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Abstract. The aim of this paper is to calculate the time dependence of the mean 
position (and orientation) of a fluid particle when a fluid system at 
thermodynamic equilibrium is submitted to a mechanical action. The starting 
point of this novel theoretical approach is the introduction of a mechanical 
energy functional. Then using the notions of inertial modes and action 
temperature, and assuming a mechanical energy equipartition principle per 
mode, the model predict the existence of a dynamic phase transition where the 
rheological behavior of the medium evolves from a solid-like to a liquid-like 
regime when the mechanical action is increased. The well-known Newtonian 
behavior is recovered as limiting case. The present modeling is applied to the 
analysis of recent liquid water viscoelastic data pointing out a prevalent elastic 
behavior in confined geometry. It is demonstrated that the model makes it 
possible to understand these data in a coherent and unified way with the 
transport properties (viscosity and self-diffusion coefficient). It is concluded that 
any finite volume of fluid at rest possesses a static shear elasticity and should 
therefore be considered as a solid-like medium. 
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1 Introduction 
 
  The solid-like behavior of many liquids at low frequencies has been experimentally 
demonstrated by many authors (e.g. Ref. 1 to 6). However, this property of liquids is difficult 
to reconcile with the various classical theoretical approaches (e.g. Ref. 7 to 9). Only recently, 
some work has addressed the problem of theoretical explanation in the framework of models 
based on standard statistical physics (e.g. see Ref. 10), and a scaling law has been proposed to 
account for some of these experimental results (Ref. 10a). 
  In this paper, we will develop a groundbreaking theoretical model having no 
equivalent to our knowledge, such that it will lead us to admit that any finite volume of a 
liquid at rest must be considered as a solid with low but finite static shear elasticity. To do 
this, we will strongly rely on the space domain modeling developed in Ref. 11 and will extend 
it to the time domain. Indeed, in Ref. 11 a non-conventional lattice model has been developed 
to describe the thermodynamic equilibrium properties of a fluid medium. In this model, the 
cell of the lattice, called “basic unit”, is composed a priori of several molecules or atoms. Due 
to the temperature, the center of mass of this basic unit fluctuates around its mean position fr


. 

The departure frru


  of the position r


 from this mean position fr


 is assumed to be a 

Gaussian random variable of the variance 2u . The quantities fr


 and  2u   might thus be 
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identified as the center and the size of the “thermal cloud”, respectively, in which each basic 

unit is delocalized. The aim of this model was essentially to calculate the variance 2u , and 

to establish expressions for the self-diffusion coefficient and the viscosity in terms of this 
variance and time scales phenomenologically introduced. It was shown that, for water, this 
model can reproduce quantitatively, in the whole phase diagram, a very large amount of self-
diffusion coefficient data, and of viscosity data in the context of Newtonian fluids. The model 
implies that the Newtonian behavior is a part of a much wider rheological behavior. This 
model, developed in the space domain, was limited to the calculation of the thermodynamic 
equilibrium, which implies that the mean position  tr f


 of the Gaussian distribution of u


 is 

assumed to be static. In other words,     fff rrtr


 0  at all times. The extension of the 

model to the time domain consists in calculating the evolution of  tr f


 when the system is 

pushed out-of-equilibrium via an external mechanical perturbation. The mean position  tr f


 

can be identified as the “point” in fluid mechanics at which the macroscopic mechanical 
actions are applied. This makes it possible to define the notion of “fluid particle” as the 
volume of the thermal cloud and whose centre of gravity is  tr f


. Therefore, the present 

purpose is to describe rheological properties of a fluid in the framework of this lattice-like 
model. In particular, this development will allow us to justify the phenomenological relations 
introduced in Ref. 11 to describe transport coefficients.  
  The fundamental ingredient of the model is the static shear elasticity parameter K. 
Despite this concept has allowed us to analyze self-consistently the very large number of 
transport coefficients data of water, potassium and thallium (Refs. 11 and 12), the evidence 
that a static shear elasticity exists in fluids was only indirect: it is simply a parameter of the 
model. To show that this shear elasticity is associated with a measurable quantity, it is very 
important to analyze experimental data which can only be analyzed in a standard way by the 
necessary existence of a static shear elasticity. Today such data exist, obtained from 
mechanical relaxation and very low frequency oscillatory measurements (e.g. Ref. 13), 
especially for liquid water (Ref. 14). They are extremely valuable for the present purpose. As 
an application of the model, we present and analyze them using two different approaches: 
firstly, the relaxation data are analyzed in the light of the present modeling, and second, the 
dynamic viscoelastic data are analyzed with the classical approach commonly used in the field 
of rheology. It is shown that the values of the parameters determined by the two methods are 
consistent with each other, in particular for the elastic shear modulus. In addition, the analysis 
is extended to the shear elasticity data of the literature obtained in the KHz and MHz ranges. 
  The present modeling is applied here to liquid water data only (in spite of the fact that 
experimental data are available for other fluids) because the model parameters are the same as 
those used to describe viscosity and self-diffusion coefficient (i.e. these parameters are known 
from Ref. 11) and because of the availability of large and varied rheological data sets for this 
fluid. 
 
2 The general basis of the modeling 
 
  In this section, we focus on the dynamic aspects which result from a mechanical action 
made on a “fluid” system initially at thermodynamic equilibrium. This action, which is carried 
out with the use of macroscopic forces or torques, induces a “net” translational and/or 
rotational motion of the fluid particles. The aim here is to calculate the position and 
orientation of the fluid particles, as a function of the nature and intensity of the mechanical 
action, and of the fluid characteristics, within the framework of a non-extensive theory “in 
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duration”. By analogy with the elastic energy functional of the “volume” theory (Ref. 11), the 
starting point of this “duration” theory is a mechanical energy functional associated with the 
mechanical action. We will see that this operating way makes it possible to elaborate a simple 
formalism, where dissipation and irreversible time aspects appear as fundamental ingredients 
of the model. 
 

2.1. Mechanical energy functional 
 
  Because the action (in the mechanical sense, i.e. a mechanical energy supplied for a 
given time) of forces or torques moves the system out-of-thermodynamic equilibrium, the 
starting point of this duration theory is consequently a mechanical energy functional (i.e. 
representing an action per unit time), which will be associated with each point X of the fluid. 
As a result of the action, a point of the fluid X undergoes a translational relative displacement 
xf(X,t1) and/or an orientational relative displacement  1, tXf , with respect to a reference 

frame linked to a fixed boundary of the system at a time t1. 
Inspired by the fundamental law of dynamics, we assume that, to each particle of fluid located 
at point X, we can associate a mechanical energy functional FA such that:  
 

- for the translation:  




action of
duration  

11A0A  , 
t

f dttXKcF ttt   (1) 

- for the rotation:  




action of
duration   

11A0A  , 
t

f dttXKF rrr   (2) 

 
where 0c  and 0  are characteristic velocities (more precisely an angular velocity in the 

second case) with which the mechanical information is propagated in the medium.  
The index A is used for concepts related to the action, and the superscripts “t” or “r” to 

translation or rotation, respectively. Thus,  1, tXf
t  and  1, tXf

r  are the translational and 

rotational accelerations at time t1, at the point X of the fluid considered and t
AK  and r

AK  are 
quantities which have the dimensions of a mass and a moment of inertia, respectively. 
Unlike standard classical mechanics where kinematics quantities at time t1 (i.e. position, 
velocity, acceleration), are analytical functions of the single variable t1, in the present model, 
these quantities are defined by two times t1 and t2, possibly as close to each other (t12 = t1 - 
t2). This implies that kinematics quantities are functions of two (independent) time variables 
rather than one. The corresponding standard quantities are therefore only the limits of these 
functions when the values of the two variables become equal. For example, the translational 
acceleration at time t1, along the direction x, must be written as: 
 

    




















21

21
2

1

,,
lim,

12 tt

ttXx
tX

f

tt
f
t  (3) 

 
and the velocity: 
 

      



















2

21

1

21
1

,,,,
lim

2

1
,

12 t

ttXx

t

ttXx
tXv

ff

tt
f
t  (4) 



 4 

 
The necessity to introduce two close instants t1 and t2 to define the kinematics quantities 
means that, for the experimental physics, the description of the time dependence of a 
(dissipative) phenomenon is not strictly continuous and requires a minimum time delay 

min12  tt . In the present particular case where we describe the collective displacement of 
material objects with a finite size (here the basic units), consecutive to the application of an 
external perturbation, this time delay is logically identified with the time required for the shear 
information to propagate across the objects, namely 0objmin cl  where objl  is the size of the 

objects. For usual liquids, min  is of the order of a fraction of picosecond. Since in the 

description of usual flow phenomena, the times involved are generally (much) longer, min   
can be neglected and, in practice, the kinematics quantities can be considered as continuous 
functions of time. 
  On the basis of these statements, we decompose  21 ,, ttXx f  into double temporal 

Fourier series on the duration t. The notion of independent inertial modes (inertial because 
characterized by a (inertial) mass or a moment of inertia) is then introduced, each of them 
being characterized by a pulsation . The values of these pulsations range between a 
maximum value c, which is a characteristic of the system (which must be described as 
“dynamic” since the entire description only makes sense if there is net fluid motion), and a 
minimum value c /NA where the index NA is the “temporal” equivalent of the “spatial” index 
N introduced in Ref. 11 to describe elastic modes. We get:  
 
      


 


 

,
21,21 expexp,, titixttXx f  (5) 

 
where  ,x  are the Fourier coefficients. 

By analogy with the wave vectors of the elastic modes defined in a volume, we assume that 
the pulsations of the inertial modes are defined in a duration t. It is then deduced in a similar 
way that the density of inertial modes A() (number of inertial modes per unit pulsation) in 
the duration t is given by: 
 
 A() = t (6) 
 

by analogy with    3E 23  Vq 


 for the spatial case. Here, there is not the factor 3 because 

duration is a “one-dimensional space”. The absence of a 2 factor in Eq. (6) is taken as a 
convention. The index: 
 
 NA = c t  (7) 
 
represents the number of “elementary” c

-1 durations in duration t. It will be called the 
reduced duration, by analogy with the reduced size N for elastic modes. Now the number of 
inertial modes NA for the duration t associated with the fluid point under consideration is 
obtained by summing A() between  c/NA and   c (the  sign comes from the fact that 
the pulsations can be positive or negative). We get: 
 
  12 AA  NN  (8) 
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Since NA is a positive number, Eq. (8) shows that as long as the duration is less than c
-1, this 

description is not applicable. The movement between t = 0 and t = c
-1 will be identified as a 

transient regime. 
By carrying Eq. (5) into Eq. (3), then Eq. (3) into Eq. (1) and taking into account the 
orthogonality of complex exponential functions: 
 

      ,0 11    exp tdtti
t

  

 
where  ,  is the Kronecker symbol, Eq. (1) can now be simply written: 

 
   


 ,

2
A0A  xKtcF tt  (9) 

 
The same approach for the rotation leads to replace Eq. (2) by the following relationship:  
 
   


 ,

2
A0A  rr KtF  (10) 

 
Contrary to thermal motions where it has been shown in Ref. 11 that it is the mean square of 
the displacements that are added, here for mechanical motions, it is the displacements (or 
angular displacements) that are added in the expression of the energy functional. Another 
fundamental difference is that the “volume of space” defined by N is in principle fixed while 
the “volume of time” defined by NA increases, possibly indefinitely. 

In this analysis, the effects of the stress on the displacements inside the basic units, 
producing a deformation of these objects, have not been taken into account, i.e. only “viscous” 
aspects associated with long-distance displacements are considered. These short non-
dissipative distance displacements exist but are neglected in this present analysis. To take into 
account such short time effect, a feedback term which introduces a constant stiffness must be 
added in the mechanical energy functionals Eqs. (1) and (2). In these more complex cases, the 
full mechanical displacement will be the sum of an elastic displacement representing the 
reversible deformation of the basic units and the irreversible viscous displacement described 
by the present modeling. Such more complex modeling will be presented elsewhere. 

 
2.2. Concept of action temperature and equipartition principle of the mechanical 
energy 

 
  To go further, we introduce the notion of “action temperature”, noted as TA, that we 
will associate to each point X of the fluid. This action temperature is a dimensionless number 
that describes the strength of mechanical action made on the system at the point X of the fluid. 
If the action is independent of duration, it can therefore be stated that, during this action, the 
fluid point is at operating temperature TA. For a fluid under flow, the operating action 
temperature TA is zero at any point where the velocity is zero, which is generally the case on 
fixed walls (see below). For a fluid at thermodynamic equilibrium, all fluid points are at zero 
action temperature. 
The natural unity for action being the Planck constant  , any action may be written as AT . 
By transposing here to the mechanical energy the equipartition principle of energy relevant to 
the space domain, we postulate an equipartition principle of the mechanical energy 
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associated with the action, namely that the mechanical energy per inertial mode, for a fluid 
point X at action temperature TA, is 2ATc . Note that if we had defined an “action 

functional” instead of a “mechanical energy functional”, this equipartition principle would be 
such that the action by inertial mode is equal to 2AT . The two descriptions are equivalent. 
By explicitly writing this equipartition principle, we obtain the expression of the contribution 

 ,x  (more precisely written ,fx ) of the translational inertial mode of pulsation  to the 

displacement fx , (or of the contribution  ,  of the rotational inertial mode  to the rotation 

f ) of the fluid at the point X considered for the duration t. We have: 

- for the translation:  
tKc

T
tXx c

f 2
A0

A
,   2

1
,




 t


  (11) 

- for the rotation:  
tK

T
tX c

f 2
A0

A
,   2

1
,




  r



 (12) 

 
The next step is to define, as for the spatial case, coefficients KA not as usual mass or inertia 
moments, but as quantities associated with each of the inertial modes of pulsation , functions 
of  according to a power law with an exponent A that depends on the action temperature TA, 
the same in both cases, such that: 
 

 
2

A0A

A

 



v

c

KK

rt,rt,  (13) 

 

where rt,
A0K  are a mass and inertia moment characteristic of the dynamic system, associated 

with dissipative phenomena. As for the case of the volume theory, it is shown in Appendix A 
that this assumption is mathematically equivalent of using fractional derivatives in the 
definition of the mechanical energy functional form. 

Finally, the displacement (beyond time 1
c ), caused by all the inertial modes for the duration 

t is obtained by summing over all these modes (it is twice the sum over the positive values of 
), so that: 
 

- for the translation:      A
A00

A

A 
, vH

Kc

XT
tXx Nf t


  (14) 

- for the rotation:      A
A00

A

A 
, vH

K

XT
tX Nf r



  (15) 

 
where  AA

vH N  is the same function as in the spatial case that can be written: 

 

  
 

1

1

1

1

A

1

A

1
A

A

AA

A 










v

t

v

N
vH

v
c

v

N


 (16) 

 
Eq. (14) and Eq. (15) represent the very general one-dimensional solution of the displacement 
and angular displacement of the fluid point X under external mechanical action for the 
duration t. Despite the concept of action temperature is not yet explicitly related to a familiar 
concept, it is clear that the stronger the action (i.e. the greater the force or torque applied at the 
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point of the fluid, the higher the action temperature TA, which results, at a given time, in a 
larger linear displacement fx  (or a greater angular displacement f ). 

Eq. (16) shows that, if Av  increases, then the crossing by 1A v  corresponds to a very large 

increase of the displacement. The condition 1A v  therefore corresponds to a “dynamic” 
phase transition (i.e. probably a plastic transition; i.e. solid to liquid) in the same way as in the 
spatial case v = 1 corresponds to a “thermal” phase transition (i.e. probably a glass-like 
transition). Thus, by analogy with the spatial case, we postulate that: 
 

 
2

1

A

A0
A 11 










T

T
v    for    A0A TT      (i.e. solid-like regime) (17a) 

 
4

1

A

A0
A 11 










T

T
v   for    A0A TT      (i.e. liquid-like regime) (17b) 

 
where A0T  represents a transition action temperature which is a characteristic of the dynamic 

system. It therefore appears that the parameter vA will vary continuously from   to 2 for 
which    0

A
NH  and     112 AA

 tNH cN  . 

In other words, the notions of (temporal) “inertial modes” and “action temperature”, and of a 
principle of “equipartition of the mechanical energy associated with the action”, are analogous 
to the elastic (spatial) modes, the usual temperature and the thermal energy equipartition 
principle in the volume theory, this inertial mode theory predicts a “dynamic order-disorder” 
phase transition, the parameter governing this transition being the action temperature. Table 1 
highlights the analogy of the parameters between the two theoretical models. 
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Volume theory (elastic modes) 
Describes the random fluctuations of the 
basic units about an equilibrium position 

Duration theory (inertial modes) 
Describes the deterministic motion of the 

equilibrium position in response to external 
mechanical action.  

- For translation: random displacement of the 
center of mass: u


 

- For rotation: random angular displacement 

of the orientation: 


 

- For translation: deterministic displacement 
of the mean position of a basic unit: xf 

- For rotation: deterministic angular 
displacement of the mean orientation around 
a fixed axis: f  

Elastic energy functional: F Mechanical energy functional: FA 

Volume of the system: V Duration of the mechanical action: t 

Spatial wave-vector modulus: q Pulsation:  

Density of elastic modes in volume V:  q


E  Density of inertial modes in duration t: A() 

Cutoff wave-vector modulus: qc Cutoff pulsation modulus: c 

- For translation: shear elastic constant K 
(unit: force per unit surface) 

- For rotation: rotational elastic constant Kr 
(unit: torque per unit length) 

- For translation: mass t
A0K  

- For rotation: moment of inertia r
A0K  

Reduced fluctuative distance: N Reduced duration: NA 

Exponent: v Exponent: vA 

Thermodynamic temperature: T Action temperature: TA 

Ordered-disordered transition temperature: Tt 
Solid-liquid transition action temperature: 
TA0 

Table 1. Equivalence table: each line indicates analogous parameters in the volume and duration theories.  
 
Table 1 indicates that the duration t is the analogue of the volume V (and vice versa). These 
two parameters are fundamental for the two theoretical models. The significance of these two 
quantities should thus be emphasized: 

- the volume V represents a “piece of space” in which matter is located by the position 
r


of its constitutive material elements (atoms, molecules, basic units, …); 
- the duration t represents a “piece of time” associated with a mechanical stress which is 

applied on the constitutive elements, producing a net displacement of the latter. The 
instant t1 represents the analogue of the spatial position in the sense that it defines a 
“temporal position” in the duration t. 

 
Although there is an analogy between V and t in the two theories, the two concepts are 
fundamentally different. Indeed, in the volume theory, the volume V is fixed and consequently 
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the density of elastic modes per unit wave-vector   Vq 


E  is a constant while in the 
duration theory, the time “flows” and consequently the density of inertial modes per unit 
pulsation A() = t changes continuously. Let us insist again on the fact that the concept of 
time (in the sense of duration) is irrelevant for systems at thermodynamic equilibrium. It only 
emerges in a real experiment, when energy is transferred from one part of a system to another, 
in the form of matter movement, and it disappears when all the transferred energy has been 
dissipated (transformed into random motions) so that the whole system has returned to 
thermodynamic equilibrium. Thus the concept of “reversible time” is foreign to the present 
modeling.  
 

2.3. Relationship closure for the translational case 
 
  In the following, we will focus only on the translational case. To close the formalism, 

we need to define the following parameters: 0c , c , t
A0K , TA and TA0. 

It was pointed out in the spatial case (see Ref. 11) that the only characteristic celerity is 
defined by the static shear elastic constant K of the medium such that: 
 

 

K

c 0  (18) 

 
where  represents the medium mass per unit volume. (Note that for the rotational case, we 

have JK r0  where J is the moment of inertia per unit length.) 

The quantity 1
c  is a characteristic parameter that represents the time taken for the “global” 

information introduced by the mechanical action to propagate over the dissipative distance d. 
This time thus corresponds to a delay between the action and the reaction of the system to this 
action, during which internal phenomena occur in the system but they are not described by the 

present theory. It is therefore logical, in the context of the present description, to scale 1
c  

with this “macroscopic” characteristic time 0cd . It is also clear that the reaction delay 

depends on the position X of the fluid point under consideration. The simplest way to express 
these relationships is as follows: 

 
    ,1 Xf

cc   (19) 

 
where   ,Xf

c
 is a function which depends on the position X of the object and on both the 

properties of the system and the overall mechanical action applied. These properties are 
grouped together in the single parameter . Eq. (19) replaces an unknown with a new 
unknown non-dimensional function but whose physical meaning can be more easily 
understood through the different experiments. 

In Eq. (14), t
A0K  has the dimension of a mass that must be associated with dissipative 

phenomena. In Ref. 11, it has been shown that during a shearing experiment the occurrence of 
a released gas implies an additional dissipation which must be combined with that of the 
sheared liquid. Given the expression of these dissipative terms in Ref. 11, it appears that the 

expression of t
A0K  should be written as follows:  
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   














0
A0

1
 

c

MTR

dvH
mK

gKnu

N
B




t  (20) 

 

where mB represents the mass of the moving basic unit and  
1

11








v

N
vH

v

N  is the function 

introduced to describe elastic modes. The second term represents the dissipative effect of the 
gas released during shearing, which corresponds here to a reaction to the mechanical action. 
Let's remember that Knu  is the density of this released gas,  is a distance defined by the 

experimental set-up, M is the molar mass of the medium and gR  represents the perfect gas 

constant. 
From the expression of Eq. (14), it is possible to identify TA0 such that: 
 
 lKcT  A00A0

t  (21) 

 
where l is a characteristic length of the system. The quantity A0T  can be understood as a “re-

action” of the dynamic system to counteract the action made on it to set it in motion. This re-
action is independent of the particular point X of the fluid, and can be considered as an overall 
quantity that characterizes the sample as a whole. 
To express the local action, it is necessary to introduce a characteristic time of this action and 
a characteristic energy corresponding to this operating time. The only characteristic time 

linked to the action is 1
c  therefore we assume that the local action can always be written in 

the following form: 
 
     1

 AA   cBXEXT  V  (22) 

 
where BB m V  represents the volume per basic unit and  XEA  represents the 

mechanical energy per unit volume in the fluid at point X. Unlike A0T  the action  XTA  is 

a local quantity which depends on the particular point X of the fluid. 
By replacing the different parameters in the above expressions, a new general expression of 
the translational relative displacement is deduced: 
 

 
       

     A
A

A
A0

A

steady
AA ,

,
vH

l

d

XfKK

XE
vH

T

XT

l

tXx
N

gasN
N

f

c






 (23) 

 
where  vHKK NN   represents a shear elastic modulus associated with the liquid part and 

0c
M

TR

d
K g

Knugas
  is a shear elastic modulus associated with the released gas. Since 

 XTA  depends on the particular point X of the fluid, it can be deduced from Eq. (23) that 

there is a threshold of the mechanical energy per unit volume  thresholdA,E  for which TA = TA0 

such that: 
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       ,  thresholdA, XfKK
d

l
XE

cgasN   (24) 

 
This relationship can be used to determine the point X of the fluid where the dynamic phase 
transition occurs. This makes it possible to define a notion of “boundary layer”: the points of 
the fluid located below the energy threshold will have a zero velocity since for all these points 
the displacement at “infinite” time is finite. 
In the particular case where the mechanical action is constant over time, a simple formula can 
be deduced for the steady state velocity at point X: 
 

    
    2A

steady
A 

 
, 


 v

c
gasN

f td
KK

XE
tXv 


 (25) 

 
It is clear from this particular case that the velocity function is a power law of time, which 
tends towards a constant when 2A v . 
 

2.4. The Newtonian limit 
 
  Within the general framework of the present modeling, the laminar Newtonian regime 
is obtained as the asymptotic limit of the liquid regime when TA >> TA0 (i.e. vA  2) and 

1 ct  . For this limit, it is deduced: 

 

 
   

t

M

TR
K

XE

d

tXx

g
KnuN

f




















A

regime
Newtonian

,
 (26) 

Hence, 

 
   


















M

TR
K

XE

d

tXv

g
KnuN

f



A

regime
Newtonian

,
 (27) 

 
From a dimensional point of view, Eq. (27) relates a velocity gradient to a shear stress by a 
proportionality coefficient which is characteristic of Newtonian behavior. This proportionality 
constant is identified as the dynamic viscosity . Terms defining the dynamic viscosity have 
been postulated without justification in Ref. 11 and are therefore now justified. In addition, it 
has been shown that this viscosity modeling makes it possible to reproduce and understand the 
full range of water viscosity data. Eq. (27) can be identified with the solutions of the Navier-
Stokes equations in the low Reynolds number laminar steady state regime. The solutions of 
the Navier-Stokes equations being largely experimentally verified in the Newtonian limit for 
usual viscosity experiments, it is therefore necessary that the present modeling must be in line 
with these solutions. This condition provides a possible means of determining the expression 
of the term EA(X). Indeed, since Eq. (27) is verifying the Navier-Stokes equations, then EA(X) 
must also verify this one with the boundary conditions deduced from the velocity boundary 
conditions. 
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Table 2 gives some examples of expressions of EA(X) for simple one-dimensional laminar 
shear flows for which it is possible to make a direct identification. It can be checked that 
EA(X) is maximum where the velocity is maximum and zero where the velocity is zero. 
 
(a). Simple shear conditions: flow between two 

parallel plates occupying the planes z = 0 and z = e. 

The first plate is fixed, while the second slides in the 

Ox direction with velocity U.  One finds: 

 
e

z

d

U
E z


A . 

In such case, the dissipative distance d is typically d = 

e. The normal stress to the Oxy plane is 
e

U   from 

which one can still write: 

 
e

z
E z A . 

(b). Cylinder pipe geometry: flow in a cylindrical pipe 

of radius r = R. The flow is due to a constant pressure 

gradient G along the corresponding Ox direction with 

the cylinder axis. One finds: 

 





















22

A 1
4 R

r

d

GR
E r . 

For small capillary tubes, the dissipative distance d is 

typically d = R. Knowing that the stress on the pipe 

wall is 
2

GR
 , one can still write: 

 





















2

A 1
2 R

r
E r


. 

 

(c). Two coaxial cylinders flow: the inner cylinder is 

fixed and has a radius R1. The outer cylinder is 

rotating on the common axis Oz of the two cylinders 

with an angular velocity 2. The outer cylinder has a 

radius R2. One finds: 

 
r

Rr

RR

R

d
E r

2
1

2

2
1

2
2

2
22

A








. 

If 99.021 RR , the dissipative distance d is typically 

d = R2- R1. Knowing that the torque per unit length on 

the moving surface is 
2
1

2
2

2
1

2
224

RR

RR







, one can still 

write: 

 
  r

Rr

RRR

L
E r

2
1

2

12
2
1

A
4









 

where L represents the height of the cylinders. 

 

(d). Disk-like plate rotating geometry: flow between 

two parallel planar disks occupying the planes z = 0 

and z = e. The first disk is fixed, while the second 

rotate along the common Oz axis direction with an 

angular velocity . The two planar disks have the 

same radius R. One finds: 

 
e

z
r

d
E zr





,A . 

In such case, the dissipative distance d is typically d = 

e. Knowing that the torque on the moving surface is 

e

R

2

4



, one can still write: 

 
e

z

R

r

R
E zr

3
,A

2




 . 

Table 2. Expression of EA(X) for four simple one-dimensional viscous incompressible flow examples. 
 

2.5. The transient regime 
 
  In the foregoing, it has been emphasized that the formalism developed can only be 

applied to long times, i.e. for t > 1
c . In a real experiment, the motion starts as soon as the 

action is applied at t = 0. The aim is to describe the motion between 0 and 1
c . In this time 

interval, since no dissipation is possible, the energy supplied by the external forces can only 
be stored in the system. When the applied stress is constant and the initial velocity is zero, the 
movement at t = 0 is necessarily accelerated. In other words, assuming that in a short time 

such that 1 ct   the system verifies the laws of classical mechanics, it can be deduced that 

the initial velocity must vary linearly with time and displacement as the square of time. 
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Assuming that the kinematics quantities (velocity, acceleration) are continuous as they cross 
1 ct  , we can define different functions that have the desired properties. A simple function 

that gives a connection closest to 1
c  is the following one: 

 

        A3

steady
exp1 ,, v

cff ttXvtXv    (28) 

 

where  
steady

, tXv f  represents Eq. (25). The corresponding general formula for the 

displacement is obtained by integrating Eq. (28) from 0 to t and it can be written on the 
following form: 
 

   
   

   
















































 


A

A
3

A

A

A

A

AA

1
A ,

3

1

3

1

3

1

1, 

, v
c

v
c

gasN

f t
v

v

v

v

vv

t

XfKK

XE

d

tXx

c






 (29) 

 

where    
  
z

a dtttza exp, 1  is the incomplete gamma function and    aa  0, . 

We now discuss the evolution of Eq. (28) and Eq. (29) as a function of the non-dimensional 
parameters NA and TA

* = TA/TA0. First, it is useful to rewrite Eq. (28) and Eq. (29) by using 
these two parameters: 
 

    
     2

A
3

A
*

A
A

*
A

A
*

A
* AA  exp1 

,
,  vv

c

f
f NNT

l

NTv
NTv


 (30) 

and 
 

       
















































 


A

A
3

A
A

A

A

A

AA

1
A*

A
A

*
A

A
*

A
* ,

3

1

3

1

3

1

1

,
, v

v
f

f N
v

v

v

v

vv

N
T

l

NTx
NTx  (31) 

 

where 





 *

AAA Tvv . The two functions  A
*

A
* , NTv f  and  A

*
A

* , NTx f  represent the response of 

the system subject to the action *
AT . According to Eqs. (30) and (31) nothing a priori suggests 

the response of these equations can be linear. This is a property commonly used in the analysis 
of experimental data. It is therefore interesting to observe the behavior of Eqs. (30) and (31) in 
this perspective. Fig. 1 shows first of all that the response of the present modeling is never 

linear at short times (i.e. for 1 ct  ) for both displacement and velocity. Moreover, it is also 

clear that during the transient regime the response function is quasi-independent of *
AT . Fig. 

1a shows that for 1 ct   the linear approximation for the displacement is always possible 

when 1*
A T  but this is no longer the case as soon as *

AT  is greater than 1. Fig. 1b shows for 
1 ct   that the linear approximation for the velocity is only possible when 1*

A T . It can 

also be seen from Fig. 1b that the Newtonian regime is almost reached when 100*
A T . In the 

Newtonian regime it appears that the response function is also quasi-independent of *
AT  at any 

time. 
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(a) 

 

 

(b) 

 
Fig. 1. Logarithmic plot versus the reduced duration for different values of the parameter *

AT  of: (a) the 

displacement response Eq. (31); (b) the velocity response Eq. (30). 
 
3 Application to liquid water viscoelastic data 

 
The present modeling shows that the rheological behavior of the medium depends 

essentially on the value of *
AT , i.e. of the ratio EA to     , XfKK

cgasN  . Table 2 shows 

that EA depends essentially on the stress or torque that is applied to the medium, i.e. on the 
configuration of the experimental set-up.  

In the Newtonian limit, the denominator of *
AT  depends only on NK , gasK ,  and d. In 

Ref. 11, it was shown that these quantities make it possible to define an expression of the 
dynamic viscosity which has allowed us to reproduce the experimental datasets on water in 
accordance with their uncertainties. 

More generally, the quantity     , XfKK
cgasN   contains the intrinsic properties of 

the medium as well as characteristic dimensions related to the experimental set-up. This 
quantity has the dimension of a stress that represents the threshold stress T  (or the 

mechanical energy per unit volume threshold) for which 1*
A T , i.e. for which the system 

undergoes a “dynamic” phase transition according to Eq. (24). The determination of this 
threshold stress requires the knowledge of the function   ,Xf

c
 which depends both on the 

properties of the medium and the experimental set-up. 
Given that the various model parameters have already been determined in the case of 

water, the objective of this paragraph is then to determine an expression of   ,Xf
c

 by 

analyzing liquid water relaxation data that show a threshold stress. Such water relaxation data 
were obtained using a plate-plate geometry with a gap e = 125 µm and a radius of the planar 
discs R = 2 cm. The details of the experimental set-up are published by Baroni et al. in Ref. 15 
and the experimental data of Noirez et al. are published in Ref. 14. 
The experimental conditions correspond to water at atmospheric pressure and a mean 
temperature of 294.65 K. For these conditions the 1995 IAPWS state equation formulation 
(Ref. 16) gives a liquid water density  = 0.997886 g/cm3. Considering l = d = e, then the 
fundamental parameters of the model can be calculated using the relations developed in Ref. 
11. These parameters are grouped in Table 3. 
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Name (unit) Value 
K (GPa) 2.95364 

0c  (m/s) 1720.43 

 (ns) 72.6558 
N 1.72788107 
v 1.7174 
HN(v) 217036 
KN (Pa) 13609.2 
Kgas (Pa) 518.9 
dN (cm) 2.002 
0 (Å) 3.77906 
Table 3. Numerical values of the fundamental parameters for liquid water at atmospheric pressure and 294.65 K 

when using the modeling from Ref. 11. The length 0 represents the distance over which the fluctuations of the 

basic units are correlated in the bulk at rest and its expression is defined by Eq. (10) of Ref. 11. 
 

Table 3 shows that the fluctuative distance dN corresponds exactly to the radius R of the 
plates, taking d = e as the dissipative distance. The two characteristic distances of the 
rheometer therefore appear “naturally” in the modeling, which demonstrates a high degree of 
consistency of the viscosity modeling presented in Ref. 11. 
Also, in Ref. 11 it was shown that at atmospheric pressure and for a temperature between the 
triple point temperature and temperature corresponding to the saturated vapor pressure curve, 
the viscosity term due to the released gas is small in comparison with the liquid–like term 
equal to NK : Table 4 shows that the viscosity corresponding to the released gas represents 

3.8% of the total viscosity. Therefore, as a first approximation the term gasK  can be neglected 

in comparison with NK  in the next sections (a case where the term gasK  is preponderant will 

be dealt in a future paper). 
 

Name (unit) Value 
KN  (mPa.s) from Table 3 0.98878 
 (mPa.s) from Ref. 11 with d = e = 125 µm 1.02649 
 (mPa.s) from IAPWS08 (Ref. 17) 0.96607 

Knu  (mPa.s) from Ref. 11 0.03770 
Table 4. Different values for the dynamic viscosity of water at atmospheric pressure and 294.65 K. Knu  

represents the viscosity of the released gas and its expression is defined by Eq. (17) of Ref. 11. 
 

3.1. Evaluation of the threshold stress from relaxation experiment (at constant strain) 
 

The relaxation data from Noirez et al. (Ref. 14) that will be analyzed hereafter were 
obtained by imposing a sudden displacement (modeled by a nearly Heaviside function of the 
strain which last about 0.03 s) of the moving planar disk measured at the distance r = R, which 
corresponds with the notations used at   eeRx f , . This relative displacement  (i.e. a 

shear strain amplitude) is given in percent. The torque is then measured to keep the imposed 
strain. Fig. 2 shows a typical example of the experimental results obtained upon applying a 
step strain to a 125 µm layer water. In spite of the important “noise” on the data, it can be 
observed first of all, a torque rise phase which corresponds to the shear stress during the initial 
displacement phase of the moving planar disk, then comes the stress decay phase, quite fast at 
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first and then tends to stabilize to a constant value for enough longer times. This phase of 
decay corresponds to the relaxation phase itself. We will analyze the characteristics of these 
different phases more in detail later in this section. It can however be noticed that the times 
involved are very large compared to the characteristic macroscopic time . The other 

important time in the system is 1
c  which will be determined below by the threshold stress 

analysis. 
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Fig. 2. Semi-logarithmic plot of the torque versus time measured for an imposed shear strain amplitude of 2.5 % 

on liquid water (shear stress relaxation experimental values recorded in plate-plate geometry – ARES2 

measurements, gap thickness 125 µm, room temperature, total wetting conditions (alumina plates) from Ref. 14) 
 
Now to compare these data with the threshold stress T , the torque data are 

transformed (taking into account the device constants) into stress data by a law of 
proportionality. Since the stress in the medium does not depend on the altitude z but only on 
the radial distance r (disk-like geometry setup, see Ref. 4), the stress data obtained correspond 
to the stress at distance r = R (i.e. to the maximum stress in the system) which is consistent 
with the measure of displacement (i.e. strain amplitude) imposed. An analysis of the threshold 
stress T  by using these data in the form of a stress could then be done. 
The longest time common in the experimental data being t = 100 s, we arbitrarily choose to 
analyze the shear stress versus shear strain for this duration. For this time value, it appears that 
most of the data shows a non-zero horizontal part of the relaxation dynamics or close to it, i.e. 
on the stress threshold value. Fig. 3 shows that this threshold stress (at t = 100 s) varies 
slightly as a function of the strain and has a bell shape with a maximum value for a shear 
strain around  = 100%. Given the parameters of the model, the only possible quantity 
compatible with these values is such that   eXf

c 0,    where 0 is the bulk correlation 

length defined in Table 3. It is remarkable to find that 0   in the Newtonian regime. 
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Therefore, in the Newtonian regime, the threshold stress determined from relaxation data of 
liquid water can be expressed as follows: 
 

  
e

K
e

KK NgasNT
00

water,


   (32) 

 
By taking the numerical values from Table 3, it is obtained the following shear stress value: 

Pa 041.0water, T . 
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Fig. 3. Logarithmic plot of the measured stress versus the imposed shear strain amplitude for liquid water at a 

time t = 100 s (gap thickness 125 µm, room temperature measurements, alumina plate-plate geometry, data from 

Ref. 14). 
 
It can be seen in Fig. 3 that T  represents a low limit with respect to the experimental points. 
As it stands, the present modeling allows to define a threshold stress whose numerical value is 
compatible with the experimental results in a very large range of strain (i.e. 4 orders of 
magnitude). The threshold stress determined here represents a threshold stress of the bulk 
away from any influence of the walls. 
We interpret the fact that in Fig. 3 the stress varies with the strain is partly related to the 
presence of the walls which modify the correlation length 0 of the system according to the 
strain amplitude. This effect modifies the threshold stress as we will see in more detail in 
section 3.2. 
The value of the correlation length 0 (see Eq. (10b) of Ref. 11) is also consistent with a priori 
independent experimental results. Indeed, it has been shown for example in appendix C of 
Ref. 11 that the expression of 0 fits perfectly with Xie et al.’s data (Ref. 18) obtained from 
the structure factor measured using synchrotron-based small-angle X-ray scattering in the 
supercooled phase of water. 



 18 

The stress threshold allowed us to characterize the relaxation phase at long times. We now 
need to study the relaxation phase at short times as well as the stress rise phase. To do this, the 
following empirical expression will be used: 
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1

phase   relaxation
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0

phase  rise   thedescribes

237.3
rise 1exp exp  (33) 

 
which describes well the stress evolution as a function of time for a given shear strain (see 
Fig. 4). In this equation the following parameters are fixed: T ,  and  . The parameter   

represents the characteristic viscous diffusion time, i.e. 



2e

 . Given the approximation 

 NK , we can still write as a first approximation that  vH N   , i.e. all the 

characteristic times of the system are related to the fundamental characteristic time . For the 
experimental conditions presented here the calculation gives ms 139.16 . This time 

makes it possible to describe the relaxation phase at short times using a simple exponential 
law, i.e. the initial phase is governed by the viscous diffusion time to cross the sample. Eq. 
(33) shows however that a simple exponential decay does not allow to describe the whole 
relaxation kinetics but at long times, the data agree with a power law with an exponent 
globally much smaller than 1 (we can notice that this power law turns into an exponential only 
when the exponent tends towards infinity). This shows that this phase of decay is very slow 
and becomes slower as the strain amplitude is increased (i.e. it can be seen on the examples 
given in Fig. 4 that the values of 1  and  decrease strongly as the strain amplitude 
increases). 
The stress rise phase is governed solely by the rise time riset . It is then useful to compare these 

rise times with the characteristic times of the physical phenomena of the model. The analysis 
of the different data curves shows that the rise time varies little in such a way that, on average 

ms 7rise t . But since the value of the maximum stress max  globally increases as the strain 

increases, we deduce that the total rise time to reach this maximum stress increases as the 
strain increases, which seem physically understandable. It appears that the time taken by the 
experimental device to achieve the imposed strain is at least of the same order of magnitude as 

  and is very long in front of .  

Moreover, we can also compare riset  to the transient time ms 032.241 
c . In other words, 

by the time the system was allowed to relax, the shear information had time to pass through 
the entire sample; also, the viscous diffusion had time to diffuse through the thickness of the 
sample. It is also noted that the beginning of the relaxation phase coincides with the end of the 
transient regime so that Eq. (23) is appropriate to analyze this phase.  
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Fig. 4. Semi-logarithmic plot of some stress data from Ref. 14 versus time (black points) with Eq. (32) (red 

curve) for different values of the imposed shear strain amplitude of liquid water: (a) 1.75%, (b) 2.5%, (c) 2500% 

and (d) 5000%. 0 and  1 are given in Pa. Gap thickness 125 µm, room temperature measurements, alumina 

plate-plate geometry. 
 

3.2. Determination of the shear elastic modulus from relaxation data 
 
The relaxation data show that the medium tries to return to equilibrium following the 

action performed. In other words, the basic units try to return to an equilibrium position when 
the displacement of the moving plate is stopped. Determining this displacement, knowing the 
applied stress, makes it possible to define a shear elastic modulus G of the medium such that: 
 
 G   with   eeRx f  ,,  (34) 

 
where  ,,eRx f  determines the displacement corresponding to the applied stress . Indeed, 

according to Table 2(d), it appears that  
3A

 

2
,

R
eRE




  but this expression is also equal to 

the measured stress  on the moving planar disk, therefore EA is determined directly from the 
experimental data. 
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We now focus on the relaxation phase at long times, i.e. the region for which we can 
consider that the stress almost does not vary anymore. The stress corresponding to this region 
will be noted  . 

To describe the system in this region, one can then use Eq. (29) but to perfectly 

account for the relaxation data, a parameter *  must be introduced such that 

  eef
c 0

*,    and 0
*  represents an effective coherence length   that reflects the effect 

of walls in the system and also possible “defects”. *  is the only free parameter of the model. 

The non-dimensional parameter *  is determined so as to achieve the largest shear strain 

amplitude in the range [0, 0] where 0 represents the imposed shear strain amplitude. Indeed, 
by taking a simple image of Maxwell’s model, the total displacement of a fluid particle is the 
result of both elastic deformation and viscous flow. Whatever the strain amplitude, energy 
dissipation takes place but for small enough deformations, one generally neglects the viscous 
dissipation in front of the elastic deformation. This is indeed what is obtained for water as 
long as 0 is less than or equal to 100%. Beyond this strain amplitude, it appears for water that 
the viscous displacement can no longer be neglected and becomes more pronounced as the 
shear strain amplitude increases. For 0 >100%, it is no longer possible to find values of the 

parameter *  such that Eq. (29) satisfies both the imposed strain amplitude 0 and the stress 

value  . It is also not possible to consider strain amplitude values much greater than 100%. 

Given that   is maximum (see Fig. 3) and TA
*  1 (see Fig. 6b) for 0 = 100%, it appears 

“natural” to consider that for imposed shear strain amplitude 0 > 100%, the maximum shear 
strain corresponding to   is such that  = 100%. In other words, for this water relaxation 
experiment, G is determined as: 
 

 











otherwise %,100  with 

%100 if , 00




G

G
 (35) 

 
Fig. 5 shows that the application of Eq. (35) to the relaxation water data makes it possible to 
define a constant shear elastic modulus G at long times over at least 1 to 2 decades.  
 
 
 
 
 
 



 21 

(a) 

 

(b) 

 
(c) 

 

(d) 

 
(e) 

 

(f) 

 
Fig. 5. Application examples of Eq. (34) to liquid water relaxation data from Ref. 14 for different values of the 

imposed shear strain amplitude: (a) 1%, (b) 5%, (c) 50%, (d) 2500%, (e) 5000% and (f) 7500%. Gap thickness 

125 µm, room temperature measurements, alumina plate-plate geometry. 

 
Fig. 6a shows that the value of the shear modulus of elasticity G decreases continuously with 
increasing shear strain amplitude, which implies a very low value of this modulus when the 
Newtonian regime is reached according to the definition of this regime. On this figure, it is 
also shown what can be deduced from the solution of Maxwell viscoelastic model for an 

imposed Heaviside strain (i.e.  tG
G

dt

d 



0Maxwell

Maxwell 2  where  t  is the Dirac delta 
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function), for which MaxwellG  is given by the relation 
0

max
Maxwell 2


G  where max  represents 

the value of the stress peak; this maximum value is determined here from Eq. (33). It can be 
observed that the order of magnitude of the numerical values as well as the variations are quite 
similar for 0  100%. On the other hand, beyond 100% the Maxwell’s model seems to lead to 
a constant value mPa 92.52Maxwell G  which is close to the threshold stress value given by Eq. 

(32). But in addition, the characteristic relaxation times of the Maxwell’s model which 
correspond to an exponential decrease of the stress such that MaxwellMaxwell Gt   are 

incompatible with the data for shear strain amplitude 0 below 100%. Indeed, for small shear 
strain amplitudes, tMaxwell is much smaller than one millisecond whereas we have previously 
shown that the exponential decay is governed by the time   which is of the order of 16 ms. 

Maxwell’s model is therefore too simple or simply not suitable for analyzing these relaxation 
data even though it appears that the values of MaxwellG  are physically acceptable. 

From Eq. (35), it is then deduced that *  is solution of the following relation: 
 

 
 
 













otherwise %,100  with ,,,,

%100 if ,,,,

*

0
*

0





eeRx

eeRx

f

f
 (36) 

 
where the expression of xf is given by Eq. (29). Fig. 6b shows that the correlation length keeps 
decreasing until  reaches the value 0 for 0 = 10 000%. It therefore appears logically that for 
large shear strain such that TA

* is close to the Newtonian regime (i.e. TA
* > 100), we find   

0 and therefore the threshold stress T  of the Newtonian regime is given by Eq. (32). It is 

also found that the transition from the solid-like to the liquid-like regime occurs for 0 = 
100%, which is consistent with the basis of Eq. (35). 
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Fig. 6. Logarithmic plots as function of the imposed shear strain amplitude 0: (a) shear elastic modulus 

comparison of the present modeling with the Maxwell’s solution for an imposed Heaviside strain; (b) variations 

of the non-dimensional correlation length 0
*    (left axis) and the non-dimensional action temperature 









e
KT N

max
*
A  (right axis). The dashed lines are eyes guides. 
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The extrapolation of the viscoelastic properties of water to small and large strains 
depends on the extrapolation that can be imagined for  0 . Considering that the stress   

corresponds to long times such that t  and knowing that 






 

eK
v

N


A  is a negative 

function, then Eq. (29) can be written in this limit more simply as: 
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By defining 
T


 

 * , Eq. (37) can simply be written: 
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If we assume for large strains that 1*   and that t  remains locked at 100%, then the 

inversion of Eq. (37bis) leads us to a limit value for *
  such that 618.0*  , i.e. 

mPa 42.25 . It can be seen that this value is perfectly compatible with the stress value 

corresponding to 0 = 10 000% in Fig. 3. According to Eq. (35), this  value is also the limit 

value of G. This value of G is also compatible with the value obtained for 0 = 10 000% in 
Fig. 6a. For this limit, TN eK    and thus T  represents the threshold stress in the 

Newtonian regime. In other words, there is no such thing as a “perfect” fluid, i.e. one that 
flows under the action of an arbitrarily weak external stress. 
Now for small strains, we have according to Eq. (36) 0 t  and according to Fig. 6b we 

can admit that the limit when 00   is such that e  (i.e. 770 3300
*   e ). For this 

limit, Eq. (37bis) implies that 0*  . This limit is consistent with the observed stress 
variations in Fig. 3. Moreover, this limit seems to be physically acceptable since if there is no 
strain, there is also no relaxation and therefore no long-time stress. According to Eq. (35), it 
can be deduced that G has a finite value when 00   but this value cannot be determined 

here. For this limit, NN KeK   and thus NK  represents the threshold stress in the zero-

strain limit. 
 

3.3. Determination of the shear elastic and viscous moduli from small-amplitude 
oscillatory motion 

 
The same experimental device as for the stress relaxation study was used by imposing 

a low-amplitude oscillatory motion on the moving planar disk to study the frequency response 
of the medium (Refs. 4 and 14). We use these Noirez et al.’s data to carry out a linear analysis 
of the low amplitude of oscillations. In the linear analysis framework, the function G(t) is 
interpreted as the linearized impulse response of the shear medium. The Fourier-Laplace 
transform of the impulse response G(t) leads to the expression of the conventional terms of 
shear elastic (G’) and viscous (G’’) moduli such that: 
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  Re dtetGG ti  (38) 

 
where  Im  and  Re  represent the imaginary and real part respectively. Since G(t) is a real 

function such that G(t) = 0 for t < 0, then  G  and  G   satisfy Kramers-Kronig (K-K) 
relations. 

As long as the resulting torque function keeps the shape of the imposed strain wave, 
then the above formalism applies and the experimental set-up allows to directly extract the 
functions  G  and  G  . These experimental results have already been published in Ref. 
14. 

In this section, we will therefore develop a model for the relaxation function G(t) 
which satisfies the constraints of the linear approach and which relies on all the analysis 
developed previously to study the frequency responses of the functions  G  and  G   for 
water. 
For the analysis of the relaxation data, we have seen that two characteristic times  and  are 
involved in an exponential law and in a power law which is nothing but a generalized 
exponential since, when the exponent tends towards infinity, a simple exponential law is 
recovered. The exponential law as well as the generalized exponential having the correct 
properties at t = 0, we will therefore keep these functions to describe the relaxation function 
G(t).  
In addition to these two functions that describe relaxation at long and very long times, what 
happens at short times must also be specified. At short times, it is necessary that the relaxation 

information crosses through the basic units which have the characteristic length scale 1
cq . 

Therefore, we will describe the short time relaxation function G(t) by an exponential law with 

the characteristic time 
cc qdqc  

1

0
mi

  . 

Finally, we assume that the relaxation function G(t) can be written as follows: 
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where *   TN e
K  . It is assumed at t = 0 that G(0) = K, which is consistent with mi  

since K represents the shear elasticity between the basic units. Then at longer times the whole 
system is affected and therefore KN represents the global shear elasticity and then the threshold 
is reached at very long times.  The exponent  and the correlation length  are determined 
from the  G  experimental dataset. 
The frequency response is obtained by numerically integrating Eq. (39) into Eq. (38). The 
smallest shear strain amplitude studied for water is here 0 = 2.5% at a mean temperature of 
294.65 K (i.e. same average temperature as for the corresponding relaxation data). Fig. 7 
shows that the variation of G’ as well as its amplitude can be perfectly reproduced with values 
of the parameters  and * consistent with those determined for the relaxation data. The 
variation of G’ with  corresponds here to a very weak slope which necessarily implies that 
G’’ have quasi-zero values if they respect the K-K relations. However, G’’ experimental data 
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in Fig. 7 seem to indicate that they violate these relations. In fact, the discrepancy between the 
experimental data and the theoretical curve is simply due to the fluctuations of G which do not 
have to verify the K-K relations since they exist at all times and these fluctuations contribute 
to the dissipation when there is a flow due to an out-of-equilibrium situation. 
 

 
Fig. 7. Logarithmic plot of  G   and  G   experimental data (red points and open blue squares from Ref. 14) 

with the present modeling (blue and black curves) for 0 = 2.5% and a mean temperature of 294.65 K.  = 0.04 

and * = 62. Gap thickness 125 µm, alumina plate-plate geometry. 
 
To estimate the excess of G’’ due to these fluctuations, it is necessary to estimate their Root 
Mean Square amplitude (RMS). An estimate of the latter can be obtained by subtracting Eq. 
(33) from the experimental relaxation data and then the RMS value of this noise is calculated. 
For 0 = 2.5%, the mean value of the RMS noise value is 0.331 Pa. Fig. 8 shows that the 
present modeling can perfectly reproduce the evolution of  G   by adding a constant value 

G’’ = 0.185 Pa to this function. This value is lower than the one determined with the 
relaxation data, which is not abnormal inasmuch as the experiments are different but the order 
of magnitude is quite coherent. 
 

 
Fig. 8. Logarithmic plot of  G   and  G   experimental data (red points and open blue squares from Ref. 14) 

with the present modeling for which an excess of G’’ has been added (blue and black curves). 0 = 2.5%, the 
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mean temperature is 294.65 K,  = 0.04, * = 62 and G’’ = 0.185 Pa. Gap thickness 125 µm, alumina plate-

plate geometry. 
 
Fig. 9 shows the extrapolation of the present model at high frequencies: it can be observed 
that G’ has three levels corresponding to the three distinct elastic constants of the model. We 
will see later that these levels are consistent with other kinds of experimental data. 
 

 

K 

KN 

 

 
Fig. 9. Logarithmic plot of  G   and  G   experimental data (red points and open blue squares from Ref. 14) 

with the present modeling extrapolated to high frequencies (blue and black curves) for 0 = 2.5% and a mean 

temperature of 294.65 K.  = 0.04, * = 62 and G’’ = 0.185 Pa. Gap thickness 125 µm, alumina plate-plate 

geometry. 
 

We will analyze in the same way the other data from Noirez et al. of  G  and  G   with 

increasing shear strains. The next strain amplitude which has been studied corresponds to 0 = 
5% for a mean temperature of 294.85 K. Fig. 10 shows that by taking into account a constant 
dissipation excess G’’ = 0.155 Pa, the present modeling allows to reproduce correctly the 
experimental data except at low frequencies. The fact that G’’ increases while G’ decreases 
when the frequency is decreased indicates that this effect is due to noise which increases 
strongly at low frequencies and can no longer be a priori assimilated to a constant value. For 
the relaxation data corresponding to 0 = 5%, the mean value of the RMS noise values is 0.146 
Pa which is perfectly consistent with the value of G’’. 
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Fig. 10. Logarithmic plot of  G   and  G   experimental data (red points and open blue squares from Ref. 

14) with the present modeling for which an excess of G’’ has been added (blue and black curves). 0 = 5%, the 

mean temperature is 294.85 K,  = 0.04, * = 49 and G’’ = 0.155 Pa. Gap thickness 125 µm, alumina plate-

plate geometry. 
 
The next strain amplitude which has been studied corresponds to 0 = 30% for a mean 
temperature of 294.33 K. Fig. 11 shows that by taking into account a constant dissipation 
excess G’’ = 0.065 Pa, the present modeling allows to reproduce correctly the experimental 
data. For the relaxation data corresponding to 0 = 30%, the mean of the RMS noise values is 
0.013 Pa which is again consistent with the value of G’’. Here the torque signal is slightly 
distorted compared to the strain signal and therefore linear analysis is not strictly allowed. 
However, this effect is mainly reflected in the numerical value of the parameters. 
 

 
Fig. 11. Logarithmic plot of  G   and  G   experimental data (red points and open blue squares from Ref. 

14) with the present modeling for which an excess of G’’ has been added (blue and black curves). 0 = 30%, the 

mean temperature is 294.33 K,  = 0.02, * = 15 and G’’ = 0.065 Pa. Gap thickness 125 µm, alumina plate-

plate geometry. 
 
For strain amplitudes greater than 30%, the torque signals are too distorted compared to the 
sinusoidal strain signal to be analyzed linearly. The torque recovers a sinusoidal shape for 0 = 
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7500%. Fig. 12 shows first of all that here G’’ has become greater than G’ while G’ is 
practically horizontal (i.e.  = 0.01). In other words, the values of G’’ are entirely determined 
by the fluctuations such as G’’ = 0.0022 Pa. For the relaxation data corresponding to 0 = 
7500%, the mean of the RMS noise values is 0.00013 Pa. The value of G’’ is relatively high 
compared to the relaxation data but this is consistent with the other amplitudes which show 
that the fluctuations in the oscillating experiments are globally greater than in the relaxation 
ones. For this frequency range, G’’ is not linear with the frequency but has a slight curvature. 
 

 
Fig. 12. Logarithmic plot of  G   and  G   experimental data (red points and open blue squares from Ref. 

14) with the present modeling for which an excess of G’’ has been added (blue and black curves). 0 = 7500%, 

the mean temperature is 294.96 K,  = 0.01, * = 1 and G’’ = 0.0022 Pa. mi  is here multiplied by a factor of 

1.3 while K is multiplied by a factor of 0.34. Gap thickness 125 µm, alumina plate-plate geometry. 
 
For the 7500% strain amplitude, the agreement between the present modeling and the data is 
obtained by “artificially” strongly decreasing the value of K and slightly increasing the value 
of mi  by a multiplicative factor. This indicates that the system has undergone major 
modifications and in particular that there has probably been slippage on the walls. Fig. 13 
shows what is obtained if the multiplicative factors of mi  and K are reset to 1: it can be 
observed that the values of G’’ are little modified in the frequency range corresponding to the 
data while the value of G’ is strongly increased in the same range; the value obtained for G’ is 
then practically identical to the value of G determined from relaxation data (see Table 5) 
which shows the coherence of the analysis. 
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Fig. 13. Logarithmic plot of  G  and  G   experimental data (red points and open blue squares from Ref. 

14) with the present modeling for which an excess of G’’ has been added (blue and black curves). 0 = 7500%, 

the mean temperature is 294.96 K,  = 0.01, * = 1 and G’’ = 0.0022 Pa. Gap thickness 125 µm, alumina plate-

plate geometry. 

 
It is useful at this stage to make a comparison between some significant results 

obtained with the two types of analysis. Fig. 14 shows the evolution of the * variable as a 
function of the strain amplitude for the two kinds of experiments: it can be observed that the 
two theoretical analysis presented give perfectly coherent results for the evolution of the 
correlation length in the system. 
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Fig. 14. Logarithmic plots of the non-dimensional correlation length 0
*    as function of the imposed shear 

strain amplitude 0 for the two types of analysis corresponding to two experimental configurations. The dashed 

line is eyes guide. 
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Taking into account the fact that the relaxation and oscillating experiments are quite different 
with respect to the perturbation of the medium, Table 5 shows that the values deduced by the 
two theoretical analysis of G and G’ are very consistent. 
 

0 (%) G from relaxation data (Pa) G’ from oscillating data (Pa) 
2.5 3.45 1.939 
5 1.9 1.524 
30 0.4 0.536 
7500 0.039 0.0375 
Table 5. Comparison of the numerical values of G and G’ for water at atmospheric pressure obtained at different 

imposed shear strain amplitude 0 for the two types of analysis corresponding to two experimental configurations. 

The values of G' are calculated for the smallest frequency (i.e. 1 rad/s) in the range of the experimental data. 

 
It is now interesting to complete the above analysis for much higher frequencies. The 

data from Bund et al. (Ref. 19) concern water-glycerol mixtures at different concentrations 
and allow extrapolation of what should be obtained for pure water at the single frequency of 
10.042 MHz. The interest of the Bund et al.’s data comes from the fact that the volume of 
liquid used is very similar to the volume of water in the plate-plate rheometer of the 
experiments described previously concerning Noirez et al.’s data: 0.2 cm3 for Bund et al.’s 
experiment and 0.157 cm3 for the plate-plate rheometer. On the other hand, the geometry is 
very different, as is the experimental set-up: the resonator radius is R = 0.75 cm so we can 
deduce an equivalent uniform cylindrical thickness e = 1131.77 µm of the sample. Therefore, 
the sample thickness here is ten times greater than in the plate-plate rheometer. For the 
corresponding frequency and a temperature of 293.65 K, the linearly extrapolated value of G’ 
for water is G’ = 18 000 Pa with an uncertainty of 12%. Considering the results of the two 
types of resonators used, a linear extrapolation of the tangent of mechanical loss angle 

  GG tan  gives values between 0.639871 and 0.635414. By taking into account the 
value of G’, this leads to consider that the value of G’’ must be between 11 517.7 Pa and 
11 437.5 Pa. This uncertainty can be greatly expanded if the uncertainty on G’ is taken into 
account. 
The parameters of the model are essentially determined by the geometry of the experiment. In 
particular, it has been previously shown that the fluctuative distance dN corresponds 
approximately to the radius R and the dissipative distance d corresponds to the thickness e. 
Due to the high frequency, the value of  can be arbitrarily set. Similarly, the value of * 
mostly affects low frequencies and therefore has practically no influence for the frequency 
studied here. A value * = 1 can be set since the strain amplitude is not known for this 
experiment.  
Fig. 15 shows that the value of G' is very close to the expected value (i.e. 17 205.7 Pa) and 
therefore well within the uncertainty. On the other hand, we note that the value of G’’ is 
higher than the expected value and outside the uncertainty. The discrepancy may be due to 
different effects such as linear extrapolation which may be incorrect. The value may also be 
higher than expected due to the presence of fluctuations as in the rheometer experiment and 
which must exist and which contribute to a strong increase in dissipation.  
The only way to obtain a value of G’’ in agreement with the expected value is to slightly 
reduce the value of G(t=0) by a factor of 0.83. The surface of the resonators was covered with 
gold, while in the case of the plate-plate rheometer, the plates are made of alumina. Therefore, 
the wetting of the surface by water is very different in the two experiments and a lower 
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wetting in the case of the Bund et al.’s experiment goes in the direction of a decrease of 
G(t=0). 
 

 
10.042 MHz 

18 000 Pa 

 
Fig. 15. Logarithmic plot of  G  (red curve) and  G   (black curve) calculated with the present modeling in 

a small frequency range. The blue dashed lines represent an uncertainty of 12% around the expected value of G’ 

and the black dot-dashed lines represent an uncertainty of 12% around the expected value of G’’. T = 293.65 K, 

 = 0.04, * = 1. 
 
Fig. 16 shows that the value of G’ for Bund et al.’s experiment corresponds to the level at KN 
which justifies the existence of this level. 
 

 

KN 

10.042 MHz 

 
Fig. 16. Logarithmic plot of  G  (red curve) and  G   (black curve) calculated with the present modeling in 

a large frequency domain. The value of G(t=0) is reduced by a factor 0.83. T = 293.65 K,  = 0.04, * = 1. 
 

We will continue this section by analyzing the pioneering work from Derjaguin et al. 
(Ref. 20) which corresponds to an intermediate frequency of 73.5 kHz from the previous ones. 
Derjaguin et al.’s experiment is quite similar to that of Bund et al. except that the liquid is 
sandwiched between two walls. Derjaguin et al. were thus able to vary the thickness e of the 
liquid layer between 0.9 µm and 3 µm with a total of 5 different thicknesses. They then 



 32 

showed that the values of G’ and G’’ do not depend on the thickness in their experimental 
conditions, namely with strains of the order of few percent. However, in appendix B, it will be 
shown that for larger ranges of variation of the sample thickness, that the invariance found by 
Derjaguin et al. ceases so that G' and G'' finally decrease according to a complex variation 
law. 
The value obtained by Derjaguin et al. are G’ = 31 000 Pa and   3.0tan  . More recently 
Badmaev et al. (Ref. 21) repeated the same experiment and found G’ = 28 000 Pa with the 
same  tan . Even more recently Badmaev et al. (Ref. 22) repeated the same experiment by 
playing on the wettability of the contact surface and found G’ = 25 000 Pa for a hydrophilic 
surface and 350 Pa for a hydrophobic surface always with the same  tan . This shows the 
importance of the hydrophilic or hydrophobic character on the determination of G’ and is in 
line with our previous comments. The value of 350 Pa is not used here, but there is still 20% 
difference between the highest and the lowest value of G’. This gap is quite similar to the 
uncertainty for the data of Bund et al. (Ref. 19). 
As the parameters of the model are essentially determined by the geometry of the experiment, 
we can deduce an equivalent cylindrical radius R = 0.257 cm of the sample which fixes the 
value of dN. The value of d is fixed with the different thicknesses e of the samples. Given the 
frequency, the value of  does not play a key role and is arbitrarily set at the same value as for 
Bund et al. Since the value of G’ is independent of thickness in this micrometer range, it can 
be deduced that  must then vary to “compensate” for the thickness variation. Since in these 
experiments the shear strain amplitude is smaller than in the plate-plate rheometer experiment, 
* is expected to have larger values. 
Only the results for the largest and smallest thicknesses are shown below. Fig. 17 shows that 
the value of G’ can be perfectly determined by the present modeling by considering two 
different values of *. These * values are greater than those obtained in the case of the plate-
plate rheometer as expected, but above all the numerical values are perfectly consistent with 
those needed to analyze the dynamic viscosity data of Osipov et al. (Ref. 23) in the 
supercooled phase of water deduced from the flow in a tube having a radius of 1 µm (see Ref. 
11). This shows the consistency of the models presented. With these numerical values, it can 
be deduced that %36.51e  for e = 0.9 µm and %80.48e  for e = 3 µm. Overall, it 
appears that the system is highly correlated with an average correlation length of half the 
thickness. This said, the trend shows that the system is even more solid the thinner the 
thickness, which is in line with physical intuition. 
 
 73.5 kHz 

(a) 

 

 73.5 kHz 

(b) 

 
Fig. 17. Logarithmic plot of  G  (red curve) and  G   (black curve) calculated with the present modeling in 

the intermediate frequency range with  = 0.04 and T = 295.15 K for two thicknesses: (a) d = e = 0.9 µm and * 
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= 1350, (b) d = e = 3 µm and * = 4400. The blue dashed lines represent the highest and smallest value of G’ and 

the black dot-dashed lines represent the corresponding highest and smallest value of G’’.  
 

Regarding the value of G’’, we observe that it is systematically too low compared to the 
expected value. Since these values are obtained from surfaces with good wettability, the 
deviation can only be caused by the fluctuations that must exist, as in the case of the plate-
plate rheometer. And we saw earlier that the value of G’’ due to these fluctuations can be 
much higher than the theoretical value of G’’ (i.e. in agreement with the Kramers-Kronig 
relations). Fig. 18 shows that by adding the same value G’’ = 7000 Pa, the present modeling 
allows to obtain the value of G’’ deduced from the experimental measurements. This value of 
G’’ may seem high, but relative to the theoretical value, the latter is quite comparable, for 
example, with what has been deduced for 0 = 30% in the case of the plate-plate rheometer. 
The value of dN being the same whatever the thickness, so it can be deduced that the value of 
KN is a constant independent of the thickness. Fig. 18 shows that the level at KN exists and is 
observed at higher frequencies than in Bund et al.’s experiment. The value of KN is higher 
than the value of G’ for the studied frequency as expected. It can be seen in Fig. 18 that the 
only difference between the two thicknesses is that the level at KN is narrower in frequency as 
the thickness decreases, which is related to the fact that  also decreases and approaches mi . 
So at the limit for a quasi-null thickness the present modeling leads to the fact that there are 
only two levels left for  G . 
 
 73.5 kHz 

(a) 

KN 

 

 73.5 kHz 

(b) 

KN 

 
Fig. 18. Modeling in the full frequency range and small gap which shows the logarithmic plot of  G  (red 

curve) and  G   (black curve) versus frequency calculated with the present modeling for which an excess of 

G’’ has been added for the two thicknesses: (a) d = e = 0.9 µm and * = 1350, (b) d = e = 3 µm and * = 4400. In 

both cases: T = 295.15 K,  = 0.04 and G’’ = 7000 Pa. 
 

To conclude this section, the recent work from Li et al. (Ref. 24), which extends the 
work of Derjaguin et al. for much smaller thicknesses (e  2 nm) and lower frequencies 
(between 50 Hz and 2 kHz), will be analyzed. The experiments presented in Ref. 24 were 
performed using a high-resolution atomic force microscopy measurement (AFM) with silicon 
tips having radii of 40  10 nm. The large radius of curvature of the tips compared to their 
distance from the opposite mica plate allows to approximate this device as a rheometer with 
parallel plates separated by a gap distance e. A sinusoidal strain is applied to one of the plates 
at the frequency . The strain amplitude is denoted eX 00   where 0X  is the lateral 

displacement amplitude of the tip during the oscillations. The data for G' and G'' were 
deduced from a parallel plates geometry modeling: Fig. 2 of Ref. 24 represents the data G’ and 
G’’ in water as function of the gap distance e for a fixed value of X0 and a fixed frequency of 
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955.3 Hz while Fig. 3 of Ref. 24 represents the data of G’ and G’’ in water as a function of 0  

for a fixed gap distance e = 0.4 nm but for three different frequencies. Thus, for the gap 
distance e = 0.4 nm, it is possible to superimpose the data of Fig. 2a'-a'’ and 3b'-b'' at the 
frequency of 955.3 Hz as shown on Fig. 19. It is clear that the only consistent point between 
the two data sets corresponds to 10   because it corresponds to the same X0 = 0.4 nm and 

the same  e = 0.4 nm; but even so, for this experimental condition, it is observed that G'' is 
shifted between the two data sets by a value larger than the authors’ error bars. In other words, 
the absolute values of G'' for 10   are not very reliable. It follows that the only possible 

frequency analysis of these data can be performed for 10   with a gap distance e = 0.4 nm. 
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Fig. 19. Plot of experimental shear modulus data for water (from Ref. 24) as a function of eX 00   for e = 0.4 

nm and a fixed frequency of 955.3 Hz at T = 300 K. (a) G’; (b) G’’. In both cases, the dashed lines are eyes 

guides. 
 
To perform the quantitive frequency data analysis for 10  , we need to set the values of our 

model parameters d and dN. We have shown previously that for a plate-plate rheometer, we 
have d = e. Concerning dN, we have seen that it must be identified with the equivalent radius 
of the rheometer. Li et al. have considered for the calculation of the values of G' and G'', a 
piece of spherical cap of height h = 0.25 nm with respect to the apex as the area A of the 
upper moving plate. Taking into account the uncertainty on the radius of the spherical cap, the 
value of the area A can be between 47 nm2 and 78.5 nm2. But the value of A is not given in 
Ref. 24. We have then arbitrarily fixed the value of A to 75 nm2, conforming to the value 
reported in Ref. 25. This leads us to fix the value of dN to 4.886 nm. Fig. 20 shows that the 
experimental data can be correctly reproduced by setting the parameters  and * such that:  
= 0.24 and * = 4. 
It can be seen that the value of * is consistent with those obtained in Fig. 14. Now, the value 
of * obtained is interesting because, taking into account the value of 0, we deduce that  = 
0.51 nm, thus   is slightly larger than e. But the value of e given in Ref. 24 corresponds to the 
distance between the mica plate and the apex of the tip. However, the water rises along the 
silicone tip by a height h = 0.25 nm. Therefore the value of d should be between e = 0.4 nm 
and e+h = 0.65 nm which corresponds to an average value close to . Increasing the gap 
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distance of the equivalent plate-plate rheometer increases the values of G' and G'' in the 
calculations of Li et al. Increasing these values does not change the value of  but slightly 
decreases the value of . Given the uncertainty on the value of the area A which also sets the 
absolute values of G' and G'', it is not possible to make a more refined analysis. Despite these 
uncertainties, an interesting result appears which shows that, for %1000  , the whole 

sample is correlated, i.e. behaves like a solid, as expected from all the previous data analyses.  
Fig. 20b shows that with G'' = 2.7 MPa, the present modeling agrees with the points at 52 
Hz and 955.3 Hz. This value of G'' seems large but it is consistent with the very large 
fluctuations observed in Fig. 2 of Ref. 24. It can also be noticed that the dissipation is stronger 
than for Derjaguin et al. and Badmaev et al. experiments with here a   62.0tan  . The point 
at 1968.9 Hz, on the other hand, seems inconsistent with the other experimental points. We 
have seen that a first explanation can be attributed to a shift in the numerical values as can be 
observed with the points at 955.3 Hz or as possibly to an under estimation of the error bar for 
this point. Another possibility is a significant reduction in fluctuations for this measurement 
corresponding to G'' = 0.6 MPa. The data do not allow further analysis so that it can just be 
deduced that G'' is between the two obtained values. Nevertheless, the agreement between 
these experimental data and the present modeling is here globally less good than with the 
previous examples were the measurements were performed with relatively much larger sample 
volumes and a rather small input strain amplitude of the order of a few percent. On the 
contrary, here, the strain used is 100%, and probably outside the linear regime, where the 
output stress signal is no more sinusoidal (e.g. see Fig. 2c of Ref. 13). In this case, in all rigor, 
the linear approximation can no more be used and the concepts of G' and G" do not make 
much sense, so their use can only be a rough approximation. Similarly for our model, the 
replacement of discrete sums by integrals leading to the function  vH N  (see Ref. 11) may not 

be fully justified when some dimensions of the sample are reduced to a few molecular sizes, 
as is the case here with thicknesses of the order of nanometer. All these reasons could explain 
why the analysis of these data is only semi-quantitative. 
 

 

(a) 

 

 

(b) 

 
Fig. 20. Semi-logarithmic plot of  G   and  G   experimental data for water with  0 = 100% (open black 

circles and open blue squares from Fig. 3 of Ref. 24, and an open black diamond from Fig. 2a’’ of Ref. 24) with 

the present modeling (red curve for G’, solid and dashed black curves for G’’): (a) the red points highlight the 

theoretical values corresponding to the three experimental frequencies; (b) the solid curve corresponds to G’’ = 

2.7 MPa with black dots that highlight the theoretical values at the three experimental frequencies and the dashed 

curve corresponds to G’’ = 0.6 MPa. In both cases: T = 300 K, * = 4,  = 0.24 and d = e = 0.4 nm. 
 
Fig. 21 shows the variation of G' and G'' over a wide frequency range, encompassing the three 
experimental frequencies of Li et al. Considering the very small value of dN due to the very 
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small sample volume, it can be seen that the value of KN is close to the value of the shear 
elastic constant K. As expected from the analysis of Derjaguin's data, it can be seen that the 
plateau at KN is very thinly spread out in frequency and occurs at higher frequencies than for 
the data of Derjaguin et al. 
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Fig. 21. Modeling in the full frequency range for %1000    which shows the logarithmic plot of  G  (red 

curve) and  G   (black curve) versus frequency calculated with the present modeling for which an excess of 

G’’ has been added: T = 300 K, * = 4,  = 0.24, d = e = 0.4 nm and G’’ = 2.7 MPa. 
 

It can be concluded that all these measurements using different setups are consistent 
with each other given the very different geometrical parameters and the various frequencies 
used in these independent experiments. 
 
4 Conclusion 
 

In this paper, we first developed a theoretical model to describe the mean trajectory of 
a basic unit when a fluid system is set out-of-equilibrium upon applying an external 
mechanical action. This theoretical model has been constructed by analogy with the volume 
theory of Ref. 11. It takes into account various rheological situations assuming an intrinsic 
occurrence of a dynamic solid-liquid transition analogous to the thermal ordered-disordered 
transition of the volume theory. 

The laminar Newtonian regime is obtained as the asymptotic limit of the present 

modeling when the reduced action temperature *
AT  is very large in front of the unit value, i.e. 

when the local action is very large compared to the global reaction of the system. Within this 
limit, we have been able to demonstrate the basis of the phenomenological relations 
introduced in Ref. 11 to describe the dynamic viscosity. This shows that the concept of 
Newtonian liquid does not contradict the existence of a finite shear elasticity. The existence of 
a solid-liquid transition in the present modeling implies the existence of a mechanical energy 
per unit volume (associated with the mechanical action made on the system) so-called the 
threshold energy, results in the existence of a threshold stress for the fluid whatever the 
rheological behavior that follows. In other words, a finite stress is always necessary to cause 
the motion of a fluid which persists over an infinitely long time. This threshold stress is not an 
intrinsic property of the fluid in the sense that it strongly depends on the nature of the surfaces 
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through the parameter  and on the geometry of the experiment through the parameters d and 
dN. 

We then showed that the analysis of the liquid water mechanical relaxation data fits 
very well with the whole theoretical modeling in the sense that the deduced parameters are 
consistent with those already determined with the transport coefficients data (Ref. 11). The 
coherence of this analysis with a more classical analysis of data from measurements imposing 
an oscillatory shear strain validates the theoretical approach developed. 

The whole analysis has shown that the shear moduli G, G’ and G’’ are scaled by the 
shear elastic constant K, but are not constants of the medium in the sense that their values 
depend on the experimental conditions. Furthermore, it has been shown that the fluctuations 
of G play a determining role in the value of G’’ and explain why the Kramers-Kronig relations 
apparently seem to be violated. 

It is concluded that the transport properties as well as the viscoelastic properties of 
fluids can be consistently modeled and analyzed assuming the existence of finite static shear 
elasticity in liquids. The fact that any finite volume of liquid at complete mechanical rest, or 
subjected to a mechanical stress of sufficiently small amplitude, must be considered as a solid, 
implies the possibility of observing new physical phenomena specific to solids such as 
thermoelasticity. A thermoelastic conversion of the mechanical energy has been already 
identified in response to a shear strain field or under microflow in liquid water, glycerol, being 
more pronounced for polymer melts (e.g. Refs. 26-27).  

This new approach opens perspectives to explore and offer a better understanding of 
different problems such as Rayleigh-Bénard type flow instabilities, wetting phenomena or 
microfluidic flow which is typically the scale at which the physiological exchanges (e.g. Ref. 
28) and fluid transport take place. 
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6 APPENDIX A: Mechanical energy functional derivation 

 
It has already been shown in the case of the spatial model (Ref. 11) that the 

introduction of fractional derivatives of order 1+v/2 in the excess elastic energy functional is 
mathematically equivalent to the replacement of an individual elastic constant qK  by a power 

law 
v

c
q q

q
KK 




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


   in the Fourier space. 

Since the fundamental assumption of the present modeling is also the existence of a 
mechanical energy functional AF  (given by Eq. (1) for translational motion and by Eq. (2) for 
rotational motion), we are going to demonstrate that the introduction of fractional derivatives 

in AF  is mathematically equivalent to the replacement of t,r
AK  by a power law such as Eq. 

(13) in the Fourier space. 
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We will demonstrate only for the translation but we can do the same by analogy for the 
rotation. The starting point is to replace Eq. (1) with the following fractional derivative 
relation: 

 
   

 




















action of
duration

1

2221

A0
2

0A
AA

A

12

 lim dt
tt

x
KcF

v

c

v

c

f
v

tt
c


 tt  (A.1) 

 
Since the function  21 , ttx f  is expanded in Fourier series, Eq. (A.1) involves only fractional 

derivatives of  tiexp  and we have already shown in appendix A of Ref. 11 that it leads to a 
complex exponential function. 
Now inserting Eq. (5) into Eq. (A.1), and using the orthogonality property of imaginary 

exponential functions, one obtains the following expression for t
AF : 
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Finally, it appears that the introduction of fractional derivatives in (A.1) is mathematically 

equivalent to the replacement of t,r
AK  by Eq. (13) in the mechanical energy functional 

expression (i.e. in Eq. (9) or Eq. (10)). 
 
7 APPENDIX B: Elastic shear moduli versus the sample liquid thickness 
 

All the data analyzed up to this point in the paper did not concern the dependence of G' 
and G'' on the sample liquid thickness e, except in the case of Derjaguin et al. (Ref. 20). 
However, such data of G’ and G’’ versus e exist for very different substances in the literature 
and recent works (e.g. Refs. 10a and 29) mention that the power law   3  eeG  , with   ~ 
1 nJ, agrees with these data. For example Zaccone et al. wrote in Ref. 29: 

 
“[…] this law appears to be truly universal, and we present theoretical fittings of 
several, very different systems in Figure 3.” 

 
It will be shown in this appendix that this law is only a rough approximation which diverges 
when the thickness e tends to zero contrary to the experimental data such as for example those 
of Derjaguin et al. (Ref. 20) where an invariance of G' and G’’ at micrometer thicknesses is 
found. The same authors seem to have taken the measure of the incompatibility of their law at 
very low thicknesses since they wrote in Ref. 29 about experimental data on the o-Terphenyl 
(OTP): 
 

“Those data also show the ~L−3 [i.e. ~e−3 with the present notations] behavior, but 
the data at the shortest confinement length, ~0.01 mm, suggest the possible 
existence of a plateau upon going toward lower L, while the experimental 
accuracy is lowered as the confinement increases. The paucity of experimental 
data does not allow for drawing a definitive conclusion on this effect (i.e., the 
possible existence of a plateau in G′ at low L in certain systems), which should 
also be the object of further investigation, both experimentally and in theory.” 
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Regardless of the uncertainty in the data, it is more accurate to say that most experimental data 
show a plateau at low thicknesses and therefore there is a more general and complex law 

 eG  which accounts for the experimental data in all their ranges of variation and which leads 
to a finite value of G' when the thickness tends to zero. 
The general expression of the law  eG  is given here in an empirical form, but it is related in 

all rigor to the evolution of the parameter * of the present modeling. Thus, the variation law 
 eG  can be written in the following general form: 

 

    













































































3

2

3

1

21

3

1
1

1

3

1
1

 0


l

e

a

l

e

a
GeG  (B-1) 

 
where a, l1, l2, 1 and 2 are empirically determined constants. Eq. (B-1) has several features: 
it leads to a finite value of G' when e tends to 0, i.e.  0G , with a horizontal tangent as 
suggested by the data of Derjaguin et al. It also allows to account for the abrupt decrease of 
the data around a given thickness through the first term in the square brackets. The two terms 
between the square brackets in Eq. (B-1) represent generalized exponentials similar, for 
example, to the long-time relaxation term used in Eq. (33). 
We will begin by comparing Eq. (B-1) with the water data of Li et al. (Ref. 24). Fig. 22 
shows, first of all, that the experimental data G' and G'' of water for the smallest value of 
displacement X0 = 0.4 nm display a flattening of the variations at the smallest thicknesses. 
Then it is observed that Eq. (B-1) is able to account for the data of G' as well as G'', taking 
into account the experimental fluctuations.  
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Fig. 22. Plot of G’ and G’’ experimental data (black dots link by a dashed line) for water (from Fig. 2a’-a’’ of 

Ref. 24) as a function of the sample liquid thickness e at T = 300K. In both cases, the red curves correspond to 
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Eq. (B-1) with a = 0.15, l1 = 0.58 nm, l2 = 0.9 nm, 1 = 30 and 2 = 5. (a) The blue dot-dashed curve represents 

the power law   35.1 eeG  ; (b) the red curve is simply determined as G’’(e) = tan()G’(e) with tan() = 0.62.  

 
As the authors of Ref. 29 suggested, it is interesting to analyze the data on OTP which 
corresponds to a small molecule as water. Fig. 23 shows that the experimental data on OTP 
are very comparable to those of water with the appearance of a very clear plateau at low 
thicknesses, a plateau that was also pointed out by the authors of the data in Ref. 30. It is 
observed that Eq. (B-1) allows us to reproduce these data correctly with the same exponents as 
for water while the power law can only approximately satisfy at the three points corresponding 
to the largest thicknesses. 
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Fig. 23. Plot of G’ experimental data (black points) for OTP (from Fig. 3a of Ref. 30) as a function of the sample 

liquid thickness e at T = 339.15 K. The red curves correspond to Eq. (B-1) with a = 0.33, l1 = 0.025 mm, l2 = 

0.038 mm, 1 = 30 and 2 = 5. The blue dot-dashed curve represents the power law   30037.0 eeG  . 

 
In Fig. 24, we show the analysis of experimental data for three polymer systems that are more 
complex than water and OTP. Fig. 24a shows a flattening of the data for a polybutylacrylate 
(PBuA) at low thicknesses while in Fig. 24b, for a methoxy-phenyl benzoate substituted 
polyacrylate (PAOCH3), it is observed a plateau as for water and OTP. These effects were 
moreover highlighted by the authors respectively in Refs. 30 and 31. Fig. 24a shows very 
clearly the break that could be guessed for water and OTP and it can be seen that Eq. (B-1) 
accounts well for this break. On this same figure, it is observed that only a part of the data at 
high thicknesses can be approximated by a power law but whose exponent is different from 
the value 3. The same kind of comment applies to the other two figures. Concerning Fig. 24c, 
the authors have mentioned in the legend of their Fig. 9 (Ref. 32) that those can be fitted with 
a power law whose exponent is of the order of 2.5. 
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Fig. 24. Logarithmic plot of G’ experimental data (black points) for three different substances versus the sample 

liquid thickness e. (a) Experimental data for PBuA at T = 298.15 K from Fig. 4b of Ref. 30; the red curve 

corresponds to Eq. (B-1) with a = 0.99856, l1 = 0.0298 mm, l2 = 0.2623 mm, 1 = 2 = 2 and the blue dot-dashed 

curve represents the power law   134.231.6 eeG  . (b) Experimental data for PAOCH3 at T = 403.15 K from an 

insert in Fig. 1c of Ref. 31; the red curve corresponds to Eq. (B-1) with a = 0.99856, l1 = 0.075 mm, l2 = 0.5 mm, 

1 = 2 = 2 and the blue dot-dashed curve represents the power law   127.4741.0 eeG  .  (c) Experimental data 

for polystyrene from Fig. 9 of Ref. 32; the red curve corresponds to Eq. (B-1) with a = 0.98, l1 = 0.0139 mm, l2 = 

0.06 mm, 1 = 2 = 2 and the blue dot-dashed curve represents the power law   583.2316.11 eeG  . 

 
In conclusion of this appendix, it can be said that the experimental data do not agree well with 
a power law with exponent value equal to 3. However, in certain well-chosen thickness 
ranges, a power law with an exponent smaller or larger than 3 can agree with the data. On the 
other hand, the empirical form of Eq. (B-1) is able to account for all the experimental data. 
This equation has the advantage of being able to determine a value for G'(0) that relates to the 
value of KN in the theoretical approach presented here. As a last remark, we stress that Eq. (B-
1) is quite general since it applies to both small molecules and polymers. Besides the very 
different values of G'(0), which is not surprising, the difference between the two types of 
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substances lies in the value of the exponents 1 and 2 which determine the rate of change 
with thickness. For the former, which are pure substances made up of a single type of 
molecule, the transition between the two behaviors is strong, with exponents, 1 = 30 and 2 = 

5, whereas for polymers, it is much softer, with exponents 1 = 2 and 2 = 2. It is likely that at 
least some of the change in this behavior is associated with polydispersity, which logically has 
the effect of broadening the transitions. This could be tested by making measurements with 
mixtures of small molecules. 
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