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ABSTRACT Data driven fuzzy neural networks have some disadvantages, such as high dimensions and

complex learning process. Also, the obtained models are difficult to interpret. In this paper, we propose a

novel simple fuzzy system, which uses fuzzy adaptive neurons. This novel model takes the advantages of

the interpretability of the fuzzy system and good approximation ability of the neural networks. We propose

a simple learning algorithm for the novel fuzzy system. The stability analysis is given. We successfully

apply this fuzzy model for the earthquake modeling. Comparisons with the popular fuzzy neural model are

proposed.

INDEX TERMS Fuzzy system, neural networks, earthquake modeling, stability.

I. INTRODUCTION

The model of a system is the representation of the structure,

properties, of the system. The choice in which model is devel-

oped depends on what is expected to represent it. Obtaining

models can be done in different ways, such as through phys-

ical laws, mathematical modeling. It is the most common

form, but this type of technique needs knowing exactly the

environment in which the system operates, as well as making

the biggest amount of theoretical considerations as possible.

Another way to obtain models is to include measurements

of the aspects of interest, together with some equations that

describe the system behavior, achieving high robustness and

adaptability. Neural networks (NNs) and fuzzy systems are

very common to use as gray box models [1]–[6]. The use of

neural networks and fuzzy systems can generate models with

the characteristics, either for system modeling or adaptive

control.

Fuzzy systems use fuzzy rules of the IF-THEN type to

model systems. There are two main types of fuzzy systems:

Mamdani fuzzy systems and Takagi-Sugeno (TS) fuzzy sys-

tems. Several comparisons between them are made [7]–[10].

The associate editor coordinating the review of this manuscript and

approving it for publication was Wen-Sheng Zhao .

Fuzzy systems represent expert’s knowledge but can be

constructed in such away that they emulate an expert, through

learning processes, like neural networks (NNs) [11], [12]. It is

the famous ANFIS (adaptive network based fuzzy inference

system), which is based on a TS fuzzy system and transform

fuzzy systems into something similar to NNs. If the conse-

quences are taken as nonlinear functions, it is possible to

obtain better results in the general performance. The inclusion

of NNs of different types in ANFIS systems was introduced

and discussed in many works, such as [12]–[14]. More recent

works on this topic use RBFNN (radial basis function neural

networks) [15], DNN (delayed neural networks) [16] and

RNNs (recurrent neural networks) [3], to estimate the conse-

quences in fuzzy systems. For example, the wavelet network

(WN) is used in [17]. In [18]–[20], different types of fuzzy

systems are applied, which are structured with FNNs (fuzzy

neural networks) and conventional representations.

Fuzzy systems require proper membership functions for

systems identification [21]. Usually, fuzzy data-basedmodels

include fuzzy inference rules and neural network learning

methods. The fuzzy neural networks required to successfully

solve the precision problems in fuzzy identification of the

system, which need good learning algorithms and mathemat-

ical models [8], [22]–[28]. However, for many engineering

applications [5], [9], [29], [30], they could be very complex.

VOLUME 8, 2020
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 101369

https://orcid.org/0000-0001-7328-6722
https://orcid.org/0000-0002-9540-7924
https://orcid.org/0000-0003-3087-7375
https://orcid.org/0000-0002-2507-5776


A. M. E. Ramírez-Mendoza et al.: Novel Fuzzy System With Adaptive Neurons for Earthquake Modeling

Membership functions with different shapes, such as trian-

gular, trapezoidal, sigmoidal, bell, Gaussian, among others,

have been developed. The Gaussian membership function is

the most popular [21]. The sigmoid activation function is

configured in series [31], [32].

In order to create a system that reacts with better approxi-

mation, the fuzzy adaptive neuron (FAN)method is employed

inside the structure of the fuzzy system, instead of fuzzy

neural networks. We have the following contributions in this

paper

1) We propose the FAN based fuzzy model, which is

simpler than the TS structure. This model is established by

the fuzzy system and benefited by the neural network.

2) A learning process for this fuzzy network is proposed, it

performs simple learning and it is feasible. The stability of the

proposed model considering the training algorithm is proved.

To show the advantages of the novel fuzzy system, we

use three different activation functions: Gaussian, parabola

and sigmoid. The proposed method is compared with fuzzy

RBFNN by using the seismic accelerograms of six Mexican

seismological stations for the earthquake modeling.

The paper is organized as follows. After the introduction,

we show how to use adaptive neurons in fuzzy system in

Section II. In Section III, we give the training method of the

proposed fuzzy system. The stability analysis of the modeling

process is given in Section IV. In Section V, we apply the

proposed fuzzy system to the earthquake modeling. Finally,

we conclude this paper.

II. FUZZY SYSTEM WITH ADAPTIVE NEURONS FOR

NONLINEAR SYSTEM MODELING

The unknown nonlinear system in discrete time can be repre-

sented as:

y (k) = 8 [y (k − 1) , y (k − 2) , . . . , u (k − 1) ,

u (k − 2) , . . .] (1)

where 8 (·) is an unknown nonlinear difference equation, the

plant dynamics, u (k) and y (k) are the input and output of

the system. This is the NARMA (nonlinear autoregressive-

moving average) model. In multivariable NARMA form [13],

Y (k) = 8 [H (k)] (2)

where

H (k) = [Y (k − 1) , . . . ,U (k − dt) , . . .]T .

U (k) = [u (k) , u (k + 1) , . . . , u (k + n− 2) , . . .]T

Y (k) = [y (k) , y (k + 1) , . . . , y (k + n− 1) , . . .]T

To model the system (1) and avoid some problems, such as

slow convergence and difficult to design hyper-parameters. In

this paper, we use the FANs for the fuzzy system.

We consider the following two types of fuzzy systems:

A) If we normalize the input and output of the unknown

system (1) into [0,1], then we use the following fuzzy IF-

THEN rules for the unipolar system,

Ri : IF h1 > 1 or h2 > 1 or · · · hn > 1

THEN ĥ1 = h1 · re, ĥ2 = h2 · re, · · · , ĥn = hn · re (3)

where re ∈ R. We use the synaptic operation, somatic Gupta-

type aggregation, and the fuzzy integrator operation.

Because the fuzzy unipolar system is in the interval [0,1],

the following synaptic operation, aggregation operation, and

nonlinear operation are also the somatic operations,

Ṽminj (k) = min
(

zinj (k) ,winj (k)
)

(4)

Ṽmax (k) = MAXNj=1Ṽminj (k) (5)

Ṽout (k) = max
(

Ṽmax (k) ,Vthreshold (k)
)

(6)

ỹSAF (k) =
1

1 + e

(

−min
(

γ,Ṽout (k)
)

·a+b
) (7)

e (k) = ỹSAFref (k) − ỹSAF (k) (8)

where:

a, b, c real numbers.

k time variable

zinj (k) dendrite inputs.

winj (k) synaptic weights.

Vthreshold (k) threshold.

γ (k) learning factor, 0 < γ ≤ 1.

ỹSAF (k) sigmoid activation function (SAF).

e (k) modeling error.

B) If we normalize the input and output of the unknown

system (1) in the interval [-1,1], then the following synaptic

operation, aggregation operation, and nonlinear operation

with threshold are also the somatic operations,

Ṽmin j (k) = min
(

zinj (k) ,winj (k)
)

(9)

Ṽmax (k) = MAXNj=1Ṽmin j (k) (10)

Ṽout (k) = max
(

Ṽmax (k) ,Vthreshold (k)
)

(11)

ỹSAF (k) =
2

1 + e

(

−min
(

γ,Ṽout (k)
)

·c
) − 1 (12)

e (k) = ỹSAFref (k) − ỹSAF (k) (13)

Based on the above operations, the unknown nonlinear

system can be expressed by the following fuzzy system

Ŷ (k) = W1 (k) · 8 [H (k) ,W2 (k)] · γ (k) (14)

where γ (k) is a scalar,

W1 (k) =







w11 · · · w1l

...
. . .

...

wm1 · · · wml






∈ R

m×l

Ŷ (k) ∈ R
m×1, 8 ∈ R

l×1,W1 ∈ R
m×1,W2(k) ∈

R
l×1,H (k) ∈ R

l×l , 8(·) is the nonlinear function corre-

sponding to the membership functions of the fuzzy system.

In this paper, we will use three types of functions for 8(·),

Gaussian function, parabola function and sigmoid function.

We fix W2(k), and only train W1(k). W2(k) are selected

randomly in (0,1)
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FIGURE 1. Three types of membership functions.

The three types of membership functions, Gaussian func-

tion, parabola function and sigmoid function, are shown in

Fig. 1.

The parabola membership function is,

ỹPAF (k) = min






γ,

(

Ṽout (k) − δ (k)
)2

σ (k)






(15)

where,

δ (k) delay, 0 ≤ δ(k) ≤ 1.

σ (k) real number, 0 < σ (k).

For bipolar fuzzy systems [−1,1], themembership function

is expressed in (16),

ỹPAF (k) = min






γ,

(

Ṽout (k) − δ (k)
)2

σ (k)






· 2 − 1 (16)

The novel Gaussian function is,

ỹGAF (k) = e
−
min

(

γ,(Ṽout (k)−δ(k))
2
)

2·σ (k)2 (17)

where,

δ (k) delay, 0 ≤ δ(k) ≤ 1.

σ (k) compressive factor, 0 < σ (k).

For bipolar fuzzy systems [−1,1], themembership function

is,

ỹGAF (k) = 2 · e
−
min

(

γ,(Ṽout (k)−δ(k))
2
)

2·σ (k)2 − 1 (18)

These three membership functions have similar thresholds

and the shapes. We will use the same learning algorithm to

train all the weights of the fuzzy system, FAN-RBFNN.

The fuzzy Gupta integrator is Vmax (k), the somatic mem-

bership function is ϕ (·) with the threshold Vthreshold (k). The

output system is ỹ (k).

Vmax (k) = MAX li=1 (min (w1i (k) , h1i (k)))

ỹ (k) = ϕ (Vmax (k) ,Vthreshold (k) , γ (k)) (19)

where γ (k) is the learning factor.

The scheme of the proposed fuzzy system is shown in

Fig.2.

FIGURE 2. The block diagram of the proposed fuzzy system.

III. FUZZY SYSTEM TRAINING

The novel fuzzy model (14) is a multi-input, single-output

system, its inputs are H (k) = [h11 (k) , . . . , h1l (k)], the

weights are W1 (k) and W2 (k).

This fuzzy mode allows us to approximate the output y (k)

with ŷ (k). The input the to the plant and the model is the

same, H (k).

The main idea of fuzzy neural modeling is to find the

values ofW1 (k) andW2 (k), such that the output Ŷ (k) of the

proposedmodel (14), can follow Y (k) output of the nonlinear

plant. The identification error between (2) and (14), e (k) ∈

R
m×1, is defined as,

e (k) = Y (k) − Ŷ (k) (20)
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The modeling error e (k) is used to train the FANs online so

that (14), can approximate Y (k).

We only consider to train W1 (k). We define WFAN (k) as

unit weights. For our novel fuzzy model (14), we use the

following stable training algorithm. In next section, we will

prove the stability of this training method. In matrix form,

W (k + 1) = W (k) + Ŵ (k) · E (k) · H (k) (21)

Ŵ (k + 1) = Ŵ (k) + Ŵ (k) · E (k) · H (k)

0 < Ŵ (k) ≤ 1, 0 ≤ W (k) ≤ 1

γ (k + 1) = γ (k) + γ (k) · hin (k) · e (k) (22)

where w (k + 1) = w (k) + 1w (k), γ (k + 1) = γ (k) +

1γ (k).

Because we use the adaptive neurons as in (4)-(7) and (9)-

(12), the training algorithm (21) and (22) is simpler than the

gradient based ANFIS [13], [14].

IV. STABILITY ANALYSIS

The fuzzy modeling can be represented by

Plant : y = W ∗ · 8 [H (k)] + d(t) (23)

Fuzzy model : ŷ = W (k) · 8 [H (k)] (24)

Training error : y− ŷ=
(

W ∗ −W (k)
)

· 8 [H (k)] (25)

where 8 [·] is a function of H (k). In matrix form,

Y (k) = W ∗8 [H (k)] +W ∗
d 8 [Hd (k)] + d(t) (26)

where W ∗ are the unknown weights to minimize unmodeled

dynamic W ∗
d 8 [Hd (k)], d(t) is the unmodeled dynamic.

So the identification error can be reformed by

(20) and (21),

e (k) = W ∗ · 8 [H (k)] +W ∗
d · 8 [Hd (k)]

−W (k) · 8 [H (k)]

e (k) = W̃ (k) · 8 [H (k)] +W ∗
d · 8 [Hd (k)]

e (k) = W̃ (k) · 8 [H (k)] + µd (k) (27)

where,

W̃ (k) = W ∗ −W (k) , and µd (k) = W ∗
d · 8 [Hd (k)] .

We are interested in open-loop systems identification, we

assume plant (1), is bounded-input-bounded-output (BIBO)

stable, i.e. y (k) and u (k) in (1) are bounded. Themembership

function 8 (·) is bounded. The following theorem provides

the stability analysis for nonlinear system modeling with the

novel fuzzy system.

Theorem :. If the unknown nonlinear system (2) is mod-

eled by the fuzzy system (14), the membership functions are

updated by (21) and (22), then the modeling error e (k) is

uniformly ultimately bounded (UUB). And the normalized

identification error,

EN (k) =
WN (k + 1) −WN (k)

ŴN (k) · H (k)
(28)

satisfies the following average performance:

lim
T→∞

sup
1

T

T
∑

k=1

‖EN (k)‖2 ≤ maxk

[

∥

∥W ∗
d 8 [Hd (k)]

∥

∥

2
]

lim
T→∞

sup
1

T

∑T

k=1
‖EN (k)‖2 ≤ µ̄d (29)

Proof: For unipolar systems with values in [0,1], the con-

ditions for W (k + 1) and Ŵ (k + 1) are

IF W (k + 1) > 1 THEN WN (k + 1) = 1.

IF W (k + 1) < 0 THEN WN (k + 1) = 0.

ELSE WN (k + 1) = WN (k) + 1WN (k).

IF Ŵ (k + 1) > 1 THEN ŴN (k + 1) = 1.

IF Ŵ (k + 1) < 0 THEN ŴN (k + 1) = n

ELSE ŴN (k + 1) = ŴN (k) + 1ŴN (k).

where, 0 < n ≤ 1

Therefore,

ŴN (k + 1) = ŴN (k) + ŴN (k) · E (k) · H (k) (30)

WN (k + 1) = WN (k) + ŴN (k) · E (k) · H (k) (31)

We selected a positive defined scalar Lk as,

Lk =

∥

∥

∥
W̃ (k)

∥

∥

∥

2
(32)

where ‖·‖ denotes the Euclidean norm.

By the updating law (29), we have,

W̃ (k + 1) = W̃ (k) + Ŵ (k) · E (k) · H (k)T (33)

Using the inequalities,

‖q+ r‖ ≤ ‖q‖ + ‖r‖ , ‖q · r‖ = ‖q‖ · ‖r‖

For any ‘‘q′′ and ‘‘r ′′. By using (33) and 0 < ŴN (k) ≤

Ŵ (k) ≤ 1, we have,

1Lk = Lk+1 − Lk

=

∥

∥

∥
W̃ (k) + Ŵ (k) · E (k) · H (k)T

∥

∥

∥

2
−

∥

∥

∥
W̃ (k)

∥

∥

∥

2

= 2

∥

∥

∥
Ŵ (k) · E (k) · H (k)T · W̃ (k)

∥

∥

∥

+

∥

∥

∥
Ŵ (k) · E (k) · H (k)T

∥

∥

∥

2

= ‖Ŵ (k)‖2 · ‖E (k)‖2 ·

∥

∥

∥
H (k)T

∥

∥

∥

2

+ 2

∥

∥

∥

∥

Ŵ (k) · E (k) · H (k)T ·
E (k)+W ∗

d 8 [Hd (k)]

8 [H (k)]

∥

∥

∥

∥

= ‖Ŵ (k)‖2 · ‖E (k)‖2 ·

∥

∥

∥
H (k)T

∥

∥

∥

2

+
2 ‖Ŵ (k)‖ · ‖E (k)‖2 ·

∥

∥H (k)T
∥

∥

‖8 [H (k)]‖

+
2 ‖Ŵ (k)‖ · ‖E (k)‖ ·

∥

∥H (k)T
∥

∥ ·
∥

∥W ∗
d 8 [Hd (k)]

∥

∥

‖8 [H (k)]‖

1Lk ≤ ζ (k) · ‖E (k)‖2 + δ (k) ·
∥

∥W ∗
d 8 [Hd (k)]

∥

∥

1Lk ≤ ζ (k) · ‖E (k)‖2 + δ (k) · ‖E (k)‖ · ‖µd‖ (34)

101372 VOLUME 8, 2020



A. M. E. Ramírez-Mendoza et al.: Novel Fuzzy System With Adaptive Neurons for Earthquake Modeling

where ζ (k) and δ (k) are defined as,

ζ (k) = ‖Ŵ (k)‖2 ·

∥

∥

∥
H (k)T

∥

∥

∥

2
+

2 ‖Ŵ (k)‖ ·
∥

∥H (k)T
∥

∥

‖8 [H (k)]‖

δ (k) =
2 ‖Ŵ (k)‖ ·

∥

∥H (k)T
∥

∥

‖8 [H (k)]‖

Because,

nmin
(

w̃2
i

)

≤ Lk ≤ nmax
(

w̃2
i

)

where nmin
(

w̃2
i

)

and nmax
(

w̃2
i

)

are K∞ − functions, and

ζ (k) · ‖E (k)‖2 is a K∞ − function, δ (k) · ‖µd‖ is a K −

function. So, Lk admits an ISS (input-state stability) Lya-

punov function [10], the dynamic of the identification error

is input-to-state stable.

From (26) and (32) we know Lk is the function of E (k)

and W ∗
d 8 [Hd (k)]. The ‘‘INPUT’’ and the ‘‘STATE’’ corre-

spond to both terms of (34). However, usually, 8 [Hd (k)] ≪

8 [H (k)].

Because the ‘‘INPUT’’ is bounded and the dynamic is ISS,

therefore the ‘‘STATE’’ E (k) is bounded.

Applying the bounded conditions for WN (k + 1) and

ŴN (k + 1), equation (34), from 1 up to T and using 0 < LT
and L1 is a constant, we obtain,

ζN (k) ·

(

T
∑

k=1

‖EN (k)‖2

)

+ δN (k) ·

(

T
∑

k=1

‖EN (k)‖

)

·µ̄d≤ LT − L1

ζN (k) = ‖ŴN (k)‖2 ·

∥

∥

∥
H (k)T

∥

∥

∥

2
+

2 ‖ŴN (k)‖ ·
∥

∥H (k)T
∥

∥

‖8 [H (k)]‖

δN (k) =
2 ‖ŴN (k)‖ ·

∥

∥H (k)T
∥

∥

‖8 [H (k)]‖

ζN (k) ·

(

T
∑

k=1

‖EN (k)‖2

)

≤ LT − L1 − δN (k)

·

(

T
∑

k=1

‖EN (k)‖

)

· µ̄d

(29) is established.

Remark 1: It is not easy to obtain high modeling accuracy

for the classical fuzzy neural networks, because the hyper-

parameters of the fuzzy neural systems are difficult to be

decided. But our fuzzy system with adaptive neurons has

less hyper-parameters to be chosen. And we prove that the

modeling error converges to the zone µ̄d .

Remark 2: If the fuzzy system (2) could match the non-

linear plant (1) exactly (µd (k) = 0), i.e., we could find

the best membership function µH and W ∗ such that the

nonlinear system could be written as Y (k) = W ∗8 [µH ], the

thee same learning law makes the identified error ‖E (k)‖

asymptotically stable

lim
K→∞

‖E (k)‖ = 0 (35)

Remark 3: The normalization of the learning rates in (26)

and (27), are time-varying in order to insure the stability of

identification error. The learning rates are easier to be reached

than [10], [11], where they select γ = 1. Because the initial

condition does not need any previous information, the time-

varying learning rates usually are robust.

V. FUZZY SYSTEM FOR EARTHQUAKE MODELING

The experimental data of the seismological accelerograms

[32], [35], are provided by the NSS-IG-UNAM (National

Seismological System of the Institute of Geophysics of

the National Autonomous University of Mexico). The data

come from seven seismological stations, located in the

southeast of the Mexican Republic. They are in Huatulco,

Oaxaca (HUIG), Yosondúa, Oaxaca (YOIG), Fresnillo de

Trujano, Huajuapan,Tehuacán, Puebla (TPIG), Yautepec,

Morelos (YAIG), to Popocatépetl station, Mexico State

(PPIG).

We will compare our fuzzy model, named ‘‘AN fuzzy’’,

with the pouplar ANFIS model [13], [14].

To perform the modeling of the earthquake registered on

September 8, 2017, for the seismic accelerograms of the east-

west, north-south, up-down components, a second order filter

with a cutoff frequency of 30 KHz was designed, after the

resulting vectors were obtained, which are the inputs and

outputs to the fuzzy system.

FIGURE 3. Fuzzy system for earthquake modeling.

The input-output mapping of the fuzzy system is shown in

Fig. 3. There is the fuzzification (fuzzy rules) of the inputs, a

time delay, the FANs with activation function, and an aggre-

gation of type RBFNN, then the defuzzification (fuzzy rules)

of the output.

From (2), the resultant of the three components of seismic

accelerograms can be modeled by,

ymodel i (k) = wFAN−R 11 · µPAF1 (k) · c1 + wFAN−RBF21

·µGAF2 (k) ·c2 + wFA 31 · µSAF3 (k) · c3

+wFAN−RBF41 · µGAF4 (k) ·c4 + wFAN−R 51

·µGAF5 (k) · c5 (36)

where i = FTIG,YAIG.

ymodel i (k) = wFAN−RBF11 · µPAF1 (k) · c1 + wFAN−RBF21

·µGAF2 (k) ·c2 + wFAN−RBF31 · µSAF3 (k)

·c3 + wFAN−RBF41 · µGAF4 (k) · c4a + c4b

+wFAN−RBF51 · µGAF5 (k) · c5 (37)

where i = YOIG,HLIG, TPIG,PPIG.

We use our novel fuzzy system to model the resulting

seismic accelerograms based on the data of the seven seis-

mological stations. The fuzzy model has two inputs,

zin FAN ji1 (k) = zin classic RBFNN ji1 (k) = z
HUIG

(

k − 1kj
)
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FIGURE 4. Modeling errors.

FIGURE 5. HUIG real data.

The initial conditions are

◦ Weights ǫ[0, 1],winFAN−SAF ij (k) = winFAN−PAF ij (k)

= winFAN−GAF ij (k) = 0; i = 1, · · · , 5; j = 1.

◦ Weights ǫ [−1, 1], wFAN−RBFNN ij (k) = 0; i = 1, · · · , 5;

j = 1.

FIGURE 6. Modeling YOIG.

FIGURE 7. Modeling TPIG.

FIGURE 8. Modeling YAIG.

◦ Learning factors, fixed values, γFANi (k) = 1.

◦ Thresholds, fixed values, VthresholdFAN (k) = 0.

◦ Inputs, zinjli1 (k) = zHUIG
(

k − 1kj
)

, zinYOIGSAF31 (k)=

zHUIG
(

k − 1kj + 8.5
)

, zinHLIGSAF31 (k) = zHUIG
(

k − 1kj + 8.5
)

, zinPPIGGAF41 (k) = zHUIG
(

k − 1kj − 8.5
)

.

l = SAF,PAF,GAF; i = 1, · · · , 5;

j = max
(

YrefYOIG
)

,max
(

YrefFTIG
)

,max
(

YrefHLIG
)

,

max
(

YrefTPIG
)

,max
(

YrefYAIG
)

,max
(

YrefPPIG
)

.

101374 VOLUME 8, 2020



A. M. E. Ramírez-Mendoza et al.: Novel Fuzzy System With Adaptive Neurons for Earthquake Modeling

FIGURE 9. Fig. 9. Modeling PPIG.

TABLE 1. Modeling errors.

◦ Reference outputs ỹrefi (k) = y (k).

◦ re = 0.01.

◦ Ideal values of the weights are unknown.

◦ Sampling period is Ksample = 0.01second .

◦ Proposed values, cYOIG1 = 2.7664e − 4, cYOIG2 =

0.1, cYOIG3 = 0.08, cYOIG4a = 0.1, cYOIG4b =

−0.013, cYOIG5 = 0.1.cFTIG1 = 2.7664e − 4, cFTIG2 =

0.02, cFTIG3 = 0.08, cFTIG4 = 0.01, cFTIG5 =

0.1.cHLIG1 = 2.7664e − 4, cHLIG2 = 0.1, cHLIG3 =

0.08, cHLIG4a = 0.1, cHLIG4b = −0.013, cHLIG5 =

0.1.cTPIG1 = 2.7664e − 4, cTPIG2 = 0.2, cTPIG3 =

0.08, cTPIG4a = 0.2, cTPIG4b = −0.014, cTPIG5 =

0.1.cYAIG1 = 2.7664e − 4, cYAIG2 = 0.02, cYAIG3 =

0.08, cYAIG4 = 0.01, cYAIG5 = 0.1.cPPIG1 = 4.4262e −

4, cPPIG2 = 0.15, cPPIG3 = 0.104, cPPIG4a =

0.155, cPPIG4b = −0.02, cPPIG5 = 0.1.

◦ Fixed values, δiPAF1 = 0.001, σiPAF1 = 0.0025.δiGAF2 =

0.3, σiGAF2 = 0.1.aiSAF3 = 20, biSAF3 = 10, ciSAF3 =

9.δiGAF4 = 0.2, σiGAF4 = 0.1.δiGAF5 = 0.9, σiGAF5 = 0.1.

i = YOIG,FTIG,HLIG, TPIG, YAIG,PPIG.

The weights are updated after ten episodes of training.

Seismic accelerograms were filtered and scaled to the interval

[0,1]. The modeling errors of these 4 data sets are shown in

Table 1, (38) and Fig. 4. So, our novel fuzzy system works

well for the seismic accelerograms modeling. Defining the

mean squared error for finite time,

J (N ) =
1

2N

∑N

k=1
e2(k) (38)

The real data of HUIG is shown in Fig.5. The compari-

son results with ANFIS for the four data sets are shown in

Fig.6-Fig.9.

VI. CONCLUSION

In this paper, a novel fuzzy model is proposed. This fuzzy

model is based on the adaptive neurons. It can be interpreted

as a simple neural network. We design a simple training

method for this fuzzy model. Stability of the proposed train-

ing method is given. We apply this novel model for the

seismic accelerograms modeling. The results show that the

new model has better performance that the classical fuzzy

neural networks for nonlinear system identification.

Multiple applications can be carried out applying this

novel fuzzy system, such as systems identification, control

and automation of systems [8], low-scale unmanned aerial

vehicles (UAVs) [27], and optimization of manufacturing

processes.
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