.02 0.11 *** 0.02

Year 2003 0.17 *** 0.02 0.16 *** 0.02

Year 2004 0.16 *** 0.02 0.15 *** 0.02

Year 2005 0.23 *** 0.02 0.20 *** 0.02

Year 2006 0.29 *** 0.02 0.23 *** 0.02

Year 2007 0.32 *** 0.02 0.30 *** 0.02

Year 2008 0.34 *** 0.02 0.29 *** 0.02

Share of African American/Blacks -0.04 0.05 -0.16 *** 0.04

Share of Hispanics -0.32 *** 0.06 -0.37 *** 0.04

Share with High school degree 0.19 0.14 -0.09 0.11

Share with Bachelor’s degree -2.14 *** 0.21 -3.02 *** 0.18

Median annual household income 0.00 * 0.00 0.00 0.00

County poverty rate 0.01 *** 0.00 0.01 *** 0.00

Fast food restaurants per 100,000 pop. 0.00 0.00 0.00 0.00

Number of medical doctors per 1,000 pop. 0.00 *** 0.00 0.00 *** 0.00

Number of dentists per 1,000 population 0.00 0.00 0.00 0.00

Spatially averaged random intercept 1.58 *** 0.15 2.26 *** 0.13

Standard deviation of random intercept 0.098 0.077

Number of counties 3,140 3,140

Reference race/ethnicity and age group are 50- to 54-year-old Whites. Reference year is 2000. § includes Hawaiian Natives and Pacific Islanders, Other race,

Multiple race, and No preferred race.***p-value < 0.0001, **p-value < 0.001, *p-value < 0.01, ^p-value < 0.05.
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Applicability to other settings and as a policy tool

In this paper, we have demonstrated how a validation

environment can be created when a subset of small

areas in a country have larger samples available. Such a

validation environment allows the selection of a model-

ing strategy that optimally mixes the three approaches

of pooling data across time, harnessing spatial patterns

in the distribution of the outcome of interest, and

adjusting for estimates for local area characteristics. The

result is more accurate and precise small area measure-

ments. We believe the approach that we have outlined

can be applied in a straightforward manner to a full

range of variables collected in surveys such as the

BRFSS to generate annual measurements at the county

level for a wide array of health behaviors and service uti-

lization. These local and annual measurements can be

an important stimulus to local public health decision-

making and community engagement.

Another implication of the small area validation study

demonstrated here is that samples as small as 50 observa-

tions per county and year can - with the appropriate analy-

tical tools - yield quite robust measurements with

acceptable uncertainty intervals. In contrast, the current

practice used in many states and policy analyses of using

small samples in statistical analyses can result in estimates

with very low correlations with de facto gold standards

based on large samples. Many counties in the United

States have conducted their own BRFSS surveys. However,

due to the considerable costs of such surveys, data collec-

tion is not carried out on a yearly basis. Our framework

provides an affordable strategy for such data collection.

Local health departments could contract with the BRFSS

Figure 5 County estimates and 95% confidence intervals for estimates of Type 2 diabetes prevalence in 2008 for women aged 30

years and older by county. Note: Intervals are colored according to sample size, with green corresponding to counties with more than 900

observations in 2000-2008, yellow for counties with more than 100 observations, and red for counties with 100 or fewer observations per

county-year. The solid black line indicates the national average for women, and the dashed lines represent a standard deviation from the

national average for the validation set for women. The correlation is between the estimated diabetes prevalence and the US Department of

Agriculture’s Urban-Rural Continuum code for 2003 with categorical values ranging from 1 for most urban to 9 for most rural. See http://www.

ers.usda.gov/briefing/rurality/ruralurbcon/ for exact definitions.
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to ensure minimum sample sizes of approximately 50

respondents per year at a much lower additional cost.

The test case of Type 2 diabetes demonstrated that

while the US is generally data-rich, it also lacks accurate,

timely information on status and trends in leading

health risks. In a US context, our methodology could be

used to produce local estimates of the leading risk fac-

tors for the US burden of disease that enable local and

state health officials to prioritize and target high-risk

counties while spending local, state, and federal funds

more wisely on prevention and treatment programs.

The generation of local health outcome and risk factor

estimates over time will also allow the tracking of pro-

gress to first slow and then reverse trends in major risk

factors. Being able to compare county efforts to reduce

the prevalence of diabetes or other diseases on a dollar-

spent-per-point-reduction basis would create positive

competition and allow identification of best practices.

In addition to health status and risk factor analysis in

resource-rich countries such as the US, the framework

can easily be applied to countries with large but locally

insufficient health surveys and administrative databases.

It can also be extended to obtain coverage estimates of

important health interventions. For low-income,

resource-scarce countries, it is particularly attractive to

use existing administrative and survey data to get more

accurate local coverage estimates as it allows the identi-

fication of “hot spots” and more efficient and effective

targeting of interventions. For example, our methodol-

ogy could be used in resource-poor countries with large

Demographic Health Surveys to produce local estimates

of health risk factors and diseases.

Figure 6 County estimates and 95% confidence intervals for estimates of Type 2 diabetes prevalence in 2008 for men aged 30 years

and older by county. Note: Intervals are colored according to sample size, with green corresponding to counties with more than 900

observations in 2000-2008, yellow for counties with more than 100 observations, and red for counties with 100 or fewer observations per

county-year. The solid black line indicates the national average for men, and the dashed lines represent a standard deviation from the national

average for the validation set for men. The correlation is between the estimated diabetes prevalence and the US Department of Agriculture’s

Urban-Rural Continuum code for 2003 with categorical values ranging from 1 for most urban to 9 for most rural. See http://www.ers.usda.gov/

briefing/rurality/ruralurbcon/ for exact definitions.
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Our framework pushes open the door to more system-

atically, accurately, and efficiently use available data to

track the status and effects of public policy interven-

tions. It allows public health professionals to obtain

accurate estimates of major health outcomes and risk

factors and therefore to design and implement adequate

preventive measures to reduce the burden of disease.

Our methodology could be used to track progress and

allocate resources to improve health at the local level.

Additional material

Additional file 1: Figure S1: Concordance Correlation Coefficients for

model validation for Type 2 diabetes prevalence in women aged 30

years and older in 2004 using counties with at least 900 female

respondents in the 1996-2004 BRFSS. The file contains a 5-colored

graphic of the concordance correlation coefficient showing how well the

four model families and the direct, single year survey estimate correlate

with the gold standard for diabetes prevalence in 30+ year old women.

Figure S2: Root Mean Squared Error for model validation for Type 2

diabetes prevalence in women aged 30 years and older in 2004 using

counties with at least 900 female respondents in the 1996-2004 BRFSS.

The file contains a 4-colored graphic of the root mean squared error

showing how the square root of the average squared deviation of the

estimated from the four model families from the gold standard for

diabetes prevalence in 30+ year old women. Table S1: Concordance

correlation coefficients for the estimated Type 2 diabetes prevalence in

2004 in men 30 years and older and the gold standard using counties

with at least 900 observations in the pooled 1996-2004 BRFSS. The file

contains a table summarizing the concordance correlation coefficient for

each model family, model specification, and sampling level with the gold

standard in 30+ year old men. Table S2: Concordance correlation

coefficients for the estimated Type 2 diabetes prevalence in 2004 in

women 30 years and older and the gold standard using counties with at

least 900 observations in the pooled 1996-2004 BRFSS. The file contains a

table summarizing the concordance correlation coefficient for each

model family, model specification, and sampling level with the gold

standard in 30+ year old women.
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