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ABSTRACT For multimodal medical image fusion problems, most of the existing fusion approaches are

based on pixel-level. However, the pixel-based fusion method tends to lose local and spatial information as

the relationships between pixels are not considered appropriately, which has much influence on the quality

of the fusion results. To address this issue, a region-based multimodal medical image fusion framework is

proposed based on superpixel segmentation and a post-processing optimization method in this paper. In this

framework, the averaging image of the source medical images are firstly obtained by a weighted averaging

method. To effectively obtain homogeneous regions and preserve the complete information of image details,

the fast linear spectral clustering(LSC) superpixel algorithm is carried out to segment the averaging image

and get superpixel labels. For each region of the medical images, log-gabor filter(LGF) and sum modified

laplacian(SML) are adopted to extract texture feature and contrast feature for the measurement of region

importance. The most important regions are selected and the decision map is generated by comparison.

Moreover, to get a more accurate decision map, a new post-processing optimized method based on genetic

algorithm(GA) is given. A weighted strategy is applied to the extracted features and the weighting factor can

be adaptively adjusted by GA. The effectiveness of the proposed fusion method is validated by conducting

experiments on eight pairs of medical images from diverse modalities. In addition, seven other mainstream

medical image fusion methods are adopted for comparing the performance of fusion. Experimental results

in terms of qualitative and quantitative evaluation demonstrate that the proposed method can achieve state-

of-the-art performance for multimodal medical image fusion problems.

INDEX TERMS Multimodal medical image fusion, superpixel segmentation, genetic algorithm, log-gabor

filter, sum modified laplacian.

I. INTRODUCTION

As a fundamental and effective supplementary tool, medical

images play an increasingly significant role in modern clini-

cal diagnosis and treatments. However, due to the limitation

of the imaging mechanism, medical images from a single

modality usually cannot provide sufficient information to

meet the requirements of complex diagnoses [1]. For in-

stance, computerized tomography (CT) image can provide

a clear visualization of dense structures like bones and

implants, but it’s not good at presenting the soft tissues.
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Magnetic resonance imaging (MRI) image can provide high-

resolution detailed information of soft tissues, but it is also

prone to introduce artifacts when taking photos of bone struc-

tures [2]. Functional information of blood flow and metabolic

changes can be reflected by positron emission tomography

(PET) and single-photon emission computed tomography

(SPECT) images, but the spatial resolution is usually very

low. Multimodal medical image fusion is an effective tech-

nique to solve this problem, which aims to generate fusion

images with complementary information contained in medi-

cal images from different modalities.

For medical image fusion problems, numerous methods

have been proposed which can be roughly divided into

three levels: pixel-level, feature-level, and decision-level [3].

Generally, pixel-level image fusion mainly includes two

categories: spatial domain methods and transform domain

methods. Spatial domain methods such as PCA [4], IHS

[5], and averaging fusion select pixels from the source im-

ages to construct the final fused image. This kind of fu-

sion methods can completely preserve spatial information

and reduce computational complexity [6]. However, they

also introduce color distortion and suffer from contrast de-

crease, which are unacceptable for the fusion of medical

images. Different from spatial domain methods, transform

domain methods decompose source images into high and low

frequency by transform. Multiscale-transform(MST)-based

approaches are popular in the field of medical image fu-

sion due to their excellent performance of feature extraction

[7]. The transform, namely the decomposition of image, is

considered as an important analytical tool that has great

effects on the extraction of information and the quality of

the fusion results. There are numerous transform methods

have been presented including contourlet transform (CT)

[8], Laplacian pyramid (LP) transform [9], shearlet trans-

form(ST) [10] and so on. Nevertheless, due to the current

level of subband image obtained by the subsampling from

these transforms is halved, fusion methods based on them

fail to preserve the shift-invariance. To address this prob-

lem, the nonsubsampling schemes including nonsubsampling

contour transform(NSCT) [11] and nonsubsampling shearlet

transform (NSST) [12] are proposed. The nonsubsampling

technique can well preserve the shift-invariance property of

the decomposition but the fusion strategies adopted are very

simple (either average strategy or maximum strategy), which

limit the performance to some extent. In recent years, more

effective MST-based medical image fusion approaches are

proposed by developing more complicated fusion strategies.

Sparse representation(SR) [13] and pulse-coupled neural net-

work (PCNN) [14] are two popular fusion strategies used

in medical image fusion. SR-based fusion algorithm can

accurate describe and reconstruct signal by a linear com-

bination of sparse coefficients. PCNN is a kind of neural

network proposed by Eckhorn, which is derived from the

cortical model and owns properties of global coupling and

pulse synchronization [15]. To completely present the in-

formation of the source images, numerous algorithms have

been proposed by combining the aforementioned transforms

methods and fusion strategies. For example, Xia et al. [16]

proposed a multimodal medical image fusion method that

combined NSCT with SR; Yin et al. [17] proposed a medical

image fusion method based on NSST and parameter-adaptive

PCNN model (NSST-PAPCNN); Zhu et al. [18] introduced

a medical image fusion algorithm utilizing cartoon-texture

decomposition (CTD) and SR to merge the decomposed

coefficients(CTD-SR); Li et al. [7] introduced a multimodal

medical image fusion algorithm based on Laplacian rede-

composition (LRD). Although these algorithms can extract

more salient features of the source images, several drawbacks

of them can also be identified [19]: (1) time-consuming; (2)

prone to decrease the contrast of images; (3) sensitive to

misregistration and noise.

Researches [20] [21] [22] show that merging regions is

further significant than pixels, because regional image pro-

cessing is more in line with the human visual system and

computer vision task as the relationship between pixels are

sufficiently considered in it. Compared to pixel-based fusion

algorithms, different advantages can be found in region-

based fusion methods such as more stable to the noise, better

maintain the contrast of the source images, and more efficient

due to the reduction of processing units [23]. Basically, the

procedure of region-based algorithm includes two steps :

(1) segment source images into regions; (2) select the most

important regions by considering their properties to construct

the fused image. Therefore, accurate image segmentation

plays a remarkable role in the performance of medical image

fusion. A region-based fusion scheme is initially introduced

by Lewis et al. in [24], where a dual-tree complex wavelet

transform (DT-CWT) [25] is utilized to segment the source

images and features of each region are extracted to fuse

images region by region. Garg et al. [26]presented a region-

based medical image fusion algorithm utilizing an evolution

algorithm to segment medical images. Luo et al. [27] applied

the watershed algorithm to segment images into regions for

fusion. However, the fusion results of these methods suffer

from different degrees of artifacts due to the segmentation

algorithms adopted is not precise enough. To address this

problem, Normalized cuts(Ncuts) are employed in medical

image fusion algorithms [23] [28] to segment images and

get homogeneous regions. But it is time-consuming as the

conventional eigen-based Ncuts is of high computational

complexity. To get a better trade-off between efficiency and

accuracy, Meher et al. [29] introduced an image fusion

method which employed fuzzy c-means (FCM) clustering

to segment image. Similarly, Li et al. [30] proposed an

image fusion algorithm applying entropy rate(ER) superpixel

segmentation and get good performance. Nevertheless, the

regions segmented by FCM and ER are irregular in shapes

and sizes and it is not suitable for the feature extraction of

medical images fusion.

Based on the above discussion, it is clear that segmentation

is an important factor that determines the fusion results of

region-based medical image fusion algorithm. In addition,
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the fusion strategy should be well designed to ensure the

most important regions can be correctly selected to construct

the final images. As we know, the fusion strategies adopted

by pixel-level medical image fuison methods are not suitable

for the region-based medical image fusion methods as they

work at the pixel level and they are time-consuming as

well. Focusing on these two problems, this paper presents a

region-based multimodal medical image fusion method that

utilizes an effective superpixel segmentation algorithm and a

fusion strategy based on feature extraction and optimization

algorithm. The main contributions can be summarized as

follows.

1) A novel framework for regional image fusion based on

fast Linear spectral clustering (LSC) superpixel seg-

mentation is shown in this paper (the general architec-

ture is shown in Fig.1). To the best of our knowledge,

this is the first trial to employ superpixel in medical

image fusion. Different from conventional region-based

medical image fusion methods, the proposed LSC based

method makes achievements in preserving the local and

spatial information of the source images and get better

trade-offs among efficiency, accuracy and fine structure.

2) We present a region-competition-based fusion strat-

egy. Log-Gabor filter(LGF) and Sum Modified Lapla-

cian(SML) are modified to calculate the texture feature

value and contrast feature value of each region. The de-

cision map is constructed according to the comparison

of these two values for each region. In this way, the

important information can be preserved and redundant

information can be removed appropriately.

3) In the framework, a new post-processing optimized

method based on genetic algorithm(GA) is proposed

to optimize the fusion strategy by adaptively adjusted

the weights of features. The application of this GA-

based post-processing further improves the quality of

the fusion results as the importance of the regions is

more accruately measured.

The rest of this paper is organized as follows. Section II

introduces the related works on superpixel and optimization

algorithms. Section III provides a detailed introduction of the

proposed region-based medical image fusion method with su-

perpixel segmentation and genetic algorithm. Experimental

results and performance evaluation are shown in Section IV.

Finally, the conclusion is drawn in Section V and the future

work is also discussed.

II. RELATED WORK

A. SEGMENTATION ALGORITHM

As mentioned in the introduction section, accurate image

segmentation determines the performance of region-based

medical image fusion, because incorrect partition usually

leads to unexpected artifacts in fusion results. Convolutional

neural networks (CNNs) have been widely used in automatic

medical image segmentation in recent years [31] [32]. For

instance, Xie et al. [33] proposed a medical image segmen-

tation method based on dynamic adaptive residual network
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FIGURE 1. The general architecture of the proposed method in this paper.

(DAR-net) to get accuracy segmentation. Xi et al. [34] put

forward an automated segmentation method for nuclei work-

ing with sparse reconstruction and deep convolutional net-

works. However, these methods are designed to segment the

region of interest in medical images (such as the lesion area),

which is not suitable for regional image fusion where the

homogeneous regions are needed. Superpixel is a technique

which not only can be used as an atomic unit for image

processing, but also achieves the best trade-off between

good performance and high efficiency [35]. Jia et al. [36]

proposed an effective superpixel-based feature extraction for

hyperspectral image fusion, which improves the efficiency

for image fusion as the feature extraction is performed on

superpixels instead of pixels of the image. Wu et al. [37] put

forward a superpixel regions extraction for object detection

to solve the problems of redundant information and time-

consuming in target searching. Zhang et al. [38] presented

a superpixel-based edge detection in which the clustering-

based superpixel methods are centroid updated to improve

the accuracy and enhance the robustness. In order to address

the wrong selection of similar pixels in remote sensing image

fusion, Wang et al. [39] applied a superpixel segmentation

algorithm to ensure that pixels in the same block have similar

properties. These researches prove that superpixels can be

flexibly used for many applications of image processing to

improve efficiency, accuracy, and robustness.

Although there is no case where superpixel algorithm has

been employed in medical image fusion at present, we can

find it has been used in other fields of medical images pro-

cessing. For instance, Achanta et al. [40] introduced a sim-

ple linear iterative clustering(SLIC) superpixel segmentation

which was first applied in medical image segmentation and

achieved excellent performance. Wang et al. [41] combined

SLIC with U-net architecture to segment the lesion area of

tuberculosis. However, simple and time-efficient SLIC fails

to get a better trade-off between homogeneous regions and

fine structures, which could lead to mis-segmentation and

generate artifacts in the final medical fusion result. In recent

years, many superpixel algorithms have been proposed in-

cluding TURBO [42], ERS [43], SEEDS [44], and LSC [45].

LSC is an algorithm simply applying K-means clustering in

the combined ten dimensional color and coordinate space.
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Compared to other superpixel segmentation algorithms, LSC

overcomes the shortcoming of SLIC while maintaining sim-

plicity and efficiency. Therefore, LSC is considered to be

used in this paper for segmentation.

B. OPTIMIZATION ALGORITHM

Intelligent optimization algorithms such as gray wolf

optimization (GWO), modified central force optimiza-

tion(MCFO), particle swarm optimization (PSO), and ge-

netic algorithms(GA) have been performed effectively in

medical image fusion where some kinds of optimizations

for parameters are required. Asha et al. [46] proposed a

medical image fusion method which can adaptively adjust the

weights of features by using GWO to minimize the distance

between the fused image and the source images. Jin et al.

[47] proposed an effective image fusion method based on

simplified PCNN (S-PCNN) which uses PSO algorithm to

set the parameters of PCNN. Hoseny et al. [48] introduced

an optimal solution for medical image fusion by means of

utilizing the MCFO technique to set parameters and improve

the quality of medical fused images. Xie et al. [49] applied

GA to optimize the objective function for a proper image.

Compared to traditional optimization algorithms, intelligent

optimization algorithms require a more relaxed expression of

the objective functions and pay more attention to the speed

and efficiency of computation. In this paper, we employ GA

to optimize the fusion process as it is the most accurate, and

has the best stability among all optimization methods [50].

III. PROPOSED METHOD

The architecture of our proposed fusion method is shown

in Fig.2. The proposed method is suitable for the fusion

problems of more than two images. Here, the fusion of two

medical images is taken as an example. First of all, two

source images are weighted averaged to obtain the average

image. Then, the average image is segmented by the LSC

superpixel segmentation algorithm to obtain the label of the

superpixels. And the label is applied to both source images

so that the regions of the source images can keep consis-

tent. Subsequently, Log-Gabor filter(LGF) and Sum Modi-

fied Laplacian (SML) are used to extract texture feature and

contrast feature of each region, respectively. And the decision

map is generated by comparing the value of the weighted

strategy applied to these two features. The weighting factor is

iteratively adjusted by a genetic algorithm. Finally, the fused

image can be obtained according to the decision map. In the

proposed fusion method, the average image can be obtained

by Eq.1, where I1, I2 denote the source images, respectively.

Avg = (I1 + I2)/2 (1)

A. LINEAR SPECTRAL CLUSTERING

In medical image fusion, the accuracy and efficiency of

segmentation algorithms are of great importance to the per-

formance of region-based image fusion. The linear spectral

clustering (LSC) algorithm produces superpixels with the

best boundary adhesion in only linear time, which appropri-

ately solves these bottlenecks of image fusion.

For an M × N medical image I , we define an exten-

sibility mapping to map I to the CIELab color space. In

CIELab color space, the value of an pixel p = (x, y) is

determined by brightness l and color contrast α and β. These

three components are combined with X-Y coordinates to

obtain a five dimensional vector (x, y, l, α, β) for each pixel.

According to the methodology of LSC, in a well designed

ten dimensional feature space, we can simply use weighted

K-means clustering to replace the complex operations in

Normalized cuts when the Eq.(2) is satisfied.

∀p, q ∈ V, Φ(p)Φ(q) =
D(p, q)

d(p)d(q)

∀p ∈ V, d(p) =
∑

q∈V

D(p, q)
(2)

Here, each pixel p is assigned with a weight d(p); D(p, q)
stands for the similarity between two pixels p and q, and

Φ represents the map function which maps the pixel to

higher dimensional feature space for improving the linear

separability.

In order to measure the similarity between pixels, we first

consider widely used Euclidean distance. For any two pixels

p = (xp, yp, lp, αp, βp) and q = (xq, yq, lq, αq, βq), the

formula for measuring their similarity is:

D(p, q) = (
dxy
Nxy

)2 + (
dlab
Nlab

)2

dxy = 1− (xp − xq)
2 + 1− (yp − yq)

2

dlab = 1− (lp − lq)
2 + 2.552[2− (αp − αq)

2

− (βp − βq)
2]

(3)

where dxy and dlab represent the Euclidean distance and the

color difference between two pixels, respectively. Nxy and

Nlab are constants that balance the relative importance be-

tween color similarity and spatial proximity. A smaller value

of Nxy or Nlab means the more important the corresponding

feature is.

Although Eq.(3) has a very specific physical meaning in

measuring the similarity of pixels, it can not be used in LSC

because it does not satisfy Eq.(2). It can be seen that dxy and

dlab both have the form of 1− u2, u ∈ [−1, 1], so Eq.(3) can

be adapted to Eq.(4).

D(p, q) =
1

N2
xy

[t(xp − xq) + t(yp − yq)]+

1

N2
lab

{t(lp − lq) + 2.552[t(αp − αq)

+ t(βp − βq)]}

t(u) =1− u2, u ∈ [−1, 1]

(4)
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FIGURE 2. The specific architecture of our proposed method in this paper. Part A is the segmentation where the LSC algorithm is used to get superpixel labels.

Part B is the feature extraction where LGF and SML are used to get the texture and contrast features of medical images. Part C is an optimization process where

GA is used to optimize the fusion process. And Part D is the final fusion.

Furthermore, the fourier series of t(u) is close to cos π
2u

in mathematics. In this respect, Eq.(4) is rewritten to Eq.(5).

D(p, q) =
1

N2
xy

[cos
π

2
(xp − xq) + cos

π

2
(yp − yq)]+

1

N2
lab

{cos
π

2
(lp − lq) + 2.552[cos

π

2
(αp − αq)

+ cos
π

2
(βp − βq)]}

(5)

Combining the above derivation, the map function Φ is

defined as Eq.(6).

Φ(p) =
1

d(p)
(

1

Nlab
cos

π

2
lp,

1

Nlab
sin

π

2
lp,

2.55

Nlab
cos

π

2
αp,

2.55

Nlab
sin

π

2
αp,

2.55

Nlab
cos

π

2
βp,

2.55

Nlab
sin

π

2
βp,

1

Nxy
cos

π

2
xp,

1

Nxy
sin

π

2
xp,

1

Nxy
cos

π

2
yp,

1

Nxy
sin

π

2
yp)

(6)

Above all, the mapping function to a ten dimensional

feature space has been designed as Eq.(6). Each pixel of

the medical images is mapped using Eq.(6) so that we can

simply use K-means clustering to achieve the same or even

better segmentation performance of Normalized cuts, which

decreases the risk of generating artifacts in pixel-level and

the conventional region-based image fusion methods.

B. FEATURES EXTRACTION

1) Superpixel-based Log-Gabor Filters

Although the two-dimensional Gabor filter has good local

properties in both the spatial and frequency domains, its

even-symmetric filter produces a nonzero DC component

when the bandwidth is greater than one times the frequency;

the Log-Gabor function is unrestricted in terms of bandwidth

and has minimal spatial support. The Log-Gabor function is

a Gaussian function on a logarithmic frequency scale, and on

a linear frequency scale, the Log-Gabor function is expressed

as:

LG(f) = exp(
−[log( f

f0
)]2

2[log( β
f0
)]

) (7)

In Eq.(7), f0 is the filter center frequency; β is used to

determine the radial bandwidth.

According to frequency domain analysis, the two-

dimensional Log-Gabor filter is a band-pass filter in a specific

direction. For more comprehensive feature extraction, we use

multi-channel Log-Gabor filters with different frequency and

directions to extract texture features, the specific steps are as

follows.

i The image is first filtered by the Log-Gabor filter. u
frequency scales and v directions are selected for each

channel, and the features of the medical image are

extracted using Eq.(8).

Fuv = LGuv · I(N) (8)

where LGuv is the Log-Gabor filter; I(N) is a medical

image divided into N regions by superpixels; Fuv is the

feature extracted.

ii LSC Superpixel segmentation divides a medical image

into several regions of uniform size, and calculates each

region using Eq.(9).

Fuv(x, y) =
N
∑

n

I(x+n−
2

N
, y+n−

2

N
) ·LGuv (9)
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where (x, y) is the center coordinate of each region, and

Fuv(x, y) is the final texture feature extracted by the

Log-Gabor filter.

2) Superpixel-based Sum Modified Laplacian

Sum Modified Laplacian(SML) is a fundamental feature

extraction operator widely used in image processing. In this

section, we make some corrections for SML at the superpixel

level so that we can use it to calculate the contrast feature

value of each region in the source image.

In [51], SML calculates the sum of the absolute values of

the convolution of an image with modified Laplacian opera-

tors(ML), whose expression for the discrete approximation is

shown in Eq.(10). Here, h(i, j) is the Laplacian of the pixel

and s denotes a variable space. And SML can be calculated

as Eq.(11), where S is the parameter determines the window

size used to calculate ML, (x, y) represents the center of the

window.

ML(i,j) =|2h(i, j)− h(i− s, j)− h(i+ s, j)|+

|2h(i, j)− h(i, j − s)− h(i, j + s)|
(10)

SML(x, y) =
i=x+S
∑

i=x−S

y+S
∑

y−S

ML(i,j) (11)

In order to calculate the value of SML for each superpixel,

we modify Eq.(11) to Eq.(12).

SSML(x,y) =
M
∑

i

N
∑

j

I(p(i,j) ∈ C(x,y))ML(i,j)

I(p(i,j) ∈ C(x,y)) =

{

1, if p(i,j) ∈ C(x,y)

0, if p(i,j) /∈ C(x,y)

(12)

Where SSML denotes the SML value of a superpixel whose

center is located at (x, y), M,N is the shape of the medical

image, p(i, j) denotes the pixel of the image, C(x,y) repre-

sents a collection of pixels belonging to a superpixel whose

center locates at (x, y), I(·) is an indicator function when a

pixel belongs to a superpixel equal to 1, otherwise equal to

0. Therefore, contrast features of every superpixel region can

be obtained from Eq.(12).

C. GENETIC ALGORITHM AND DECISION MAP

In this section, a weighted strategy and an optimization

method are used to generate the decision map.

For each superpixel at the same location in two source

medical images, the weighted strategy merges the texture and

contrast features into a value named hybrid feature(HF). And

we select superpixels with larger HF values to generate the

decision map. The detail is shown in Eq.(13)-(14).

HF (x, y) = β · Fuv(x, y) + (1− β) · SSML(x, y) (13)

DM(x, y) =

{

1, if HF (x, y)I1 ≥ HF (x, y)I2
0, if HF (x, y)I1 < HF (x, y)I2

(14)

Here, (x, y) means the superpixel whose canter lo-

cate at (x, y), HF means the hybrid feature obtained by

the weighted average of texture featureFuv and contrast

featureSSML, β is the factor used to control the weight of

the features. HF (x, y)A and HF (x, y)B represent the HF
value of the superpixel (x, y) of source medical image I1 and

I2, DM is the decision map.

In the proposed fusion framework, other features of the

medical images that we consider important can be embedded

in the fusion process flexibly. In this case, Eq.(13) can be

rewritten as Eq.(15).

HF (x, y) =
n
∑

i=1

βi · Fi(x, y)

s.t.
n
∑

i=1

βi = 1

(15)

Here, Fi(x, y) represents the value of feature i of the

region centered at (x, y); βi is the corresponding weight of

feature i; HF (x, y) means the weighted sum of all features

in the region centered at (x, y). Similarly, all weights can

be optimized by genetic algorithm. However, more features

involved in fusion also pose problems. On the one hand,

genetic algorithms need to spend more time to find the

optimal solution for all the feature weights; on the other

hand, too many features complicate the process of generat-

ing a decision map and increase the probability of region

misselection. In this paper, appropriate quantities of image

features are involved in the generation of the decision map.

In this way, important information of medical images can be

detected and maintained in the fusion result while the low

computational complexity is achieved in the algorithm.

In the weighted strategy described as Eq.(14), the weight-

ing factor β is related to whether the algorithm can select the

superpixel blocks needed for fusion. Since different medical

images have different salient features, it is necessary to

find the right value of β to maximize the HF value of the

superpixel blocks with important information. To address this

problem, the genetic algorithm(GA), which is an adaptive

probabilistic search technique based on the mechanism of

natural selection and natural genetics [52] is adopted. The

traditional GA mainly consists of these elements: chromo-

somes, population, generations, crossover probability, muta-

tion probability, and fitness function. Chromosomes are the

individuals in the population, which represent the solutions

to the problem at hand. In each generation, chromosomes are

first selected by a well-designed fitness function, and then

the selected excellent chromosomes crossover and mutate at

certain probabilities to form the next generation. Throughout

the evolutionary process, the design of the fitness function

plays an important role in obtaining the optimal solution.

And in this paper, the fitness function designed for the fusion

problem is shown as Eq.(16).

F (i) = RMSE(DMi, I1)

RMSE(A,B) =

√

√

√

√

1

N

N
∑

i=1

(Ai −Bi)
2

(16)

6 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3094972, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Here, the root mean square error(RMSE) is used to mea-

sure the similarity between the decision map and the source

image, i is the individual within the population in each

generation, N denotes the size of the image. The smaller the

fitness function is, the more similar the decision map is to

the source image, which means more information about the

source image is contained in decision map.

Through the optimization of genetic algorithm, the best

weighting factor can be figured out and Eq.(14) can most

accurately measure the importance of each region in the

medical image. Finally, the fused image can be obtained

according to the decision map by Eq.(17).

F = DM · I1 + (1−DM) · I2 (17)

Where F represents the final fused image; DM is the

decision map obtained by Eq.(14); I1, I2 denotes the source

images, respectively. By applying genetic algorithm to op-

timize the weighting factor, not only the cumbersome and

inaccuracy of manual definition of weight factor are avoided,

but also the accuracy of medical image fusion is further

improved. More details of the proposed multimodal medical

image fusion method is shown in Algorithm 1.

Algorithm 1 The proposed Medical image fusion method.

Input: a pair of source medical images I1 and I2
Output: The fused image F

1: Weighted averaging two source images to get an average

map

2: Using linear spectral clustering to segment the average

image and generate superpixels

3: Set generation G = 10, individual number N = 10,

crossover probability Pc = 0.5, mutation probability

Pm = 0.1
4: for generation g = 1 : G do

5: for each superpixel number k = 1 : K do

6: Calculate the texture feature and contrast feature

with Eqs.(9) and (12)

7: Calculate the HF value of the superpixels and com-

pare to obtain decision map according to Eq.(14)

8: end for

9: Calculate the fitness F(i) for each individual in the

population according to Eq.(16).

10: for individual number n = 1 : N do

11: Perform crossover operation on two individuals

with crossover probability Pc

12: Perform mutation operation on two individuals with

mutation probability Pm

13: end for

14: Updating individual populations

15: end for

16: Fuse source medical images using decision map.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, the setups of experiments are introduced

firstly. To verify the performance of our proposed method,

it is compared with 7 state-of-the-art medical image fusion

methods on eight pairs of multimodal medical images.

A. DATASET AND SETUPS OF EXPERIMENTS

Medical images from different modalities including Com-

puterized Tomography (CT), Magnetic Resonance Imaging

(MRI), Positron Emission tomography (PET), and Single

Photon Emission Computed Tomography (SPECT) are used

for the diagnosis of various diseases. In the experiments,

eight pairs of multimodal medical images are utilized, in-

(a) (b) (c) (d)

(e) (f) (g) (h)

FIGURE 3. Source images for experiments. (a), (b) ,(c)are CT-MRI image

pairs; (d), (e)are MRI-SPECT image pairs; (f), (g),(h) are MRI-PET image

pairs.

cluding three pairs of CT-MRI medical images, two pairs of

MRI-SPECT medical images, and three pairs of MRI-PET

medical images(see Fig.3). The proposed method is com-

pared to seven other state-of-the-art medical image fusion

methods: LP-SR [53], CNN [47], CFL [54], NSST-PAPCNN

[17], NSCT-PC-LLE [55], LRD [7] and NSCT-SR [56]. The

resolution of all medical images in the experiments was set to

256*256 and all the experiments were conducted in Matlab

2018a.

B. FUSION RESULTS

In the experiment, both subjective quality and objective met-

rics of the fusion results were evaluated.
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(a1) (b1) (c1) (d1)

(e1) (f1) (g1) (h1)

(a3) (b3) (c3) (d3)

(e3) (f3) (g3) (h3)

(a2) (b2) (c2) (d2)

(e2) (f2) (g2) (h2)

FIGURE 4. Three pairs of CT-MRI medical image fusion results of eight

different image fusion methods. Fused images (a1), (a2), (a3) is LP-SR based

method; (b1), (b2), (b3) CNN based method; (c1),(c2),(c3) CFL based method;

(d1), (d2), (d3) NSST-PAPCNN based method; (e1), (e2), (e3) NSCT-PC-LLE

based method; (f1), (f2), (f3) LRD based method; (g1), (g2), (g3) NSCT-SR

bAsed method; (h1), (h2), (h3) the proposed method.

1) Qualitative comparison

Fig.4 shows the fusion results of three sets of CT-MRI

images. Generally speaking, all methods can retain com-

plementary information of the source images in the fusion

results. However, the fusion results of LRD and NSCT-PC-

LLE are not clear enough at the boundary, it can be seen

that there are ambiguities and adhesions at the edges of the

tissues (see (d1),(e1) and (f1) in Fig.4). The fusion results

of LP-SR and NSCT-SR lose a large amount of energy

information, which leads to a serious reduction of the contrast

and intensity of many regions(see (a1),(a3),(g1) and (g3) in

Fig.4). The CFL and NSST-PAPCNN methods can preserve

the image energy well, but some redundant information is not

completely removed from CT image and some artifacts are

produced (see (b2) and (c2) in Fig.4). The CNN method and

the proposed method perform better in this experiment, edge

details and the salient features of the source medical images

are preserved well in the fused images of these two methods.

But compared to the CNN method, the fusion results of the

proposed method are more refined in detail (see (b1), (b2),

(b3), (h1), (h2), and (h3) in Fig.4).

(b1)(a1) (c1) (d1)

(e1) (f1) (g1) (h1)

(a2) (b2) (c2) (d2)

(e2) (f2) (g2) (h2)

FIGURE 5. Two pairs of MRI-SPECT fusion results of eight different fusion

methods.(a1),(a2) LP-SR method;(b1),(b2) CNN method (c1),(c2) CFL

method;(d1),(d2) NSST-PAPCNN method;(e1),(e2)NSCT-PC-LLE; (f1),(f2)

LRD; (G1),(G2) NSCT-SR; (h1),(h2) the proposed method.

Fig.5 shows the fusion results of two sets of MRI and

SPECT images. Compared to the fusion results of CT and

MRI images, it is obvious that LP-SR and NSCT-SR fail to

keep good performance in color medical image fusion. Color

artifacts appear in the fusion results of these two methods,

and a large area of green appears in the fused images (see

(a1),(a2), (g1) and (g2) in Fig.5). The LRD method performs

better on preserving the original color of the images, but

the fusion results are blurred in the boundaries and many

details. In addition, some information of the SPECT images

is weakened or even lost after fusion (see Fig.5 (f1) and

(f2)). The fusion results of NSST-PA-CNN and NSCT-PC-

LLE preserve most details of the source images, but the

energy seems to be lost and the contrast of the fused images

decreases (see Fig.5 (d1),(d2), (e1) and (e2)). The CNN and

CFL methods generally perform well, but the fusion results

of CNN still suffer from slight color distortion(see Fig.5 (b1)

and (b2)), and the fusion results of CFL lose some detailed

information of SPECT images (see Fig.5 (c1),(c2)). The pro-
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(a1) (b1) (c1) (d1)

(e1) (f1) (g1) (h1)

(a2) (b2) (c2) (d2)

(e2) (f2) (g2) (h2)

(a3) (b3) (c3) (d3)

(e3) (f3) (g3) (h3)

FIGURE 6. Results of three pairs of MRI-PET images fused by eight different

image fusion methods. Fused images (a1),(a2),(a3) are LP-SR based method;

(b1), (b2), (b3) CNN based method; (c1), (c2), (c3) CFL based method; (d1),

(d2), (d3) NSST-PAPCNN based method; (e1), (e2), (e3)NSCT-PC-LLE based

method; (f1), (f2), (f3) LRD based method; (g1), (g2), (g3) NSCT-SR bsed

method; (h1), (h2), (h3) the proposed method.

posed method performs well in retaining the brightness and

contrast of the source medical images. Besides, the clarity of

the tissue texture and the edges of the medical images are

preserved well in the fusion results (see Fig.5 (h1) and (h2)).

But the integration of important information is not perfect

enough.

Fig.6 shows the fusion results of three sets of MRI and

PET images. Obviously, the fusion results obtained by the

LP-SR and NSCT-SR methods have a certain degree of

distortion, and the contrast of fused images is much lower

because of the loss of energy. The white area of bone in the

middle of the MRI image has chaotic colors (see Fig.6 (a1)

and (g1)). The other group of images fused by the LP-SR

and NSCT-SR methods also have a similar issue (see Fig.6

(a2),(a3),(g2) and (g3)). Such a situation is not conducive

to clinical diagnosis. The CNN method suffers from slight

contrast distortion. In addition, the outer boundary of the

organ is lost mostly in the fusion image (see Fig.6 (b1) and

(b2)). The NSCT-PC-LLE and LRD methods perform well in

preserving colors and edges, but the contrast of the fusion re-

sults of LRD is relatively low compared to that of the NSCT-

PC-LLE method, and the results of NSCT-PC-LLE also lose

the clarity to some extent (see Fig.6 (e1),(e2),(e3),(f1),(f2)

and (f3)). The CFL and NSST-PAPCNN methods perform

better in this issue, but color distortion is still exit in the

fusion results of NSST-PAPCNN(see Fig.6 (d1),(d2)). The

proposed method has a good performance in retaining good

information in detail, but the brightness is enhanced slightly

(see Fig.6 (h1),(h2), and (h3)).

In order to further verify the performance of the proposed

region-based fusion method, two representative examples

(CT-MRI and MRI-SPECT) chosen from the eight groups of

fusion images are shown in greater detail in Fig.7. As can

be seen from the enlarged regions with red borders, in group

1(Fig.7 (a1)-(h1)), the fusion results of LP-SR, CNN, CFL,

NSST-PAPCNN, and LRD have the problems of blurring and

adhesion in the gap between the white regions. The fusion

results of NSCT-PC-LLE and NSCT-SR are clear at the gap,

but not dense enough. The proposed method makes the fusion

gap fit exactly, which is clear and compact. In group 2 ((a2)-

(h2)), the fusion results of the LR-SR, LRD ,and NSCT-

SR methods have different degrees of color artifact. The

CNN, CFL, NSST-PAPCNN, and NSCT-PC-LLE methods

obtained good fusion results, and the proposed method en-

hances the information of the boundary.

After the above comparative analysis of subjective visual

effects, we can see that the proposed method performs satis-

factorily in all types of multimodal medical image fusion. It

is also evident that the proposed method can precisely retain

the important salient features of the source images without

producing abnormal details.

2) Quantitative comparison

In this paper, four objective metrics are applied to the eval-

uation of fusion performance of different methods: average

gradient (AG), spatial frequency (SF), mutual information

(MI), and petrovic metric QAB/F .

a) Average gradient (AG) [57] refers to the obvious dif-

ference in the grayscale near the border point or both

sides of the shadow line of the image, which can be

used to indicate the clear point of the image. Generally

speaking, the larger is the value of AG , the better is the

fusion result.

b) Spatial frequency (SF) [58] is used for calculating the

general activity level of the space in the image. The

value of SF is larger, the riche information is contained

in fused image, and the better the fusion method has

performed.
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(a1) (b1) (c1) (d1) (e1) (f1) (g1) (h1)

(a2) (b2) (c2) (d2) (e2) (f2) (g2) (h2)

FIGURE 7. The cropping results of three types of fusion images : (a1)-(h1) CT-MRI fused images;(a2)-(h2) MRI-SPECT fused images;(a3)-(h2) MRI-PET fused

images. Fused images (a1),(a2)is LP-SR based method;(b1),(b2)CNN based method;(c1),(c2)CFL based method;(d1),(d2) NSST-PAPCNN based method;(e1),(e2)

NSCT-PC-LLE based method;(f1),(f2) LRD based method;(g1),(g2) NSCT-SR bsed method;(h1),(h2) the proposed method.

TABLE 1. Average Gradient values for 8 fused images obtained by different fusion methods.

LP-SR CNN NSST-PAPCNN NSCT-PC-LLE LRD NSCT-SR CFL Proposed

CT-MRI1 0.0490 0.0489 0.0468 0.0477 0.0457 0.0491 0.0469 0.0617

CT-MRI2 0.0580 0.0576 0.0532 0.0526 0.0517 0.0557 0.0561 0.0682

CT-MRI3 0.0674 0.0696 0.0675 0.0677 0.0640 0.0682 0.0684 0.0786

MRI-SPECT1 0.0535 0.0525 0.0537 0.0537 0.0525 0.0543 0.0587 0.0688

MRI-SPECT2 0.0509 0.0499 0.0494 0.0496 0.0402 0.0497 0.0549 0.0608

MRI-PET1 0.0817 0.0749 0.0831 0.0739 0.0777 0.0830 0.0896 0.0946

MRI-PET2 0.0821 0.0767 0.0865 0.0837 0.0732 0.0847 0.0930 0.0973

MRI-PET3 0.0579 0.0576 0.0583 0.0585 0.0484 0.0584 0.0625 0.0731

Average Value 0.0626 0.0610 0.0623 0.0609 0.0567 0.0629 0.0663 0.0754

TABLE 2. Spatial Frequency values for 8 fused images obtained by different fusion methods.

LP-SR CNN NSST-PAPCNN NSCT-PC-LLE LRD NSCT-SR CFL Proposed

CT-MRI1 17.6378 17.6211 16.7959 17.1296 16.5588 17.6342 16.8365 22.1734

CT-MRI2 20.8408 20.6734 19.1176 18.8774 18.5867 20.0241 20.1539 24.5032

CT-MRI3 24.1974 24.9913 24.2460 24.3321 22.9992 24.5103 24.5601 28.2179

MRI-SPECT1 19.2043 18.8538 19.2765 19.2982 18.8731 19.5186 21.0741 24.7296

MRI-SPECT2 17.9220 17.9290 17.7624 17.8165 17.9660 17.8578 19.7074 21.8465

MRI-PET1 29.3496 26.8962 29.8567 29.4604 27.9157 29.8023 32.1839 33.9840

MRI-PET2 29.4981 27.5594 31.0627 30.0771 26.3038 30.4162 33.4079 34.9658

MRI-PET3 20.8095 20.6875 20.9564 21.0048 17.4038 20.9844 22.4649 26.2530

Average Value 22.4324 21.9015 22.3843 22.2495 20.8259 22.5935 23.7986 27.0842

TABLE 3. Mutual information values for 8 fused images obtained by different fusion methods.

LP-SR CNN NSST-PAPCNN NSCT-PC-LLE LRD NSCT-SR CFL Proposed

CT-MRI1 3.1260 3.0745 2.4653 3.2902 4.2412 3.0118 4.7364 6.0565

CT-MRI2 3.6160 3.7149 3.7144 3.6176 3.9179 3.7702 4.1933 6.2362

CT-MRI3 3.8292 3.5254 3.3347 3.4408 3.5892 3.5766 3.5297 5.6162

MRI-SPECT1 2.4530 2.7272 3.8347 3.8930 2.6105 2.8140 3.7160 3.8372
MRI-SPECT2 3.0017 3.2926 3.2974 3.2801 3.0228 2.8855 2.8650 3.4792

MRI-PET1 2.8622 3.0971 2.9967 2.9327 3.1686 2.7918 3.1637 3.9192

MRI-PET2 2.6469 2.5615 2.6944 2.6295 2.7070 2.5696 2.9032 3.7737

MRI-PET3 3.1343 3.0149 3.3484 3.2920 3.4242 3.2791 3.4811 4.2459

Average Value 3.0837 3.1260 3.2108 3.2970 3.3352 3.0873 3.5736 4.6455
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TABLE 4. QAB/F values for 8 fused images obtained by different fusion methods.

LP-SR CNN NSST-PAPCNN NSCT-PC-LLE LRD NSCT-SR CFL Proposed

CT-MRI1 0.7682 0.7683 0.6859 0.7325 0.7013 0.7329 0.7688 0.8056

CT-MRI2 0.6122 0.6028 0.5914 0.5804 0.5000 0.6210 0.5967 0.6603

CT-MRI3 0.6427 0.6588 0.5975 0.6424 0.5380 0.6491 0.5960 0.6210
MRI-SPECT1 0.8551 0.7702 0.8665 0.8677 0.7172 0.8521 0.8374 0.8431
MRI-SPECT2 0.9040 0.9064 0.9006 0.9019 0.8908 0.8943 0.8541 0.8992

MRI-PET1 0.5377 0.4751 0.5294 0.5311 0.4632 0.5354 0.5161 0.4543
MRI-PET2 0.5525 0.4937 0.5565 0.5484 0.4596 0.5483 0.5463 0.4830
MRI-PET3 0.6721 0.6572 0.6492 0.6567 0.5539 0.6774 0.6639 0.5761

Average Value 0.7565 0.7413 0.7284 0.7450 0.6694 0.7499 0.7306 0.7658

TABLE 5. Running time of different methods when fusing two source images of size 256x256 pixels (Unit: seconds).

LP-SR CNN NSST-PAPCNN NSCT-PC-LLE LRD NSCT-SR CFL Proposed

CT-MRI1 0.1203 11.4273 4.9216 2.4360 120.9771 8.8443 7.1660 84.9767
MRI-SPECT1 0.0282 12.3585 4.6355 4.2349 118.5621 18.1814 5.1511 82.6332

MRI-PET1 0.0291 12.5944 4.8624 4.2799 121.1856 23.6890 8.9292 83.9941

Average Value 0.0503 12.0531 4.7972 3.5329 121.4462 16.6433 7.9208 83.6364

c) Mutual information (MI) [59] is used to measure the

dependence between the source images and the fused

image and perfectly indicate the shared information of

the fused and the source images. The value of MI is

larger, the fused image contains more information about

the source image.

d) Petrovic Metric (QAB/F ) [60] refers to the edge infor-

mation transferred from source images to fused image.

Higher is the value of QAB/F , better is the quality of

the fused image.

The metric scores of LP-SR, CNN, CFL, NSST-PAPCNN,

NSCT-PC-LLE, LRD, and the proposed method for CT-MRI,

MRI-SPECT, and MRI-PET image fusion are reported in

Tables 1 - 4. For each metric, the best score of different

methods is shown in bold indicates, and the averages of

the performance for all the testing image sets are shown at

the bottom of the table to evaluate the fusion results more

objectively.

From Tables 1 - 4, we can see that the proposed method

achieves the best values of AG and SF in all test examples.

Although not all the fusion results of our method achieve the

best values of MI, the only value that is not the best is very

close to the best one (only 0.0558 smaller than the best one),

and the average value of MI in eight groups is still the largest.

Table 4 shows QAB/F values of different fusion methods.

It can be seen that the best score of our proposed method

are achieved in CT-MRI image set. Because the QAB/F is a

metric for the evaluation of pixel-level image fusion methods,

it is not so suitable for the evaluation of region-based image

fusion methods and thus not all of our fusion results get

good scores. Nonetheless, the average score of our method

in QAB/F is still the best among all methods. Therefore, it

can be seen from the results of the four objective quantitative

evaluations that the proposed method can achieve the state-

of-the-art performance and even more effective than the

mainstream fusion methods. This is attributed to the accurate

segmentation of the LSC algorithm as well as the effective

optimization of the decision map.

3) Time complexity analysis

In this section, the computational efficiencies of the different

fusion methods are conducted on the image sets "CT-MRI1",

"MRI-SPECT1", and "MRI-PET1", and all the tests were

implemented on a computer with a 1.99 GHz CPU and 8

GB of RAM. The running time results are compared in

Table 5. The average value is the average running time of

all fusion pairs in the experiment. As shown in Table 5,

the computational complexity of the LRD method is the

highest, and CNN and NSCT-SR are also inefficient. The

LP-SR method is the most efficient because the Laplacian

pyramid it uses to decompose source images for fusion does

not cost too much calculation. In our method, the genetic

algorithm is used to obtain better fusion results, but it makes

us less efficient as it takes most of the running time. However,

the linear computational complexity of the LSC algorithm

improves our efficiency at the same time.

C. DISCUSSIONS

In the proposed region-based medical image fusion method,

the LSC algorithm is utilized to segment source medical

images. To further verify the overall performance of LSC

is superior to other segmentation algorithms, a comparative

experiment is conducted on three classical superpixel seg-

mentation algorithms (Ncuts, Turbo, and SLIC) and LSC. CT

and PET images are used for segmentation.

Fig.8 shows the superpixel segmentation results of the

four superpixel segmentation methods. It can be seen that

all methods produce uniformly sized superpixels, but Turbo

and SLIC tend to produce superpixels which contain pixels

of different colors(see Fig.8 (b1),(b2),(c1) and (c2)). And the
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FIGURE 8. Medical images are segmented into 500 superpixels using four

superpixel segmentation methods.(a1)-(d1) are segmentation results of CT

images; (a2)-(d2) are segmentataion results of PET images; (a1),(a2) is

segmented by Ncuts; (b1),(b2) Turbo; (c1),(c2) SLIC; (d1),(d2) LSC .

superpixels produced by Ncuts and LSC is homogeneous(see

Fig.8 (a1),(a2),(d1) and (d2)). In terms of objective criteria,

edge intensity(EI) is used to measure the edge compactness

of the segmentation results and the running time of all

segmentation algorithms is also recorded. As is shown in

Tabel 6 and Table 7, Ncuts produces the best superpixel

edge compactness, and the LSC is in second place. But the

computational complexity of Ncuts is much higher than that

of LSC (almost 102). SLIC has the shortest running time

but the quality of segmentation is not as good as the LSC.

In summary, although LSC is not the best in some metrics,

it achieves the best trade-offs among homogeneous regions,

excellent structures, and low computational complexity.

TABLE 6. Edge Intensity of superpixel segmentation results at 500

superpixels

Methods Ncuts Turbo SLIC LSC

CT 113.9254 91.6725 92.1535 100.4443
PET 105.2669 77.5464 78.2514 85.9055

TABLE 7. Running time of different superpixel segmentation methods at 500

superpixels

Methods Ncuts Turbo SLIC LSC

CT 99.6634 1.5381 0.0889 0.0939
PET 99.0018 1.7350 0.0859 0.0989

In order to make the proposed method achieve the best

fusion performance, the appropriate setting of the superpixel

number in LSC and population size in GA are of great

importance. For example, fewer superpixels mean larger

regions, which may lead to an increased probability that

the same region contains both required and unrequired in-

formation, thereby resulting in an increased probability of

region misselection in the fusion process. For the GA, if

the population size increases, the likelihood of the algorithm

converging to the optimal weights also increases. Therefore,

to further investigate the effects of these two parameters on

image fusion, we conducted experiments using eight pairs

of medical images at different numbers of superpixels and

population sizes, respectively. The results are shown in Fig.9

and Fig.10.

FIGURE 9. Effect of the superpixel numbers on the fusion results of three

types of medical images

In Fig.9, the values of AG, SF, and MI increase with

the growth of superpixel numbers. The optimal number of

superpixels is between 300 and 500. But it does not suggest

that the higher the number of superpixels, the better the

fusion result. At the stage where the number of superpixels

is 800 to 1000, the values of all three evaluation metrics

decrease, which is partly due to the fact that too-small region

division destroys the structure of the information. Besides,

too many regions can lead to low fusion efficiency, which

can be seen that the running time of fusion increases linearly

with the increase of the number of superpixels.

Fig.10 shows the relationship between the values of AG,

SF, MI, and population size, and we can see that most of the

fusion results become better as the population size increases.

The fusion result remains stable at most population sizes,

the larger the population size, the greater the probability of

convergence to a more optimal solution. However, the run-

ning time also increases when the population size is larger.

Therefore, population size between 10 and 20 are optimum.

V. CONCLUSION

In this paper, a novel regional multimodal medical image

fusion method based on superpixel segmentation and a post-

processing optimized method is proposed. For multimodal

medical images, more homogeneous regions can be obtained

by the LSC superpixel algorithm. Based on the above regions,

Log-Gabor filter and sum modified laplacian are adopted to

get texture feature and contrast feature, respectively. Sub-

sequently, a post-processing method based on genetic algo-

rithm is proposed for adaptively adjusting the effects of these

12 VOLUME 4, 2016
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FIGURE 10. Effect of the population size in genetic algorithm on the fusion

reuslts of three types of medical images

two features. By comparing the importance information of

each superpixel, the final decision map is generated and then

the fused image can be obtained. Experiments are conducted

on eight groups of multimodal medical images. Compared

with seven mainstream fusion methods, the proposed method

can achieve better performance in both visual effects and

objective evaluation because the segmentation of medical

images is more accurate and the detailed information is ex-

cellently preserved in the fusion results. In the future, a more

accurate segmentation algorithm with deep learning and a

faster post-processing optimized method will be considered

to further improve the performance of multimodal medical

image fusion.
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