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Abstract: Microcystis aeruginosa is a major harmful cyanobacterium causing water bloom world-
wide. Cyanophage has been proposed as a promising tool for cyanobacterial bloom. In this study,
M. aeruginosa FACHB-1326 was used as an indicator host to isolate cyanophage from Lake Taihu. The
isolated Microcystis cyanophage Mae-Yong1326-1 has an elliptical head of about 47 nm in diameter
and a slender flexible tail of about 340 nm in length. Mae-Yong1326-1 could lyse cyanobacterial
strains across three orders (Chroococcales, Nostocales, and Oscillatoriales) in the host range experiments.
Mae-Yong1326-1 was stable in stability tests, maintaining high titers at 0–40 ◦C and at a wide pH
range of 3–12. Mae-Yong 1326-1 has a burst size of 329 PFU/cell, which is much larger than the re-
ported Microcystis cyanophages so far. The complete genome of Mae-Yong1326-1 is a double-stranded
DNA of 48, 822 bp, with a G + C content of 71.80% and long direct terminal repeats (DTR) of 366 bp,
containing 57 predicted ORFs. No Mae-Yong1326-1 ORF was found to be associated with virulence
factor or antibiotic resistance. PASC scanning illustrated that the highest nucleotide sequence simi-
larity between Mae-Yong1326-1 and all known phages in databases was only 17.75%, less than 70%
(the threshold to define a genus), which indicates that Mae-Yong1326-1 belongs to an unknown
new genus. In the proteomic tree based on genome-wide sequence similarities, Mae-Yong1326-1
distantly clusters with three unclassified Microcystis cyanophages (MinS1, Mwe-Yong1112-1, and
Mwes-Yong2). These four Microcystis cyanophages form a monophyletic clade, which separates at a
node from the other clade formed by two independent families (Zierdtviridae and Orlajensenviridae)
of Caudoviricetes class. We propose to establish a new family to harbor the Microcystis cyanophages
Mae-Yong1326-1, MinS1, Mwe-Yong1112-1, and Mwes-Yong2. This study enriched the understanding
of freshwater cyanophages.

Keywords: Microcystis aeruginosa; cyanophage; genome; phylogenetic analysis

1. Introduction

Cyanobacterial bloom is a disastrous ecological phenomenon in which plankton, espe-
cially cyanobacteria, proliferate abnormally and gather on the water surface, causing water
discoloration [1]. Due to anthropogenic activities, global warming, and eutrophication,
cyanobacteria harmful algal blooms (cyanoHABs) are becoming increasingly extensive and
frequent. Cyanobacterial blooms have many negative effects. Cyanobacteria blooms reduce
the water surface clarity and thus inhibit the growth of aquatic macrophytes; cyanobacterial
blooms reduce the dissolved oxygen content of water, resulting in the death of aquatic
organisms, including fish, crab, shrimp, etc. [2]. Furthermore, cyanobacterial blooms make
water toxic, as many cyanobacteria produce highly toxic secondary metabolites known
as “cyanotoxin”. Cyanotoxins not only can notoriously cause liver and nervous system
damage but also are immunotoxic, teratogenic, carcinogenic, and mutagenic [3–9]. Humans
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and animals can be exposed to cyanotoxins in various ways, such as through food, drink,
inhalation, and dermal exposure during recreational activities. Therefore, it is urgent to
solve the environmental problems caused by cyanobacterial bloom.

Cyanophages are phages that infect cyanobacteria. Phages are considered the most
abundant biological entities on the planet, and their population is estimated to be 1030 to
1032 [10]. Cyanophage has been proposed as a promising tool for cyanobacterial bloom. The
isolation and genomic analysis are the important basis for the research and application of
cyanophages. In the past, studies on the isolation and genome analysis mainly focused on
marine cyanophages, especially Synechococcus and Prochlorococcus cyanophages [11]. The
research on freshwater cyanophages lags far behind. Little information about freshwater
cyanophage can be found. Although nearly 350 cyanophage genomes have been reported,
only 21reported cyanophages were isolated from freshwater. Among them, only 10 freshwater
Microcystis cyanophages were reported. Only nine Microcystis cyanophage genomes (MaMV-
DC, Ma-LMM01, Mic1, vB_MelS-Me-ZS1, PhiMa05, Mae-Yong924-1, MinS1, vB_MweS-yong2,
and Mwe-Yong1112-1) have been sequenced and characterized [12–20]. Among them, five
(MaMV-DC, Ma-LMM01, Mic1, Mae-Yong924-1, and MinS1) were isolated with Microcysti-
saeruginosa. M. aeruginosa is a major harmful cyanobacterium causing water bloom worldwide.
It is very important to study virulent M. aeruginosa cyanophages.

In this study, M. aeruginosa FACHB-1326 was used as an indicator host to isolate
cyanophage from Lake Taihu. The general features (morphology, one-step growth curve,
physicochemical stabilities, and host range) of the isolated Microcystis cyanophage Mae-
Yong1326-1 were analyzed. The complete genome of the isolated Microcystis cyanophage
Mae-Yong1326-1 was sequenced and analyzed.

2. Materials and Methods
2.1. Isolation and Purification of Cyanophage

Cyanophage isolation was carried out according to the reported method [15]. The surface
water samples were collected from Lake Taihu (North latitude, 31.246,376; East longitude,
120.371,044), Suzhou, China on 1 July 2021. The water samples were centrifuged at 10,000× g
for 20 min at 4 ◦C. The supernatant was successively filtered through 0.45 µm and 0.22 µm
pore size nitrocellulose membrane. Each 80 mL filtrate was mixed with 20 mL of 5 × BG11
liquid medium and 20 mL logarithmic-phase M. aeruginosa FACHB-1326 (OD680 ≈ 0.738,
2.34 × 107 CFU/mL). In the control group, sterile water was substitute for the filtrate of water
sample. The mixtures were cultured in a light incubator under a light/dark cycle of 12 h:12 h
with a constant illumination of 30–40 µmol-photons/(m2 × s) at 25 ◦C until yellowing (about
seven days). Lysates were centrifuged at 10,000× g for 10 min, and the supernatant was
cultured again with fresh FACHB-1326 (about 2 × 107 CFU/mL) until yellowing. Lysates
were centrifuged at 10,000× g for 10 min. The supernatants were successively filtered through
0.45 µm and 0.22 µm pore size nitrocellulose filters. The filtrates were diluted (10−1–10−9)
with BG11. Each 100 µL of dilution was mixed with 900 µL of logarithmic-phase FACHB-
1326 cultures and incubated at 25 ◦C for 30 min, then mixed quickly with 8 mL of molten
BG11 agar medium (0.7% agar, pre-incubated at 42 ◦C), and poured into a BG11 agar plate
(1.5% agar). Clear plaques emerged in 7–10 days. Unique plaque was suspended in 3 mL of
logarithmic-phase FACHB-1326 cultures and subsequently used for a new round of plaque
isolation. Five rounds were carried out until plaques show uniform shape and size.

2.2. Transmission Electron Microscopy (TEM)

The cyanophage lysates were centrifuged at 10,000× g for 10 min. The supernatants
were centrifuged at 35,000× g for 60 min. The precipitates were cleaned twice with
0.01 M PBS, suspended in PBS, and then deposited on a carbon-coated copper grid for 5 min,
negatively stained with 3% uranyl acetate for 25 s, and observed under TEM (Hitachi-7650,
Japan) as described [21].



Viruses 2022, 14, 2051 3 of 16

2.3. One-Step Growth Curve Experiment

Fresh logarithmic-phase FACHB-1326 cultures (2.35 × 107 CFU/mL) were mixed with
Mae-Yong1326-1 suspension at optimal MOI of 0.1 in triplicates. After incubation for 30 min
at 25 ◦C, the mixtures were centrifuged at 10,000× g for 10 min at 4 ◦C. The sediments were
washed twice with BG11 and resuspended in an equal volume of BG11 medium. Samples
were taken at 0, 30, 60, 120, 180, 360, 540, 720, 1440, 2160, and 2880 min, respectively. The
titers in the samples were immediately determined using the double-layer plate method.
The burst size of the Microcystis cyanophage Mae-Yong1326-1 was calculated as the ratio
of the final number of released virions to the initial count of infected bacterial cells at the
beginning of the latent period.

2.4. Physical and Chemical Tolerance Test

Temperature, pH, UV, and chloroform sensitivity assessment were performed. Aliquots
of cyanophage stock solution (2.8 × 105 PFU/mL) were adjusted to different pH (2, 3, 4,
5, 6, 7, 8, 9, 10, 11, 12) with NaOH or HCl, in triplicates and incubated for 2 h at 25 ◦C;
aliquots of cyanophage stock solution (2.8 × 105 PFU/mL) were incubated at 0 ◦C, 25 ◦C,
40 ◦C, 60 ◦C, and 80 ◦C, respectively, in triplicates. Samples were collected at 0 min, 20 min,
40 min, 60 min, 80 min, 100 min, and 120 min, respectively; aliquots of cyanophage stock
solutions were irradiated under UV lamp (253.7 nm) in triplicates. Samples were collected
at 0 min, 10 min, 20 min, 30 min, 40 min, 50 min, 60 min, 70 min, and 80 min respectively;
aliquots of cyanophage stock solution (2.8 × 105 PFU/mL) were added with chloroform at
final concentrations (v/v) of 0%, 1%, and 2.5%, respectively, in triplicates. Control groups
were added with an equal volume of 0.01 M PBS instead of chloroform. The mixtures were
shaken and incubated in a light incubator for 30 min. Titers of the treated and untreated
samples were measured using the double-layer plate method.

2.5. Host Range Experiments of Cyanophage

Thirty-nine freshwater cyanobacteria strains (Table 1) obtained from the Freshwater
Algal Culture Bank of Institute of Hydrology (Wuhan, China), Academy of Sciences were
used to determine the host range of cyanophage. In the experimental groups, each 300 µL
of Mae-Yong1326-1 suspension (2.8 × 105 PFU/mL) and 600 µL of cyanobacterial cultures
in logarithmic growth phase were added to48-well plates in triplicates and incubated in
the light incubator (25 ◦C, 2000 Lux, with a 12 h:12 h light–dark cycle). In the negative
control group, the cyanophage suspension was replaced with BG11 medium. Three parallel
experiments were performed. The lysis of the culture was observed daily, and OD680
measurements were also performed daily.

Table 1. Host range analysis of Mae-Yong1326-1 against 39 cyanobacteria strains.

Orders Families Species Strains Susceptible Origin

Chroococcales Microcystaceae

Microcystis
aeruginosa

FACHB-905 − China
FACHB-942 − China
FACHB-469 − France
FACHB-924 + Australia
FACHB-925 − Australia
FACHB-1326 + China

M. wesenbergii

FACHB-908 + China
FACHB-929 − Japan
FACHB-1112 − China
FACHB-1318 − China
FACHB-1317 − China

M. flos-aquae
FACHB-1028 − China
FACHB-1351 − China
FACHB-1323 − China

M. elabens FACHB-916 − Japan
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Table 1. Cont.

Orders Families Species Strains Susceptible Origin

M. panniformis FACHB-1757 − China
FACHB-1409 − China

M. viridis
FACHB-979 − Japan
FACHB-1337 − China
FACHB-1342 − China

Microcystis sp. FACHB-915 − France

Chroococcaceae Chroococcus sp. FACHB-193 − China

Nostocales
Aphanizomenonaceae

Aphanizomenon
flos-aquae

FACHB-1039 − China
FACHB-1209 + China
FACHB-1040 − China

Dolichospermum
flos-aquae

FACHB-245 − America
FACHB-1255 − China
FACHB-418 − France

Nostocaceae Nostoc sp. FACHB-596 + China

Oscillatoriales

Microcoleaceae
Planktothrix

agardhii

FACHB-1166 − China
FACHB-920 − Japan
FACHB-1243 − China
FACHB-1261 + China

Oscillatoriaceae

Oscillatoria
planctonica FACHB-708 − China

Planktothricoides
raciborskii FACHB-881 + China

Synechococcales Synechococcaceae Synechococcus sp. PCC-7942 − Australia
FACHB-1061 − China

Hormogonales Scytonemataceae Plectonema
boryanum

FACHB-402 − America
FACHB-240 − America

(+) representative infection; (−) representative non-infection.

2.6. Genome Sequencing and Bioinformatics Analysis of the Cyanophage

The cyanophage lysate was centrifuged for 10 min at 10,000× g. The supernatant
was filtered through a 0.22 µm nitrocellulose filter, pretreated with DNase (1 µg/mL)
and RNase (1 µg/mL) for 2 h at 37 ◦C to remove host bacterial DNA and RNA, then
incubated at 80 ◦C for 15 min. High Pure Viral kitA high Pure Viral kit (Roche, Product
No: 11858882001) was used to extract the cyanophage genome. NEB Next Ultra II DNA
Library PrepKit (NEB, Product No: E7645) for Illumina was used to construct a genomic
library. Sequencing was performed using Illumina MiSeqsequencer (SanDiego, CA, USA)
to obtain 2 × 300 bp paired-end reads. Trimmomatic V0.36 software was used to sift away
low-quality sequencing reads (Q value < 20). De novo assembling was performed using
SPAdes version V3.14.1 (http://cab.spbu.ru/software/spades/ (accessed on 16 August
2021)). Genome termini were analyzed as described previously [22] and using PhageTerm
online (https://sourceforge.net/projects/phageterm (accessed on16 August 2021)) [23].

Mae-Yong1326-1 genome was annotated preliminarily with RAST (http://rast.nmpdr.
org (accessed on 17 August 2021) [24]. All the predicted ORFs were verified manually
by searching against the nr database with BLASTp (E-value < 10−5), searching against
all the databases on the HMMER web server with hmmscan (https://www.ebi.ac.uk/
Tools/hmmer/search/hmmscan (accessed on 17 August 2021)) [25] (benchmark: complete
functional domain and E-value < 10−5) and searching against all the databases on the
HHpred web server (https://toolkit.tuebingen.mpg.de/tools/hhpred (accessed on 5 April
202)) (benchmark: possibility > 96% and E-value ≤ 10−5) [26]. The tRNAscan-SE program
was used to search for regions encoding tRNAs (http://lowelab.ucsc.edu/tRNAscan-SE/

http://cab.spbu.ru/software/spades/
https://sourceforge.net/projects/phageterm
http://rast.nmpdr.org
http://rast.nmpdr.org
https://www.ebi.ac.uk/Tools/hmmer/search/hmmscan
https://www.ebi.ac.uk/Tools/hmmer/search/hmmscan
https://toolkit.tuebingen.mpg.de/tools/hhpred
http://lowelab.ucsc.edu/tRNAscan-SE/
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(accessed on 5 April 2022)) [27]. Antibiotic resistance and virulence factor genes in Mae-
Yong1326-1 genome were predicted in the CARD database (http://arpcard.mcmaster.ca
(accessed on 5 April 2022)) and VFDB database (http://www.mgc.ac.Cn/VFs/main.htm
(accessed on 5 April 2022)), respectively.

BLASTn alignment against nr database was used to searching sequences similar with
Mae-Yong1326-1 genome. The pair-wise average nucleotide identity (ANI) values were
calculated using OrthoANI (http://www.ezbiocloud.net/sw/oat (accessed on 8 April
2022)) [28]. To estimate the nucleotide sequence similarity between Mae-Yong1326-1 and
other phages in current (5 January 2022) public databases, the Pairwise Sequence Com-
parison (PASC) classification tool (http://www.ncbi.nlm.nih.gov/sutils/pasc/ (accessed
on 5 January 2022)) was used [29]. Nucleotide-based intergenomic similarities between
Mae-Yong1326-1 and other phages in current (5 June 2022) public databases were also
estimated by using VIRIDIC (http://rhea.icbm.uni-oldenburg.de/VIRIDIC/ (accessed on
5 June 2022)) [30]. Online software ViPTree (https://www.genome.jp/viptree/ (accessed
on 8 April 2022)) [31] was utilized to generate a proteomic tree based on genome-wide
similarities determined by tBLASTx.

3. Results
3.1. Isolation and Morphology of Cyanophage Mae-Yong1326-1

The experimental group turned yellow in seven days (Figure 1A). The quantity of
the cyanobacterial cells in the yellowing experimental groups (Figure 1B) was much less
than that in the control group (Figure 1C) under microscopic observation. Mae-Yong1326-1
developed clear and circular plaques with diameter up to 5 mm in five days (Figure 1D).
Cyanophage Mae-Yong1326-1 has an elliptical head of about 47 nm in diameter and a
slender flexible tail of about 340 nm in length (Figure 1E).
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Figure 1. Micro- and macrographs of M. aeruginosa FACHB-1326 cultures, plaques, and negatively
stained Mae-Yong1326-1. (A) Macrograph of a normal culture (left picture) and a M. aeruginosa
FACHB-1326 culture infected with Mae-Yong1326-1 (right picture); (B) micrograph of a M. aeruginosa
FACHB-1326 culture infected with cyanophage Mae-Yong1326-1. Scale bar = 100 µm; (C) micrograph
of a normal culture of M. aeruginosa FACHB-1326. Scale bar = 100 µm; (D) plaques developed by
Mae-Yong1326-1 on M. aeruginosa FACHB-1326 lawn; (E) a transmission electron micrograph of
cyanophage Mae-Yong1326-1. Scale bar represents 200 nm.
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3.2. One-Step Growth Curve

The one-step growth curve (Figure 2) of the cyanophage Mae-Yong1326-1 (at MOI = 0.1)
showed that the titer of Mae-Yong1326-1 did not change significantly within 180 min post
infection, increased slowly from 180 to 540 min, increased sharply from 540 to 1440 min,
and remained relatively stable after 2160 min. Results indicated a latent period of 180 min
and a burst period of 1980 min with the burst size of 329 PFU/cell [32].

Viruses 2022, 14, x FOR PEER REVIEW 6 of 16 
 

 

Figure 1. Micro- and macrographs of M. aeruginosa FACHB-1326 cultures, plaques, and negatively 
stained Mae-Yong1326-1. (A)Macrograph of a normal culture (left picture) and a M. aeruginosa 
FACHB-1326 culture infected with Mae-Yong1326-1 (right picture); (B) micrograph of a M. aeru-
ginosa FACHB-1326 culture infected with cyanophage Mae-Yong1326-1. Scale bar =  100 µm; (C) 
micrograph of a normal culture of M. aeruginosa FACHB-1326. Scale bar =  100 µm; (D) plaques de-
veloped by Mae-Yong1326-1 on M. aeruginosa FACHB-1326 lawn; (E) a transmission electron micro-
graph of cyanophage Mae-Yong1326-1. Scale bar represents 200 nm. 

3.2. One-Step Growth Curve 
The one-step growth curve (Figure 2) of the cyanophage Mae-Yong1326-1 (at MOI = 

0.1) showed that the titer of Mae-Yong1326-1 did not change significantly within 180 min 
post infection, increased slowly from 180 to 540 min, increased sharply from 540 to 1440 
min, and remained relatively stable after 2160 min. Results indicated a latent period of 180 
min and a burst period of 1980 min with the burst size of 329 PFU/cell [32]. 

The literature review revealed that the burst size of the previously reported Micro-
cystis cyanophagesranged from 28-127 PFU/cell [17,18,33–35]. The burst size of Mae-Yong 
1326-1 is much larger than them. That is, among all the Microcystis cyanophages studied 
so far, Mae-Yong 1326-1 has the largest burst. 

 
Figure 2. One-step growth curve of Mae-Yong1326-1 developed under the MOI of 0.1. Each dot 
represents the average titer at each time from the three parallel experiments. Error bars indicate 
standard deviations. 

3.3. Temperature, pH, UV and Chloroform Stability 
The physicochemical stabilities (pH, UV, temperature, and chloroform) of cy-

anophages are important factors affecting the application potential. Mae-Yong1326-1 has 
a wide pH tolerance range. Itsactivity was relatively stable at pH3 to 12 although almost 
inactivated at pH 2 (Figure 3A). UV irradiation reduced the activity of Mae-Yong1326-1 
and caused complete inactive in 50 min(Figure 3B). The activity of Mae-Yong1326-1 stayed 
at high levelsat temperatures ranging from 0 °C to 40 °C, yet decreased to 0 within 20 min 
at the temperatures over 60 °C (Figure 3C). The best storage and transportation tempera-
ture for Mae-Yong1326-1 is room temperature (RT, 25 °C), as the activity of which was 
most stable at RT. Mae-Yong1326-1 maintained infectivity under chloroform treatment, 
but the activity of it decreased. 
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The literature review revealed that the burst size of the previously reported Microcystis
cyanophages ranged from 28-127 PFU/cell [17,18,33–35]. The burst size of Mae-Yong 1326-1
is much larger than them. That is, among all the Microcystis cyanophages studied so far,
Mae-Yong 1326-1 has the largest burst.

3.3. Temperature, pH, UV and Chloroform Stability

The physicochemical stabilities (pH, UV, temperature, and chloroform) of cyanophages
are important factors affecting the application potential. Mae-Yong1326-1 has a wide pH
tolerance range. Its activity was relatively stable at pH3 to 12 although almost inactivated
at pH 2 (Figure 3A). UV irradiation reduced the activity of Mae-Yong1326-1 and caused
complete inactive in 50 min (Figure 3B). The activity of Mae-Yong1326-1 stayed at high
levels at temperatures ranging from 0 ◦C to 40 ◦C, yet decreased to 0 within 20 min at the
temperatures over 60 ◦C (Figure 3C). The best storage and transportation temperature for
Mae-Yong1326-1 is room temperature (RT, 25 ◦C), as the activity of which was most stable
at RT. Mae-Yong1326-1 maintained infectivity under chloroform treatment, but the activity
of it decreased.
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3.4. Host Range of Cyanophage Mae-Yong1326-1

The results of host range experiments showed that Mae-Yong1326-1 could lyse 7of
the 39 tested cyanobacterial strains (Table 1). The susceptible cyanobacterial strains, across
three taxonomic orders, were as follows: M. aeruginosa FACHB-1326, M. aeruginosa FACHB-
924, and M. wesenbergii FACHB-908 of the order Chroococcales; Aphanizomenon flos-aquae
FACHB-1209 and Nostoc sp. FACHB-596 of the order Nostocales; and Planktothrix agardhii
FACHB-1261 and Planktothricoides raciborskii FACHB-881 of the order Oscillatoriales. Among
the susceptible cyanobacteria, strains FACHB-1326, FACHB-924, FACHB-596, and FACHB-
1261 were reported to be toxic [36–38].

Although most isolated cyanophages have a narrow host range, Mae-Yong1326-1 and
four cyanophages, reported recently, have broad host range [15,16,18,20]. A wide host
range may be advantageous for the application because cyanobacterial blooms are usually
caused by multiple cyanobacteria [16].

3.5. General Characteristics of Mae-Yong1326-1 Genome

The average sequencing depth of Mae-Yong1326-1 genome was 616-fold. The complete
genome of Mae-Yong1326-1 was a double-stranded DNA comprising 48,822 bp with 71.80%
G + C content and long direct terminal repeats (DTR) of 366 bp. No tRNA gene was found
in the genome. A total of 57 open reading frames (ORFs) in Mae-Yong1326-1 genome
were predicted, with 31 on one strand and the other 26 on the opposite strand. All the
ORFs covered 45,864 bp, resulting in a coding density of 93.99%. The average length of
the coding products of the ORFs is 294 aminoacids (AA), with the smallest being 29 AA
and the largest being 2441 AA (Table 2). Most ORFs (47 of 57, 84%) start with the initiation
codon ATG, and the remaining 10 ORFs start with the initiation codon GTG. No known
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antibiotic-tolerance gene and virulence gene was found in Mae-Yong1326-1 genome, which
proposes the security of the application potential of Mae-Yong1326-1 as a candidate for
controlling Microcystis bloom. The genome was deposited in GenBank under the accession
number OP028995.

Table 2. Functional prediction and top BLASTp hits of Mae-Yong1326-1 ORFs.

ORF Size (aa) Prediction Function Top BLASTp Hit a Identity b (aa) E-Values

1 106 Hypothetical protein no hits

2 49 Hypothetical protein no hits

3 508 CobS subunit of
cobaltochelatase

gb|OJX48995.1|hypothetical protein
BGO81_10395 [Devosia sp. 66–22] 58% (113/195) 1 × 10−58

4 644 CobT subunit of
cobaltochelatase

gb|MAH25102.1|hypothetical protein
[Gammaproteobacteria bacterium] 33% (38/114) 0.002

5 74 Hypothetical protein no hits

6 29 Hypothetical protein
gb|PSQ07931.1|beta-carotene

15,15′-dioxygenase [Halobacteriales
archaeon QS56833]

80% (16/20) 0.18

7 78 Hypothetical protein no hits

8 878 RecA-family ATPase ref|WP_171611044.1|AAA family
ATPase [Roseicella sp. DB1501] 39% (112/286) 4 × 10−42

9 47 Hypothetical protein no hits

10 63 Hypothetical protein ref|WP_032877434.1|hypothetical
protein [Pseudomonas sp. BRG-100] 52% (32/61) 5 × 10−13

11 55 Hypothetical protein no hits

12 68 Hypothetical protein
ref|WP_184140002.1|DUF551

domain-containing protein
[Shinellafusca]

62% (41/66) 1 × 10−19

13 139 Hypothetical protein no hits

14 367 Integrase
emb|CUW38828.1|putative Integrase
(integrase-like, catalytic core,170–342)

[Magnetospirillum sp. XM-1]
42% (143/338) 1 × 10−67

15 57 Hypothetical protein no hits

16 153 Transcriptional
repressor DicA

tpg|HAO2892019.1|TPA:
helix-turn-helix transcriptional

regulator [Escherichiacoli]
70% (91/130) 2 × 10−34

17 107 Hypothetical protein no hits

18 203 Deoxynucleoside-5′-
monophosphate kinase

seq
gb|MCA6280837.1|deoxynucleotide

monophosphate kinase
[Phenylobacterium sp.]

48% (88/182) 7 × 10−55

19 69 Hypothetical protein no hits

20 41 Hypothetical protein no hits

21 51 Hypothetical protein no hits

22 107 Hypothetical protein no hits

23 149 Hypothetical protein no hits

24 87 Hypothetical protein no hits
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Table 2. Cont.

ORF Size (aa) Prediction Function Top BLASTp Hit a Identity b (aa) E-Values

25 88 Hypothetical protein ref|WP_190872088.1|hypothetical
protein [Aulosira sp. FACHB-615] 69% (60/87) 3 × 10−36

26 192
RuvC; Holliday junction

resolvasomeRuvABC
endonuclease subunit

gb|MBN9348280.1|DUF2815 family
protein [Devosia sp.] 44% (68/156) 2 × 10−29

27 484 SNF2 family
DNA-dependent ATPase

gb|MBF0421090.1|DEAD/DEAH box
helicase [Magnetococcales bacterium] 44% (93/209) 4 × 10−44

28 649 Hypothetical protein gb|MBN9348284.1|hypothetical
protein [Devosia sp.] 46% (303/657) 3 × 10−170

29 425 RecB family exonuclease
gb|RPI18833.1|DUF2800

domain-containing protein
[Acidobacteriales bacterium]

34% (129/375) 9 × 10−44

30 126 Single-stranded
DNA-binding protein

gb|MBN9348280.1|DUF2815 family
protein [Devosia sp.] 100% (126/126) 1 × 10−87

31 76 Hypothetical protein no hits

32 649 DNA polymerase gb|MBN9348284.1|hypothetical
protein [Devosia sp.] 46% (303/657) 3 × 10−170

33 100 Hypothetical protein no hits

34 61 Hypothetical protein no hits

35 180 Hypothetical protein
gb|EHM03436.1|hypothetical protein
HMPREF9946_00111 [Acetobacteraceae

bacterium AT-5844]
51% (76/148) 8 × 10−35

36 72 Hypothetical protein
emb|SKB62996.1|hypothetical protein
SAMN06295937_1011120 [Sphingopyxis

flava]
52% (37/71) 3 × 10−13

37 33 Hypothetical protein no hits

38 2441 Peptidoglycan
transglycosylase

emb|CAB4120902.1|hypothetical
protein UFOVP4_2 [uncultured

Caudovirales phage]
34% (431/1278) 1 × 10−174

39 459 Hypothetical protein no hits

40 218 Hypothetical protein no hits

41 216 Hypothetical protein gb|MBN9347258.1|hypothetical
protein [Devosia sp.] 38% (58/151) 3 × 10−24

42 163 Acetyltransferase gb|MBN9347259.1|hypothetical
protein [Devosia sp.] 50% (78/157) 2 × 10−41

43 465 Packaged DNA
stabilization protein

gb|MBN9347260.1|hypothetical
protein [Devosia sp.] 39% (194/493) 2 × 10−103

44 176 HNH endonuclease
ref|WP_222211838.1|NUMOD4

domain-containing protein
[Burkholderiacepacia]

49% (83/171) 1 × 10−33

45 228 Tail tubular protein ref|WP_068432416.1|hypothetical
protein [Magnetospirillum sp. XM-1] 44% (91/206) 3 × 10−41

46 727 Hypothetical protein no hits

47 358 Major capsid protein gb|MBN9347263.1|phage major
capsid protein 58% (212/366) 3 × 10−140
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Table 2. Cont.

ORF Size (aa) Prediction Function Top BLASTp Hit a Identity b (aa) E-Values

48 381 Hypothetical protein gb|MBN9347264.1|hypothetical
protein [Devosia sp.] 33% (84/251) 7 × 10−21

49 727 Portal protein ref|WP_068432432.1|hypothetical
protein [Magnetospirillum sp. XM-1] 48% (310/642) 0.0

50 532 Terminase, large subunit
ref|WP_068432438.1|phage terminase

large subunit [Magnetospirillum sp.
XM-1]

55% (281/510) 9 × 10−175

51 156 Hypothetical protein no hits

52 842 Zn-finger protein ref|WP_237213204.1|hypothetical
protein [Roseomonas sp. NPKOSM-4] 40% (155/386) 2 × 10−47

53 107 Hypothetical protein ref|WP_174450698.1|hypothetical
protein [Azospirillumbaldaniorum] 45% (49/110) 8 × 10−18

54 265 Hypothetical protein gb|MBW8018009.1|hypothetical
protein [Planctomycetes bacterium] 35% (41/118) 1 × 10−5

55 56 Hypothetical protein no hits

56 193 Hypothetical protein no hits

57 168 Hypothetical protein gb|MBV9984493.1|hypothetical
protein [Bradyrhizobium sp.] 36% (52/144) 8 × 10−12

a the most closely related protein and its organism. “No hits” indicates no significant hits. b percent identity for
the top hits in BLASTP scanning. Numbers in parentheses provide length of each alignment.

By utilizing RAST, Blastp, HHpred, and HMMER, 20 ORFs in Mae-Yong1326-1 genome
were predicted as known functional genes, accounting for about 35% of the total 57 ORFs.
The remaining 37 ORFs, accounting for 65% of the total ORF, were unannotated. The anno-
tated ORFs could be classified into four functional categories: DNA replication/regulation,
structure, packaging, and lysis (Figure 4).

DNA replication and regulation genes: ORF 3 and ORF 4 of Mae-Yong1326-1 were pre-
dicted to encode CobS and CobT subunit of cobaltochelatase. CobST gene cluster is found
to be widely encoded in tailed viruses that infect members of eight bacterial or archaeal
orders [39]. In T4-like cyanophages, cobST gene cluster is part of the core genome [39–41],
i.e., cobS and cobT genes are reported to be core genes in T4-likecyanophages, although
cobT is usually mistakenly annotated as a peptidase [39,40].CobS and CobT were reported
to play the role in the biosynthesis of cobalamin (vitamin B12), which is an important
cofactor in various metabolic pathways, including DNA biosynthesis and replication of the
virus [39,41]. ORF 52 encoded Zinc finger proteins that may be involved in transcrip-
tional regulation or mediate protein–protein interactions [42]. ORF 44 encoded H-N-H
endonuclease. HNH endonucleases were suggested to play an important role in the phage
life cycle, fitness, and DNA packaging as well as in the response to environmental stress
conditions [43].

Lysis, DNA packing, and structure genes: ORF 38 of Mae-Yong1326-1 was predicted
to encode a putative peptidoglycan transglycosylase, which can crack the peptidoglycan
cell wall of host cell [44]. ORF 50 encodes a putative terminase large subunit, which
mediates DNA packaging and performs nuclease activity, thus generating the terminal of
the phage chromosome [45]. ORF 43 was predicted to encode a packaged DNA stabilization
protein, the function of which is involved with stabilizing the condensed DNA within the
capsid [46]. ORF 45, 47, and 49 encoded putative tail tubular protein, major capsid protein,
and portal protein, respectively.
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3.6. Phylogenetic Analysis of Cyanophage Mae-Yong1326-1

BLASTn search resulted that Mae-Yong1326-1 had the highest sequence similarity
with Leisingera sp. NJS201 (accession number CP038234.1), but the query cover was close to
0; i.e., in practical terms, there is no homologous genome in the database. PASC is a web
tool for the analysis of pairwise identity distribution within viruses [29]. PASC scanning
with Mae-Yong1326-1 genome resulted that the maximum nucleotide sequence similarity
between Mae-Yong1326-1 and the closest relative (Microcystis cyanophage MinS1) was only
17.75%, which was much lower than the threshold value of 70% to discriminate viral genus
according to the International Committee on Taxonomy of Viruses (ICTV). In the VIRIDIC
scanning with Mae-Yong1326-1 genome, the highest intergenomic similarities between
Mae-Yong1326-1 and the closest relative (Microcystis cyanophage MinS1) was as low as
2%, which was far below the ≥70% boundary to define a genus. Results demonstrate
that cyanophage Mae-Yong1326-1 reveals an unknown new genus. The ANI and isDDH
values for Microcystis cyanophage Mae-Yong1326-1 and the closest relative, Microcystis
phage MinS1, were only −1 and 12.5%, respectively. Terminase genes are considered
to be a relatively conservative genes in Caudoviricetes class. In Blastp analysis, the large
terminase subunit of Mae-Yong1326-1 shared only 55% of identity with the top hit and
33% with MinS1.The genome of a total of 91 classified phages of the class Caudoviricetes
and the 9 reported freshwater Microcystis cyanophages were used as reference sequences
to develop a proteomic tree, applying the online software ViPTree. In the proteomic tree
(Figure 5) based on genome-wide sequence similarities, Mae-Yong1326-1 distantly clustered
with three unclassified Microcystis cyanophages (MinS1, Mwe-Yong1112-1, and Mwes-
Yong2). Like Mae-Yong1326-1, the highest similarities between MinS1, Mwe-Yong1112-1,
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Mwes-Yong2, and their closest relatives in PASC and VIRIDIC scanning were far below
the ≥70% threshold to define a genus. Results indicated that Microcystis cyanophages
Mae-Yong1326-1, MinS1, Mwe-Yong1112-1, and Mwes-Yong2 each reveal a new genus.
These four Microcystis cyanophages form a monophyletic clade, separating at a node
from the other clade formed by two families, Zierdtviridae and Orlajensenviridae, which
are independent families of the Caudoviricetes class. Compared to Mwes-Yong2 and Mwe-
Yong1112-1, the two Microcystis cyanophages, MinS1 and Mae-Yong1326-1, are more related.
Genome comparison between Mae-Yong1326-1, MinS1, and Mwe-Yong1112-1 showed
very low homology among them (Figure 6). Core Genes 5.0 (https://coregenes.ngrok.io/
(accessed on 10 July 2022)) analysis revealed no homologs shared by Mae-Yong1326-1,
MinS1, Mwe-Yong1112-1, and Mwes-Yong2. Manual analysis revealed that all or some
of them shared the homologs, including terminase, integrase, DNA polymerase, HNH
endonuclease, and portal protein (Table 3). As mentioned earlier, cobT and cobS genes were
reported to be core genes in cyanophages [39–41]. Yet, except Mae-Yong1326-1, no cobT or
cobS genes were found in the genomes of Mwes-Yong2, MinS1, and Mwe-Yong1112-1 in
bioinformatics analysis. In addition, unlike Mae-Yong1326-1, no fixed phage terminus and
direct terminal repeat was found in Mwes-Yong2, MinS1, and Mwe-Yong1112-1 genomes.
This corresponded with the very low nucleotide sequence similarity and intergenomic
similarities among them. All the above results suggest more diverse characteristics of
freshwater Microcystis cyanophages than have been previously known. We propose to
establish a new family and four subfamilies to harbor the four Microcystis cyanophages
including Mae-Yong1326-1, MinS1, Mwe-Yong1112-1, and Mwes-Yong2.

Table 3. Genome-characteristics of Microcystis cyanophages Mae-Yong1326-1, MinS1, Mwe-Yong1112-1,
and Mwes-Yong2.

Cyanophage Indicate Host Size
(bp) G + C Fixed

Terminus DTR Terminase Integrase
DNA
Poly-

merase

HNH
Endonu-

clease

Portal
Protein

Mae-
Yong1326-1 M. aeruginosa 48.822 71.8% Yes 366

bp Y Y Y Y Y

MinS1 M. aeruginosa 49.996 71.8% No no Y Y N Y N
Mwe-

Yong1112-1 M. wesenbergii 39.679 66.6% No no Y Y N N Y

Mwes-Yong2 M. wesenbergii 44.530 71.6% No no Y Y Y Y Y

(Y) indicates that there is/are ORF/ORFs annotated with this function in the genome; (N) indicates that no ORF
was annotated with this function.

https://coregenes.ngrok.io/
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