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Abstract— Conventional clustering algorithms based on Eu-

clidean distance or Pearson correlation coefficient are not able

to include order information in the distance metric and also un-

able to distinguish between random and real biological patterns.

We present template based clustering algorithm for time series

gene expression data. Template profiles are defined based on

up-down regulation of genes between consecutive time points.

Assignment of genes to templates is based on fuzzy membership

function. Multi-objective evolutionary algorithm is used to

determine compact clusters with varying number of templates.

Statistical significance of each template is determined using

permutation based non-parametric test. Statistically significant

profiles are further tested for their biological relevance using

gene ontology analysis. The algorithm was able to distinguish

between real and noisy pattern when tested on artificial and

real biological data. The proposed algorithm has shown better

or similar performance compared to STEM and better than

k-means on a real biological data.

I. INTRODUCTION

The advent of microarray technology has made it possible

to explore the dynamics of transcription on genome-wide

scale in single experiment. Data from microarray experiments

have provided an opportunity to understand the genomic

level mechanism, i.e., relationships between genes under

the particular experimental condition. On the other hand

microarray technology has also generated many challeng-

ing computational problems. Some of the problems are of

common nature, irrespective of the experiment design, while

some other problems are specific to particular experiments.

Microarray experiments can be classified into static and

dynamic based on the nature of experiments [1]. In static

experiments, expression of genes are measured in different

conditions and analyzed for differentially expressed genes

under those conditions. Examples of static microarray exper-

iments include knock-out vs wild type studies, mutant (or

treatment) vs wild type (or normal). Whereas, in dynamic

experiments, gene expressions are measured in a particular

order, e.g. at different time points or at different dose levels,

under a certain condition. Aims of these studies are to under-

stand the dynamic nature of genes, which might give insights

into regulatory networks, transcriptional controls and other

various biological phenomena. In this paper, only time series
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or temporal experiments are mentioned but, unless otherwise

stated, the same is true with dose-response or any other order-

restricted experiments. Apart from differences in experiment

design and motivation of the two types of experiments, there

exists differences at data analysis level. While static data

can be assumed to be independent and identically distributed

(iid), time series data cannot be assumed to be iid. Rather

order of the data is important and it exhibits a strong auto-

correlation between successive time points.

In recent years, time series microarray experiments have

been performed to understand the various biological phe-

nomena. Examples include yeast cell cycle study [2], yeast

sporulation study [3], developmental studies [4], immune

response to Helicobacter pylori infection [5] and temporal

profiling during neurogenesis [6].

Based on the assumption that genes with similar ex-

pression profiles are functionally related or co-regulated

[7], most of the methods proposed in the gene expression

analysis literature attempt to identify groups of genes with

similar expression profiles. Much of the early work used

methods developed originally for static data [2], [3], [5].

Most commonly used among such methods are hierarchical

clustering [7], k-means [8], self-organizing maps [9].

Evolutionary algorithms (EAs) [10] have been used for

clustering [11], [12], [13], [14] mainly in pattern recognition

domain.1 In [11], Murthy and Chowdhury used EA to

optimize intra cluster variation. But the user needs to pre-

define number of clusters and also the string representation

for chromosome is not suitable for cases where number

of samples in data is quite large as in the case of gene

expression data. Bandyopadhyay and Maulik [12] proposed

EA based clustering in the context of image classification

to optimize Davies-Bouldin [12] index. Though they do not

need to specify exact number of cluster but chromosome

representation again may not be suitable for gene expression

data. Each chromosome was of length Kmax and made up

of real numbers representing co-ordinates of centers and

”don’t care” symbol. The ”don’t care” symbol represented

absence of the center and helped EA to search for varying

number of clusters. Obviously for large dimensional data this

representation is not appropriate. Gesu et al. [13] used EA

for clustering of gene expression data. Again EA was used

to optimize the intra cluster variation. GenClust [13] also

required to predefine the actual number of clusters. Handl

and Knowles [14] formulated clustering problem as an multi-

1Due to space limitations we have not discussed basics of EAs. Interested
readers can look at [15], [10] as good reference point for the same.
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objective problem [15] and proposed an algorithm named

MOCK. They used compactness and connectedness as two

criteria to optimize.

Although all the above discussed generic methods lead to

many biologically significant results, they are not designed

for time series or order-restricted data and hence overlooking

characteristics of these data. All the above algorithms group

genes based on some distance measures (Euclidean and

correlation based distances are more common) and only look

for compact clusters. These measures ignore the sequential

nature of expression data and assume that data at each time

point is independent of each other.

Differences in the nature of static and temporal data led

to the development of several new algorithms specifically

targeting time series experiments. Majority of these methods

are model based clustering methods. Gaussian or other distri-

bution based mixture modeling [16], hidden Markov model

(HMM) [17], spline [18], [19] and auto-regressive model [20]

are examples of some of the different model-based clustering

methods.

Schliep et al. [17], authors presented HMM based clus-

tering algorithm for time series expression data. Given gene

expression data, goal is to partition them into K HMMs.

Assignment of genes to different HMMs and parameter

estimation of HMMs were performed using expectation max-

imization (EM) approach. Ji et al. [21] also used HMM based

model to cluster the gene expression data. But all HMM

based methods require larger number of time points than the

number of states. This makes these methods more appropriate

for large time series expression data.

There are several methods proposed where spline based

modeling was used for analyzing time series expression

profiles. Bar-Joseph et al. [18] used cubic spline to represent

the continuous nature of temporal data. Luan and Li [19]

proposed mixed-effects models using B-splines. Spline based

methods require us to define a fixed number of knots between

first and last time points to approximate the expression profile

over time points. Even use of few knots require estimation

of several parameters for each gene. This may result in over-

fitting of data if there are very small number of time points.

Thus, this method is also not suitable for small time series.

Authors in [22] suggested to fit linear splines for short time

series expression data. But their method requires several

replicates [22].

Ramoni et al. [20] used a model-based clustering ap-

proach, where auto-regression was used as the model. The

method represented time-series data as auto-regressive equa-

tions of fixed order and used agglomerative procedure to

search for the most probable set of clusters given the data.

This method is quite appropriate for long temporal data but

has tendency to overfit and to give poorly separated clusters

for short time series data [23].

These algorithms work well for long temporal gene ex-

pression profiles, but they are not suitable for short temporal

expression profiles. Short time series data are more prevalent

[23] in microarray experiments due to many reasons. Cost

of arrays and limited biological samples are the two most

common limiting factors. Also, some of the above-mentioned

methods require several replicates, which again may not be

possible due to the above-discussed reasons. Motivated by

this, many new algorithms are being proposed for clustering

of short time series gene expression data [23], [24], [25],

[26].

Though methods based on regression [26] or model-

based methods [24] have been proposed but template based

methods [23], [25], [27]) have dominated clustering approach

for short time series expression data. In [27], authors have

used sinusoid to identify cycling yeast genes. This method

required the prior knowledge of shape of the curve to be

fitted. In general, such a priori information is not avail-

able. Moller-Levet et al. [25] suggested a method where

each gene is converted into a pattern vector. Pattern vector

corresponding to each gene was then assigned to one of

the predefined cluster prototype. One problem with this

approach is that the conversion of original gene expression

data resulted in information loss. Ernst et al. [23] predefined

profiles based on change in expression levels units between

consecutive time points. Their algorithm first finds a set of

representative model profiles from the set of all possible

profiles. Selected model templates were quite independent to

data. Genes were then assigned to one of the model profiles.

Statistical significance of each profile were determined and

only significant profiles were selected for further analysis.

These profiles can be further grouped into larger clusters.

In this paper, we propose novel template based clustering

algorithms for time series gene expression data. A novel

method of gene assignment to templates is proposed. Multi-

objective evolutionary algorithm (MOEA) is used to get

optimal number of model templates minimizing the quanti-

zation error. Statistical significance of each selected template

is determined and only significant templates are further

tested for biological significance. Motivation of the proposed

method can be summarized as:

• An algorithm giving importance to order of data

• An algorithm giving importance to shape rather than

distance or correlation measure

• An algorithm able to distinguish between random and

real pattern

• An algorithm which does not require many replicates as

basic requirement.

II. APPROACH

In this paper, we have proposed a new approach for

identifying significant profiles among the set of all possible

template profiles. Instead of choosing any distance measure,

genes are assigned to profiles based on its membership

values calculated using fuzzy membership functions. The

fuzzy membership function is defined on the basis of fold

change significance. MOEA is used to get a set of trade-off

solutions minimizing quantization error with simultaneous

minimization of number of model templates. As many of

such profiles could be enriched just by random chance, we
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applied permutation based statistical significance test [23] on

each enriched profiles. Only significant profiles were further

analyzed using Gene Ontology (GO) annotations to interpret

biological information.

A. Template Profiles

Template profiles or pattern vectors are defined based on

change in gene expression levels at consecutive time points.

A gene can have either positive change in expression level or

negative change or there may not be any change in expression

level at all. Hence, we have three possible transition states

for each gene from one time point to next time point. We

denoted positive change as 1, negative change as 2 and

no change as 0 for defining profiles. For nt time points,

total number of distinct templates can be given by 3(nt−1)

and each template profile can be represented by (nt − 1)
tuples. For illustration purpose, we have shown a profile

’0110’ in Figure 1. As it is shown in Figure 1, there is

significant positive change in gene expression level from

Fig. 1. Example Profile ’0110’.

second to third time point and from third to fourth time

point. There is almost no change in expression levels from

first to second and fourth to fifth. It can be observed that it

is difficult to put exact boundary between different transition

states. We defined fuzzy membership function to measure

belongingness of change in expression levels to different

transition states.

B. Fuzzy Membership Function

Here we assume that data is already normalized and trans-

formed into log ratios. From the normalized gene expression

matrix (GEM) we obtain ng×(nt−1) matrix. Entries in the

matrix corresponds to difference of gene expression values

at successive time points instead of actual gene expression

values. ng is number of genes being considered for cluster

analysis. For simplicity, we call this matrix difference gene

expression matrix (DGEM).

Entries of gene gi in DGEM is represented as (dgi
1, dgi

2,

. . . , dgi
k, . . . , dgi

nt−1) and profile pj as (pj
1, pj

2, . . . , pj
k, . . . ,

pj
nt−1), where dgi

k ε [−1 : 1] and pj
k ε {1, 0, 2}.

Membership mf(dgi
k, pj

k) of dgi
k is calculated with respect

to pj
k using mf defined in equ 1.

mf(dgi
k, pj

k) =

⎧⎪⎨
⎪⎩

1.0/(1.0 + exp(−a ∗ dgi
k + b) if pj

k = 1,

1.0/(1.0 + exp(a ∗ dgi
k + b) if pj

k = 2,

1.0/(1.0 + (|dgi
k/a|)

2∗b
otherwise.

(1)

Overall membership of m(gi, pj) of gene gi with respect

to pj is calculated using equ 2. Gene gi is then assigned to

profile pk for which m(gi, p.) is maximum.

m(gi, pj) = avgkmf(dgi
k, pj

k) (2)

S-shaped and bell-shaped functions are among the mostly

used functions for defining membership functions in fuzzy-

based methods. We choose s-shaped function to define posi-

tive and negative change in expression levels and bell-shaped

function for no change. Parameters of membership function

are chosen based on fold change significance. Parameters

a and b of s-shaped function are related as the ratio b
a

represents the value where the function-value reach 0.5.

We decided to choose 1.5 fold change either up or down-

regulated to represent this value. Parameters of bell-shaped

function is chosen such that it gives maximum value at no

change in expression level and a value of 0.25 corresponds

to fold-change of 1.30. A typical membership function is

shown in Figure 2.

Fig. 2. Membership Function. Values at x-axis corresponds to log2 fold
change.

C. Selection of Model Template Profiles

Our algorithm assign genes to template profiles based on

fuzzy membership function as discussed in Section II-B.

Even for small number of time points 5 or 6, there are

quite large number of possible templates. Many of them

are likely to be very sparsely populated by genes. Hence,

there is need to select meaningful and manageable number

of model templates. But knowing such a number a priori is

non-trivial. We choose to minimize the quantization error

to get compact clusters with simultaneous minimization

of number of model templates. By quantization error we

mean the overall distance between template and assigned

genes to it. We have formally define the quantization error

in equation (3). Since, template and gene expressions are

already normalized, euclidean distance can be used. We like

to emphasize here that genes are not assigned to templates
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based on distance matrix, rather they are assigned based on

fuzzy membership function. Euclidean distance is used to

calculate the quantization error only.

quanterr =

m∑
j=1

(
∑

i,iεSj

(

nt−1∑
k

(dgi
k − pj

k)2)1/2) (3)

where m is number of model templates, Sj is set of genes

assigned to template j.

As it is obvious that the two chosen objectives are

conflicting, we decided to use multi-objective evolutionary

algorithms (MOEA) [15] to get set of trade-off solutions.

EAs are well-suited for multiobjective optimization as being

population based approach, it approximates whole Pareto

front in single simulation. Solutions in Pareto front represent

trade-off between quantization error and number of model

templates.

1) Evolutionary Algorithms: NSGA-II [28] is one of the

most popular MOEAs and is used here to get the optimal

front. Application of MOEA requires proper choice of

i) an appropriate chromosome representation

ii) two or more objective functions

iii) selection of crossover and mutation operator

These choices are non-trivial and the performance of the

algorithm depends largely on them. We discuss below each

of them one by one.

2) Chromosome Representation: We choose binary string

of length equal to total template profiles considered. ’1’

at particular position ’j’ signifies the presence of template

profile of index ’j’ as one of chosen model templates.

Number of ’1s’ is kept variable for each chromosome so

that variable number of templates can be considered. Also,

as we are looking for model profiles, we do not want very

small number of template profiles. Thus we make at least

Kmin bits on in each chromosome.

3) Objective Functions: Two objective functions are con-

sidered. First objective function is chosen to minimize the

number of model templates. Minimizing the quantization er-

ror (equation (3)) is chosen as the second objective function.

4) Genetic Operators: A simple representation of chro-

mosome makes it easy to use any of the standard crossover

operators (single point, two point, uniform). We use single

point crossover operator. Standard bit wise mutation operator

is used. Since we want to have at least Kmin bits on in each

chromosome, but their is high chance that crossover and/or

mutation operator may lead to less number of bits on in

chromosome. To take care of that we employ following repair

mechanism. Repair operator generates a random number

Krand between (Kmin − K) and (Kmax − K). Here, K
is the current number of ’1s’ in chromosome and Kmax is

total template profiles considered. Repair operator randomly

makes Krand bits on, which were not already on.

D. Statistical Significance

As genes are assigned to different template profiles only

on the basis of membership function, many templates can be

expected to be enriched by random chance. Selecting profiles

only on the basis of number of genes in them definitely

would lead to many non-significant profiles. As determining

the underlying distribution of test statistics is difficult, non

parametric based permutation test is commonly used in gene

expression data analysis [23], [29], [30]. We used the same

permutation based test as discussed in [23].

Basic assumption of our analysis of temporal expression

data is that gene expression at a particular time point is

dependent on other time points. Based on this assumptions,

authors in [23], defined null hypothesis as the probability

of observing a value at certain time point was independent

to other time points. Thus if an enriched profile showing

significant deviation from the null hypothesis and assigned

more genes than expected by random chance, we expect it

should also be biologically relevant. Permutation was used

to quantify the expected number of genes that would have

been assigned to each profile, if values at each time point

were generated independent to others.

We briefly described the exact procedure for permutation

based test.

• For nt time points, get nt! permutation of data

• For each possible permutation j,

– Assign genes to a profile as discussed in section

II-B.

– Calculate sj
i as number of genes assigned to profile

i.

• Calculate total number of genes assigned to profile i in

all permutations as Si =
∑

j sj
i .

• Calculate expected number of genes assigned to profile

i if all values were generated at random as Ei = Si/n!.
• Since each gene is assigned to one profile only, it can

be assumed that each profile is binomially distributed

with n = ng and p = Ei/m, where m is total number

of enriched profiles.

Thus if si genes were assigned to profile i, p-value was

calculated as p(X ≥ si), where, X ∼ Bin(ng, p). Since

we were testing many profiles for significance, Bonferroni

multiple test correction [31] was applied.

Schematic diagram of the complete approach is shown in

Figure 3.

III. EVALUATION

Evaluation is performed on both simulated and biological

data. We have compared the proposed algorithm to both,

a general clustering algorithm (k-means) and an algorithm

developed specifically for time series gene expression data

(STEM [23]). Results obtained for simulated data is dis-

cussed in section III-B and section III-C discusses results

obtained on real biological data. Section III-C also discusses

the results obtained by STEM[23] and K-means. In both

cases, simulated or real, data is filtered using STEM [32]

(STEM algorithm was implemented in a software also named

STEM) with default values before applying any algorithm.

A. Experimental Setup

We used a = 4 and b = a ∗ 0.585 for s-shaped function

and a = 0.30, b = 2.33 were used for bell-shaped function
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Fig. 3. Schematic Diagram of the proposed approach.

for defining membership function. 0.585 corresponds to 1.5

fold change at logarithmic scale of base 2 (as discussed in

section II-B).

1) NSGA-II Parameters: We tried few parameters but

results were not not much dependent on parameters. We

have used parameters (Table I) in all the reported results

unless otherwise mentioned . In all cases, we have taken 10

independent runs and as we discuss later NSGA-II converges

to same front. Thus for final analysis, we consider simulation

from single run only.

TABLE I

PARAMETER SETTINGS FOR NSGA-II

Parameter Value

Number of generations 300
Population Size 100

Crossover probability 0.9
Mutation probability 0.01

Number of independent runs 10
Kmin 10

2) K-means: For our experiments, we use Matlab 6.5

implementation of k-means using correlation coefficient as

distance measure. In this case also 10 independent runs were

taken for each value of k and the one which gave minimum

error, is selected for further analysis. Silhouette width [33]

is used to select the final value of k. Since k-means does not

assign significance to the found clusters, we choose the top

several enriched clusters for biological significance analysis.

3) STEM: STEM [23] is clustering algorithm recently de-

veloped for the clustering of short time series gene expression

data. All simulation of STEM algorithm was performed using

STEM [32] with default values of all parameters.

B. Simulated Data

We have used two sets of simulated data containing

5000 genes with 5 time points. One of these datasets were

taken from www.cs.cmu.edu/∼jernst/st/ and we generated the

second dataset. In each of the simulation experiment, we

have first filtered out genes using STEM [32]. For STEM,

we have used all recommended default values with c=2,

and 50 possible model profiles. For our algorithm all 81

possible templates (discussed in Section II-A) were consid-

ered for analysis. Significance of each profile were tested at

Bonferroni corrected p-values of 0.05, which corresponds to

uncorrected p-values of 0.001.

First simulated data, taken from

www.cs.cmu.edu/∼jernst/st/, was totally random and was not

containing any pattern. Uniform (10,100) distribution was

used to generate raw expression value at each time point.

Each value thus generated was random and independent

from all other values. 4519 genes were selected for further

analysis after filtering by STEM. In this case only 5

independent runs of NSGA-II were taken and Figure 4

shows convergence of NSGA-II. As can be seen from the

figure, all runs were converged to almost the same front,

we choose arbitrarily one particular run to further analyze

the result. It can be also observed from Figure 4, that after

around 50 templates, error curve is almost flattened. We

decided to consider the individual with 50 model templates

for further analysis as the same number of model templates

were also considered in STEM. Statistical significance

analysis of these 50 templates has shown that none of them

are significant. We plotted expected versus assigned number

of genes in each template profile (shown in Figure 5). The

diagonal line corresponds to the number of genes expected

at uncorrected significance level of 0.001. STEM also did

not find any of the profiles significant.

Fig. 4. Simulated Data 1: Quantization error versus number of model
templates. Around 50 model templates error curve started to get flat.

We generated another set of artificial data with three

profiles and 50 genes were pre-assigned to each of them.

Rest of the genes were generated as stated above. The three

profiles were 1101, 2102 and 1201 (as shown in Figure 6). In

each case value at time point 0 was generated with uniform

(10,100) distribution. The raw expression values at the other

time points were generated as follows

xk =

⎧⎪⎨
⎪⎩

xk−1 ∗ U(1.5, 3) + U(0, 1) if pk = 1,

xk−1 ∗ U(0, 0.6) + U(0, 1) if pk = 2,

xk−1 + U(0, 1) if pk = 0.

Here, xk denotes the expression value at time point k and
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Fig. 5. Simulated Data 1: Expected versus actual number of genes assigned
to each profile. Diagonal line represents uncorrected significance level of
0.001. No profiles were found significant by the proposed method.

Fig. 6. Three random profiles were generated. 50 genes were planted to
these three profiles.

pk represents the kth index of the pattern p. Again, all

genes were filtered using default criteria of STEM. In this

case also, 5 independent runs of NSGA-II were taken and

again we observe the similar behavior as in the previous

case. We took 50 model templates for statistical significance

analysis. Our method correctly identified all three profiles

as significant and none of the other profile was selected as

significant (Figure 7). Whereas, STEM identified only two

out of three planted profiles as statistically significant profiles

(Figure 8). It is noteworthy to mention that several profiles

were more enriched than the identified significant profiles,

still our method was able to distinguish real pattern from

random patterns. This is definitely an advantage over the

conventional clustering algorithms.

Fig. 7. Simulated Data 2: As can be seen three profiles were found
significant by our method.

C. Biological Data

To further evaluate our algorithm we analyzed the time

series gene expression data on immune response to Heli-

cobacter Pylori infection from [5]. [5] used human cDNA

microarrays to investigate the temporal behavior of gastric

Fig. 8. Simulated Data 2: Results from STEM. Only two profiles were
identified as significant.

epithelial cells infected with H. pylori strain G27 and various

mutants. We used the temporal data obtained from infection

of G27 strain. Array was containing total 24,192 genes and

time series measurement were taken at 5 time points, 0, 0.5,

3, 6 and 12 hrs. Once again genes were filtered with default

values of STEM and 2137 genes were selected for further

analysis.

In this case also, default values were used for STEM and

all 81 possible templates (Section II-A) were considered for

our method. In this case, 10 independent runs of NSGA-

II were taken to get optimal number of model templates.

Convergence of NSGA-II is shown in figure 9. Once again

Fig. 9. Biological Data: Quantization error versus number of model
templates. Around 50 model templates error curve started to get flat.

50 model templates were considered for further statistical

and biological significance analysis. 9 template profiles were

found statistically significant. All these profiles are shown

in Figure 10. All significant profiles were analyzed for

GO categories enrichment. We used EASE [34] for GO

categories enrichment analysis. Four out of the 9 significant

model templates were found significantly enriched for GO

categories with EASE score [34] of 0.005 or less. We observe

that there are many unannotated genes present in the array.

This could explain why not all profiles were significantly

enriched with GO categories. Number of genes assigned to

each of the significant templates are shown in the Table

II. Below we describe some of profiles enriched for GO

categories.
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(a) Profile 1 (b) Profile 2 (c) Profile 3

(d) Profile 4 (e) Profile 5 (f) Profile 6

(g) Profile 7 (h) Profile 8 (i) Profile 9

Fig. 10. All 9 statistically significant profiles found by the proposed
method.

TABLE II

NUMBER OF GENES ASSIGNED TO EACH PROFILE

Profile Total Genes Annotated Genes

0002 80 53
0020 41 20
0100 76 41
0102 46 24
0110 37 33
0120 138 31
0122 30 6
0200 45 29
1120 142 34

Profile 2 (0002) contained 80 genes in all and 53 of

them are annotated and hence considered for GO categories

enrichment analysis. This profile was significantly enriched

for cell cycle, cell proliferation and DNA replication. Profile

18 (0200) contained 45 genes and only 29 of them are

annotated. The most significant GO category for this profile

was transferase activity. Profile 17 (0122) is the most inter-

esting among all with two reasons. First one it contained

only 30 genes and yet our algorithm was able to pick it as

statistically significant. The second is its biological relevance.

Response to pest/pathogen/parasite, immune response were

most significant enriched GO category in this case. As

the actual experiment involved pathogen infection, these

categories are quite expected [5]. This profile contained many

other categories, like humoral immune response, response to

external stimulus etc, but due to very few annotated genes,

were not found significant.

To evaluate the performance of the proposed method, we

compare it to k-means and STEM, a recently developed

clustering algorithm specifically designed for short time

series gene expression data. We run k-means algorithm

for k = 20, 25, 30, 35, 40, 45, 50 and choose k = 25 as

silhouette width was maximum for this value of k. Since

k-means does not give any statistical significance to the

found clusters, we choose 10 most enriched clusters for

comparison analysis. Performance of the three algorithms is

compared based on the enrichment analysis of GO categories.

STEM identified 10 statistically significant profiles. Cell

cycle, immune response were important common enriched

categories identified by STEM and the proposed method. K-

means also identified as cell cycle as significant but fail to

identify more specific category immune response or any other

similar categories, relevant to the experiment[5].

All three algorithms were able to pick common relevant

categories but only the proposed method and STEM were

able to pick the more biologically relevant categories. This

definitely shows the advantage of specially designed algo-

rithm over the generic algorithms like k-means. There are

clear advantages over k-means or any other distance based

generic clustering methods, i.e., able to pick statistically sig-

nificant profiles which are also more biologically consistent

with the considered experiment and data. It is not very clear

whether STEM or the proposed method is better than the

other. This require more comparative studies on other biolog-

ical data accompanied with experimental verification of the

results obtained from the two methods. There are significant

differences in approach between STEM and the proposed

method. Though the two methods use similar way to define

templates profiles, but selection of model templates and gene

assignment to them are completely different. STEM identifies

model templates without considering the actual data, our

method do consider data while selecting model templates.

In STEM, gene assignment is based on distance whereas we

proposed a novel gene assignment method independent of

any distance matrix and totally dependent on fold change

between consecutive time points.

IV. CONCLUSION

The type and the specific purpose of experiments have to

be considered in order to choose the most suitable algorithm.

Conventional clustering algorithms based on the Euclidean

distance or correlation coefficient are not able to properly

reflect the inherent ordered information embedded in time

series or any dose-response microarray experiments. In this

paper, we have proposed a novel approach of gene assign-

ment to different predefine profiles. Genes were assigned to

different predefine profiles using fuzzy membership func-

tion. Fuzzy membership function was defined on transitional

change in expression levels of gene during consecutive time

points. As there are quite large number of template profiles,

there is need to select manageable and meaningful number

of templates. Since deciding such a number is non-trivial,

we use a MOEA, NSGA-II to get a set of trade-off solutions

with varying number of template profiles and corresponding

quantization error. Based on that selected template profiles

were tested for statistical significance. Statistical significance

test gives the proposed method ability to distinguish between

real and random patterns.

The algorithm was tested on both simulated and biological

data. It was shown that our method was able to identify

small number of planted genes from large random data and

correctly assign them into respective correct profiles. When

applied on real biological data, algorithm was again able
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to identify patterns significantly enriched with biological

patterns. Our method was compared with STEM on both sim-

ulated and biological data. In case of second simulated data,

STEM could identify only 2 profiles, whereas our method

was able to correctly identify all three planted profiles. But

for biological data, it was shown that the statistical significant

profiles selected by STEM and our method were similar

and comparable. Our method was able to identify profiles

containing genes more biological relevant to the experiment

than k-means.

This approach can be extended to exploit the functional or

other available biological information into gene assignment.

A gene can belong to many functional categories and sim-

ilarly it can be assigned to several profiles simultaneously

by our method. One way of doing this could be, instead of

assigning genes to a profile solely based on their member-

ship values, we can put them into a category where more

biologically homogeneous genes are assigned.
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