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Abstract: Background: Medical image segmentation is more complicated and demanding than ordi-
nary image segmentation due to the density of medical pictures. A brain tumour is the most common
cause of high mortality. Objectives: Extraction of tumorous cells is particularly difficult due to the
differences between tumorous and non-tumorous cells. In ordinary convolutional neural networks,
local background information is restricted. As a result, previous deep learning algorithms in medical
imaging have struggled to detect anomalies in diverse cells. Methods: As a solution to this challenge,
a deep convolutional generative adversarial network for tumour segmentation from brain Magnetic
resonance Imaging (MRI) images is proposed. A generator and a discriminator are the two networks
that make up the proposed model. This network focuses on tumour localisation, noise-related issues,
and social class disparities. Results: Dice Score Coefficient (DSC), Peak Signal to Noise Ratio (PSNR),
and Structural Index Similarity (SSIM) are all generally 0.894, 62.084 dB, and 0.88912, respectively.
The model’s accuracy has improved to 97 percent, and its loss has reduced to 0.012. Conclusions:
Experiments reveal that the proposed approach may successfully segment tumorous and benign
tissues. As a result, a novel brain tumour segmentation approach has been created.

Keywords: generative adversarial learning; tumour segmentation; brain MRI; deep learning;
autoencoder

1. Introduction

A malignant tumour is an extremely harmful health risk that can be fatal. To reduce the
community’s fatality rate, early detection, diagnosis, and treatment are essential. Cancerous
cells can now be found using a range of imaging modalities, including magnetic resonance
imaging (MRI), computed tomography scans (CT), positron emission tomography (PET),
and X-rays, thanks to advancements in medical imaging technology. High resolution,
a high signal-to-noise ratio, and the ability to image soft tissues are all advantages that MRI
has over other imaging modalities [1]. Compared to MRI images, CT scans offer poorer
contrast in soft tissues. For these reasons, MRI is the method that is most frequently used
for segmenting and diagnosing brain tumours. Compared to CT pictures, MRI scans show
a noticeable contrast between tumorous and non-tumorous cells. Brain MRI is broken down
into different parts, such as white matter, cerebrospinal fluid, grey matter, and various
lesions/tumours, for the purpose of analysing anomalies in brain pictures. Brain MRI
imaging uses the modalities of spin-lattice relaxation (T1-weighted), spin-spin relaxation
(T2-weighted), and fluid attenuation intention recovery (FLAIR). Each tissue has a unique
indication because of the variations in these modalities [2]. Due to the high contrast value,
tumours can be easily separated from normal tissue in MRI scans. Brain MR scans can be
used by the radiologist to detect various lesions and cancers, which helps with medication
recommendations. Due to the reliability issues with many sensory modalities, segmenting
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medical images can be challenging. The manual segmentation of tumour cells is a labour-
intensive and time-consuming technique. In addition, certain artefacts, such as motion
artefacts, have an impact on image segmentation. Partial volume effect (PVE) is caused
when healthy tissues overlap in terms of intensity, and PVE-like characteristics can be seen
in tumorous tissues [3].

Medical images are affected by the noise from accessories and auxiliary devices. For
the aim of making a diagnosis, this method is crucial for extracting data from an image.
Effective and precise tumorous zone segregation is essential for brain MRI segmentation.
So, brain tumours are divided using automated segmentation methods. In a real-time
situation, automatic segmentation will help radiologists make more rapid and accurate
diagnoses of cancers. Deep belief networks, restricted Boltzmann machines, stack auto-
encoder networks, and deep convolutional neural networks are examples of automated
segmentation methods. The most widely used segmentation method in biomedical image
processing, convolutional neural networks, allows for more accurate segmentation and
identification of brain MRI signals. According to existing methods, algorithm efficiency
in the classification and segmentation of tumorous and non-tumorous cells should be
enhanced. Despite their effectiveness, deep convolutional neural networks have several
limitations in terms of what they can do. Existing computer-assisted diagnosis methods
are unreliable because of how inaccurate the trained model is. According to the literature
assessment, there are a number of issues with current technology.

Classification and segmentation tasks are not aligned with one another. Models for
segmentation and classification must be distinct from one another. Lesions, cancers, and
healthy cells could not be distinguished with any accuracy by earlier models. In order to
detect tiny lesions as tumorous cells, they are frequently segmented. The class imbalance
between tumorous and non-tumorous cells exists in earlier versions, and they are rigid
when it comes to adjusting layer sizes for different input sizes across different datasets.

Both benign and malignant brain tumours are possible. Unlike malignant tumours,
which are cancerous, benign tumours can be treated because they are not cancerous. If a
cure is not found, especially for malignant tumours, the patient may pass away. Because of
this, early tumour prediction and detection can help to lower the death rate. At a very early
stage, cancers can be found in any picture modality using automated artificial intelligence
approaches. For this purpose, real-time segmentation of brain tumours from the different
modality scans are required. GAN’s have proven to attain much high efficiency for brain
tumour segmentation in a real-time scenario.

Convolutional neural networks (CNN) and generative adversarial networks (GAN),
two deep learning approaches, are mostly used for automated brain tumour segmentation.
In contrast to GANs, CNNs are hybrid deep learning models that can make decisions based
on a variety of inputs. Unlike CNNs, which need huge, labelled datasets for their training,
GANs use unsupervised learning and do not need as many large datasets. Fewer labelled
datasets provided to GANs during training can shorten training time while simultaneously
improving accuracy or efficiency of the network. The following advantages of GAN over
CNN are discussed in this work along with an overview of the several GAN-based designs.

Generative adversarial networks are used to enhance the accuracy of currently used
computer-assisted technologies. Through unsupervised learning using generative adversar-
ial networks, the basic data distribution from a collection of supplied samples is effectively
captured [4]. When working with high-dimensional data, including images and text, this
technique becomes more difficult. In order to achieve this, we employ generative adver-
sarial networks [5], which offer a mapping from the latent space to the high-dimensional
data. GAN’s capacity to extract information from all types of image data has led to more
promising findings in the segmentation of MRI data, such as when using MRI data to
segment CT images [6].

Analysing MRI data can be facilitated by computer-aided diagnostics (CAD). The
interest in creating CAD-based methods based on deep learning and artificial intelligence
has significantly increased recently. Deep learning techniques, however, require training
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with lots of medical imaging data. GANs, or generative adversarial networks, are capable of
creating fresh samples of data and accurately simulating the distribution of the actual data.
The generator and discriminator neural networks in GANs, a specific kind of deep learning
models, are combined. The discriminator aims to categorise the images as real or artificial
while the generator creates fresh examples. The overall training of the model is significantly
improved by the adversarial training. In addition to being used for applications such as
super-resolution, segmentation, and diagnosis, GANs methods have also been employed
for the generation of synthetic data in the field of medical imaging.

The major contributions of this research work are:

• In order to significantly improve tumour localisation and tumour segmentation, a
real-time generative adversarial network is proposed. The generator is generating the
segmented tumour output which is compared with the ground truth tumour mask in
discriminator section.

• The model has attained a comparatively high accuracy in segmenting high-resolution
images of brain tumour.

• The exact tumour areas have been clearly marked by the model.

The structure of this essay is as follows: The history of automated brain tumour
segmentation techniques and the application of GAN networks are covered in Section 2.
Additionally, it discusses related research examining the efficacy, dice score coefficient, and
other metrics of tumour segmentation techniques based on GAN. The proposed technique
and the associated algorithms are described in Section 3. In Section 4, values obtained from
various performance metrics are discussed together with the quantitative and qualitative
outcomes of the automated brain tumour segmentation technology that is suggested.
Section 5 talks about RTGAN’s conclusion and upcoming work.

2. Background and Related Work

The segmentation of brain tumours is being accelerated and automated as a result
of extensive research. Because manual brain tumour segmentation is a laborious and
time-consuming process, death risk is increased due to the delayed diagnosis of lesions or
sick tissues. In order to lower the mortality rate, efforts are being undertaken in the area
of brain tumour segmentation automation, which helps the radiologist make an accurate
tumour segmentation diagnosis quickly. With the help of very effective deep learning
techniques, research is being conducted to develop automated brain tumour segmentation.
Because of benefits such as the ones listed below, deep learning algorithms are favoured to
alternative techniques:

• Do not require labelled datasets.
• Highly efficient.
• Fast computational speed
• Real-time diagnosis.
• Robust.

Generative adversarial networks are the most effective for brain tumour segmentation
tasks, according to current study findings. This is because they can effectively handle
class imbalance losses and properly distinguish tumorous from non-tumorous tissues in
brain MRI images. A generative adversarial network was recommended by Tony C. W.
Mok et al. for data augmentation [7]. Authentic data augmentation is necessary because a
sizable amount of biomedical data is not available for training. CNNs are not used for this
task; instead, GANs are used to collect the training data and produce authentic enhanced
data automatically.

Three-dimensional conditional GANs have been proposed by Meen Rezeai et al. to
segment brain images and address the problem of class imbalance losses [8]. Because of
this, voxels associated with healthy tissues and unhealthy or tumorous tissues may be
distinguished with accuracy. For categorising ultrasound pictures as thyroid or healthy tis-
sues, [9] presented dual-path semi-supervised conditional generative adversarial networks.
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SeUDA is an unsupervised domain adaptation that was suggested by Chen et al. [10].
This transfers information from one chest X-ray to another image by adapting it. The
semantic aware generative adversarial networks are included. Specifically, the target
data mapped to the chest X-ray source data as well as the loss limitation in the semantic
aware GAN.

According to Jue Jiang et al. [11], a special GAN model has been developed that
transforms the data from CT pictures into MRI images. The genuine MRI pictures and the
labels from the GAN-generated MRI images were then combined, and the segmentation
network was trained. These studies have led to greater accuracy in segmenting malignant
tissues with smaller amounts of MRI data. A knowledge transfer-based shape consistent
method was developed for coronary artery segmentation (Fei Yu et al.) [12] due to the
manual annotation requirement by supervised deep learning algorithms, which is a time-
consuming operation. A shape constrained network was proposed in a manner similar
to this (Bingnan Luo et al.) [13], which consists of a variational autoencoder GAN that
learns the latent space distribution of eye images and the Segnet, but the losses of the
Segnet were changed to intersection over union loss, shape discriminator loss, and shape
embedding loss.

For forecasting future disorders, such as the prognosis of the transformation of mod-
erate cognitive decline to Alzheimer’s disease in aged MRI pictures, another prediction
model (Viktor Wegmayr et al.) [14] proposed consisting of the Wasserstein GAN network
was made. The model achieved great levels of precision, recall, and accuracy. Figure 1
shows the flow of work conducted on GAN based models on yearly basis.

Medicina 2023, 59, x FOR PEER REVIEW 4 of 19 
 

 

Three-dimensional conditional GANs have been proposed by Meen Rezeai et al. to 
segment brain images and address the problem of class imbalance losses [8]. Because of 
this, voxels associated with healthy tissues and unhealthy or tumorous tissues may be 
distinguished with accuracy. For categorising ultrasound pictures as thyroid or healthy 
tissues, [9] presented dual-path semi-supervised conditional generative adversarial net-
works. 

SeUDA is an unsupervised domain adaptation that was suggested by Chen et al[10]. 
This transfers information from one chest X-ray to another image by adapting it. The se-
mantic aware generative adversarial networks are included. Specifically, the target data 
mapped to the chest X-ray source data as well as the loss limitation in the semantic aware 
GAN. 

According to Jue Jiang et al. [11], a special GAN model has been developed that trans-
forms the data from CT pictures into MRI images. The genuine MRI pictures and the labels 
from the GAN-generated MRI images were then combined, and the segmentation net-
work was trained. These studies have led to greater accuracy in segmenting malignant 
tissues with smaller amounts of MRI data. A knowledge transfer-based shape consistent 
method was developed for coronary artery segmentation (Fei Yu et al.) [12] due to the 
manual annotation requirement by supervised deep learning algorithms, which is a time-
consuming operation. A shape constrained network was proposed in a manner similar to 
this (Bingnan Luo et al.) [13], which consists of a variational autoencoder GAN that learns 
the latent space distribution of eye images and the Segnet, but the losses of the Segnet 
were changed to intersection over union loss, shape discriminator loss, and shape embed-
ding loss. 

For forecasting future disorders, such as the prognosis of the transformation of mod-
erate cognitive decline to Alzheimer’s disease in aged MRI pictures, another prediction 
model (Viktor Wegmayr et al.) [14] proposed consisting of the Wasserstein GAN network 
was made. The model achieved great levels of precision, recall, and accuracy. Figure 1 
shows the flow of work conducted on GAN based models on yearly basis. 

 
Figure 1. GAN-based model year-wise survey. 

Figure 1. GAN-based model year-wise survey.

Table 1 represents the survey conducted on various GAN based models including
parameters like methods used, datasets used, computation time and evaluation parameters.
It provides a summary of the literature provided at above.
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Table 1. Literature survey of GAN-based models.

Technique Datasets Computation Time Methodology Evaluation

Tony C.W.
Mok et al. [7] BraTS15 2.1 s for one inference

Generative Adversarial
Networks (coarse to fine

generators)

DSC:
WT = 0.84
CT = 0.63
ET = 0.57

Mina Rezaei et al. [8] BraTS18
3D Conditional

Generative Adversarial
Network (cGAN)

DSC (WT = 0.84, CT = 0.79,
ET = 0.63)

Dice = 0.83
Hausdorf = 9.3
Precision = 0.81

Recall = 0.78

Cheng Chen et al. [10] JSRT (chest X-ray) Semantic Aware GAN
DSC = 95.59
Recall-96.59

Precision-94.77

Jue Jiang et al. [11] T2 MRI images Tumour Aware loss with
GAN DSC = 0.74

Fei Yu et.al. [12] DRIVE dataset
Shape-consistent

generative adversarial
network (SC-GAN)

Accuracy = 0.953 ± 0.009
Precision = 0.820 ± 0.031

Recall = 0.829 ± 0.039
DSC = 0.824 ± 0.026

Bingnan Luo et.al. [13] Eye Segmentation Dataset
(i-bug) 0.033 s

Shape constraint
generative adversarial

networks

Mean mIOU = 79.02%
S-mIOU = 71.86%
I-mIOU = 86.185

Viktor Wegmayr et al. [14] T1 MRI images Wasserstein-GAN
Accuracy = 73%
Precision = 68%

Recall = 75%

RescueNet recommended dividing the entire tumour into its core and enhancing
regions during a brain MRI scan. This residual cyclic unpaired encoder-decoder employs
both residual and mirroring techniques. The proposed network addresses the challenge of
labelling large datasets by employing unpaired adversarial training [15]. The dice scores
for the entire tumour, the core tumour, and the augmenting tumour are 0.94, 0.85, and 0.93,
respectively. Sensitivity values for the entire tumour, the core tumour, and the augmenting
tumour are, respectively, 0.91, 0.86, and 0.95.

A parasitic GAN suggested a more effective way to utilise the unlabelled datasets.
The segmentor, generator, and discriminator in this suggested network are all functional.
With the use of segmentor-produced label maps and generator-synthesised label maps
in this network, the discriminator is able to understand the precise periphery of ground
truth. As a result, the segmentor can benefit from adversarial learning techniques and
extra observation that the discriminator offers. Due to the named relationship between
the segmentor, discriminator, and generator, the proposed model was given a name. As
a result, segmentor’s fitness ability is constrained, which enhances the capability of the
segmentor as a whole [16].

A 3D volume to volume GAN is also recommended for automatically segmenting
brain tumours. To get precise segmentation results, this model inputs multi-channel 3D MR
images. The BraTS dataset was used to test the model, and it was successful in classifying
brain tumours into three categories: whole tumour, active tumour, and enhancing tumour.
These categories were distinguished by dice scores of 87.20 percent, 81.14 percent, and
78.67 percent, as well as Hausdorff distance values of 6.44 mm, 24.36 mm, and 18.95 mm,
respectively [17].

The output is more accurate and precise when segmenting tumours when GAN is
combined with autoencoder learning representation of input data. This model was given
the moniker GAN-segNet. Convolutional techniques were used in this to semantically
regularise the extracted information. The additional autoencoder aids in adjusting the
scales of extracted features such that some insignificant features are omitted. As a result, the
system is both dense and light. In order to effectively reduce the impact of label inequity,
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an additional loss function was included to keep track of loss features. The model was
trained and evaluated on BraTS 2018 and produced the following dice scores for the overall
tumour, core tumour, and enhancing tumour of 0.9022, 0.814, and 0.8280 [8].

A new GAN design (voxel-GAN) was suggested to help automated BTS deal with the
uneven data issue. According to this concept, the majority of voxels are found in healthy
areas, while very few are found in lesions, tumours, or diseased tissues. Segmenter and
discriminator are both included in this 3D conditional GAN. When the segmentor is trained
on MR images, the segmentation labels at the voxel level are learned. A discriminator
is then taught to distinguish the segmentor output (ground truth). Both sub-networks
have received good training to reduce label discrepancy problems. The suggested model
was tested using data from BraTS 2018 and ISLES 2018, demonstrating that it produced
meaningful findings [18].

It is suggested to use GAU-Net, a combination of channel and spatial attention mech-
anisms that incorporate multiple convolutions and are further integrated with U-net. In
addition, a residual module for conventional up- and downsampling has been added. The
BraTS 2018 dataset was used to train this model, which resulted in a significant improve-
ment in mIoU of 0.75 and a decrease in inference time [19].

It was suggested to combine label refinement and sample reweighting techniques
into a single framework for 3D GAN. On the BraTS 2019 dataset, exclusive tests with the
suggested model have been conducted. This model achieved competitive performance on
managing incorrect labels in automated segmentation of brain tumours when compared to
other benchmark models [20].

The SAM-GAN model, which combines local mutual information maximisation and
attention mechanisms, has been presented. A semi-supervised model is used. Through
the employment of channel and spatial attention blocks, the attention mechanism focuses
on what and where to focus. The other technique focuses on local image dependencies
in order to increase the network’s capacity to demonstrate itself more consistently. When
compared to other fully supervised and semi-supervised networks, SAM-GAN performs
better in terms of accuracy and efficiency when segmenting brain tumours [21].

It was suggested as an inductive transfer learning strategy to use unsupervised domain
adaptation based on Cycle Gan. This approach to transfer learning helped with the problem
of translating annotation labels from source domain datasets to target domain datasets. The
use of a transfer learning technique significantly enhanced the semantic segmentation of
data related to brain tumours. The suggested method can significantly advance the field of
medical image analysis [22] by creating a fundamental instrument to enhance and advance
numerous activities involving medical images.

An automated end-to-end network based on Generative Adversarial Nets (GAN) is
created for the segmentation of brain tumours, and its accuracy is tested using datasets
from BraTS 2015. We propose generative adversarial networks for high-order smoothing
in place of conditional random fields. The process of segmenting a single patient’s case
has become much quicker, and the results of brain tumour segmentation have improved
tremendously [23].

Cascaded GANs with a segmentor that creates a label map and a discriminator that
aids in finding the solution while taking into account both short- and long-distance spatial
correlations among the pixels were suggested for the whole, core, and enhancing tumour.
To achieve a higher dice score coefficient, the proposed model was able to lower the
false positives. The model employs a cross-entropy loss (final layer) and a multi-scale
loss function (intermediate layer) to achieve improved semantic segmentation efficiency.
Furthermore, unnecessary contour smoothing is removed using a multi-scale loss function.
The suggested approach outperformed the state-of-the-art strategies for the whole tumour,
the tumour core, and the enhancing tumour, respectively, with Dice scores of 0.874, 0.783,
and 0.820 [24].

To obtain a non-linear mapping between pictures of the right and left brains, SD-GAN
(symmetric driven GAN) was presented. A method for segmenting brain tumours without
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supervision was proposed in this model. The model’s asymmetry, combined with the fact
that it is constructed on upper-level errors, has been trained to replicate ill brains and
distinct brain cancers. BraTS 2012 and 2018 were used to train and test the suggested model.
Since SD-Gan is unsupervised, it achieved a greater level of accuracy than the benchmark
models of CNN and GAN. This study established the validity of the use of unannotated
normal MR data to represent symmetric features with underlying structural alterations,
and hence their applicability in clinical settings [25].

In order to improve the segmentation outcomes in brain MRI scans, proposed GAN
was employed to produce high contrast images. When the CNN model is trained on
the output produced by the GAN, the segmentation is greatly enhanced. The number
of true channels for segmentation was lowered when these fake images were contrasted
with actual images of brain tumour tissue from MR scans. Synthetic images are used
as a stand-in for actual channels and are capable of skipping actual modalities in the
multimodal brain tumour segmentation framework. Our suggested method is capable of
effectively segmenting tumour areas, as evidenced by the results obtained using the BraTS
2019 dataset [26].

This study offers a semi-supervised technique for identifying brain lesions using MRI
that makes use of Generative Adversarial Networks (GANs). A generator network and a
discriminator network are the two networks that make up a GAN, and they are both trained
simultaneously with the intention of enhancing one another. We trained the networks
on non-lesion regions from four different MR categorisations. After the network was
trained on the BraTS dataset, patches were taken out of areas other than the tumour zone.
The underlying probability distribution of the training data is simulated by the generator
network to produce data (PData). The discriminator obtains the ensuing probability P by
categorising training data and generating data as “Real” or “Fake” (Label Data). After
mastering the joint distribution, the generator creates images and patches with arbitrary
discriminator performance. During testing, the discriminator assigns posterior probability
values for patches from non-lesion regions that are close to 0.5, whereas patches with their
centres in lesion sites receive a lower posterior probability value since they are drawn from
a different distribution (PLesion). On the test set (n = 14), the proposed technique achieves
a whole tumour dice score of 0.69, specificity of 59 percent, and sensitivity of 91 percent. A
variety of MRs could be used by the generator network to produce non-lesion patches [27].

Medical image analysis has focused a lot of effort on precisely segmenting the tumour
lesions because of the irregularity and blurring of tumour boundaries. This research pro-
poses a brain tumour segmentation method based on generative adversarial networks in
light of the current situation (GANs). The GAN architecture is made up of two networks
that employ 3D convolutions to combine multi-dimensional context data: a classification
network for discrimination and a densely linked three-dimensional (3D) U-Net for seg-
mentation. In order to speed up network convergence and extract more precise data, the
densely connected 3D U-Net model incorporates a dense connection. The network can
segment several unexpected small tumour subregions thanks to the adversarial training,
which brings the distribution of segmentation results closer to that of labelled data [28].

To create artificial MRI images of brain tumours, the AGGrGAN model has been
presented. It combines three basic GAN models: two Deep Convolutional Generative
Adversarial Network (DCGAN) variations and a Wasserstein GAN (WGAN). To improve
the image resemblance, we also used the style transfer technique. By effectively overcoming
the constraint of data scarcity, our suggested model is able to comprehend the information
variation in various representations of the raw photos. The brain tumour dataset and the
Multimodal Brain Tumour Segmentation Challenge (BraTS) 2020 dataset, which are both
freely accessible, served as the basis for all of our investigations. The proposed models
have attained high SSIM values of 0.57 and 0.62 on above mentioned datasets [29].
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3. Research Methodology

Medical image segmentation may now be performed precisely in real time because of
recent developments in generative adversarial networks. Due to their quick and effective
learning capabilities, GANs have become more and more popular.

Deep convolutional GANs based on transfer learning are effective at segmenting se-
mantic brain tumours. For semantic segmentation of medical images, GAN’s are appealing
due to the learning process and lower heuristic cost [30]. The Vox2vox model [16] served
as inspiration for the suggested concept.

As part of the proposed RTGAN, GANs are trained to segment brain MRI images,
and then they are used as feature extractors for supervised tasks using discriminator and
generator network segments. Both a generator network and a discriminator network are
part of the DCGAN. The segmented tumour picture made from the brain MRI is sent to
the generator together with the actual segmented tumour images, and the discriminator
processes the results. The discriminator then forecasts the labels for the created output and
the true output. Following is the generator’s precise configuration:

• One 3D image with 4 different modalities: T1, T1gd, T2, and FLAIR.
• Four 3D convolutional down-sampling blocks having kernel size 4, same padding,

stride 2, and leakyRelu activation function. The initial filter set is 64, which is doubled
after every convolutional block.

• Four 3D convolutional residual blocks having kernel size, padding, and activation
function the same as mentioned above and stride as 1.

• Three 3D deconvolutional up-sampling blocks having kernel size = 4, stride = 2, and
activation function = Relu.

• One 3D deconvolutional layer with four filters (background, edema tumour (ED), core
tumour (NET), and active tumour (ET), each labelled with 0, 1, 2, and 3).

The detailed configuration of discriminator network is as follows:

• The 3D image generated from generator network and segmentation ground truth.
• Four 3D convolutional down-sampling blocks having same configuration as

in generator.
• One 3D convolutional layer with kernel size = 4, filter = 1, stride = 1, and same padding.

4. Algorithm

1. Start
2. Reshaping image I = > 512 ∗ 512 ∗ 512 -> 128 ∗ 128 ∗ 128
3. Generator:

i. I fed to 4 3D convolutional down-sampling blocks -> I‘ (16 ∗ 16 ∗ 16 ∗ 256).
ii. I‘ is fed to residual blocks with dropout = 0.2 ->I“ (8 ∗ 8 ∗ 8 ∗ 512).
iii. I“ is fed to 3 up-sampling blocks generating I1 (64 ∗ 64 ∗ 64 ∗ 128).
iv. I1 is fed to 3D deconvolutional layer with softmax function hence generates

segmented image I2 -> 128 ∗ 128 ∗ 128 ∗ 4

4. Discriminator:

i. I2 + ground truth segmented image -> Four 3D convolutional down-sampling
blocks ->I2‘ (8 ∗ 8 ∗ 8 ∗ 512)

ii. I2‘ -> one 3D convolutional layer -> I3‘
iii. I3‘ -> sigmoid activation function -> Final segmented output I3(8 ∗ 8 ∗ 8 ∗ 1)

5. End

Dataset and Preprocessing: The BraTS dataset, which consists of 98 patients and a
3D brain MRI dataset including entire tumours, core tumours, and active tumours, was
employed in the training. 73 T1, T2, and FLAIR MRI scans are included in each patient’s
dataset folder [31–33]. The first step in preparing medical photos is noise removal [34].
Each MRI image is subjected to intensity normalisation during the preprocessing stage,
and patch augmentation is used to reduce the model’s memory usage.
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5. Experiments and Discussions

Losses: The generator loss GL and discriminator loss DL of this GAN-based suggested
model are both evaluated. The general dice loss GDL in between the ground truth and
generator’s output with a scalar coefficient, i.e., and the discriminator output inaccuracy
L1 between the ground truth and prediction image, are multiplied by a tensor of ones to
obtain the generator loss. α ≥ 0,

GL = L1[D(x, ŷ), 1] + αGDL(y, ŷ)

The discriminator loss is calculated by multiplying the L1 error of the discriminator
output in between the novel picture and the relevant segmented forecast given by the
generator by the error of the discriminator output between the original image and ground
truth with a tensor of ones, i.e.,

DL = L1[D(x, y), 1] + L1[D(x, ŷ), 0]

Training Details: Tensorflow 2.1, the Keras library, and Python 3.7 are used to train the
suggested RTGAN model. The model is trained and authorised on sub-volumes of size
128 × 128 × 128 from 98 patients over 100 epochs using batch size 4 on a machine with all
necessary libraries.

An overview of the discriminator GAN for several layer types, including conv2d,
leaky ReLU, flatten, dropout, and dense, is shown in Table 2. The figure also shows the
output variations in parameter for each layer type.

Table 2. Literature Survey of GAN-based Brain tumour Segmentation Models.

Techniques Datasets Performance Advantage Disadvantage

RescueNet BraTS 2015 and 2017 Dice = 0.94
Sensitivity = 0.91 Requires less training Data Not trained on other

image modalities.

Parasitic GAN BraTS 2015 and 2017 Dice score—0.010–0.035 More reliable ground truth for
self-taught.

The visual quality of the
predicted segmentor
should be improved.

3D GAN BraTS 2020 Dice Score = 87.20%
Hausdroff = 6.66 Realistic outputs generated

Model can be improved
for different

BraTS challenges

GAN-SegNet BraTS 2018
Dice Score = 0.9022
Positive Predictive

Values = 0.9270

Small intratumor region(s)
segmentation is improved

Dice score value is not
sufficient for real-time use.

Voxel-GAN BraTS-2018 and
ISLES-2018

Mitigates imbalanced data
problem in brain tumour
semantic segmentation

Dice score value is not
sufficient for real-time use.

GAU-Net BraTS 2018
Increased the mIoU = 0.65
to 0.75 with only 5.4% of

U-Net parameters

Captures long-distance
dependencies hence
improving network

performance and less
inference time.

Segmentation effect is still
far from clinical use.

Cycle GAN BraTS and ADNI Dice Score = 0.7086
Can use combination of 2d

and 3D data including MRI or
CT datasets.

Dice score value is not
sufficient for real-time use.

SD-GAN BraTS 2012 and
BraTS 2018

Dice Score = 0.646
Sensitivity = 0.802
Precision = 0.701

Achieved the
best-unsupervised

segmentation performance

Dice score value is not
sufficient for real-time use.

The description of each layer of discriminator GAN is elaborated in Figure 2. Figure 3
represents the architecture of discriminator GAN. It represents various layers added to
the discriminator model of GAN which will differentiate the segmented output with the
ground truth output.
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Figure 4 depicts a summary of generator GAN for several layer types such as Dense,
leaky ReLU, reshape Conv2DT, and Conv2D, as well as the output shape of variation in
param for each layer type.
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Figure 5 represents the architecture of generator GAN. It represents various layers
added to the generator model of GAN which will fetch the tumour regions from the real
datasets and passed to all the layers of generator that will deeply segment the tumour
regions. The description of each layer is elaborated in Figure 2.
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Figure 6 depicts a combined summary for the GAN model, with a total parameter
count of 7,815,876 as illustrated by this figure. The number of trainable parameters in this
GAN model is 7,686,915; the number of non-trainable parameters is 128,961.

Medicina 2023, 59, x FOR PEER REVIEW 13 of 19 
 

 

 
Figure 6. Combined summary for the GAN model. 

Figure 7 shows the parameter performance for both the discriminator and the gener-
ator summary of the GAN model by representing the generator and discriminator loss at 
every scan of each epoch. 

 
Figure 7. Parameter performance. 

6. Results and Observations 
The model has been trained for 100 epochs, and the quality of the segmented images 

for some epochs is shown in Figure 8. The first part of image is the input image fed to the 

Figure 6. Combined summary for the GAN model.



Medicina 2023, 59, 119 12 of 17

Figure 7 shows the parameter performance for both the discriminator and the generator
summary of the GAN model by representing the generator and discriminator loss at every
scan of each epoch.
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6. Results and Observations

The model has been trained for 100 epochs, and the quality of the segmented images
for some epochs is shown in Figure 8. The first part of image is the input image fed to
the model. The second part is the maximum segmented region and last part is the final
segmented output from the RTGAN model.
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Figure 8. Segmented Output.

The model loss is depicted in Figure 9. The loss diminishes as the number of epochs
grows, as seen by the graph of loss vs. epochs in the following figure. In order to reduce
the loss to 0.012, testing is carried out across 100 epochs.
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Figure 9. Model Loss.

The accuracy of the model is displayed in Figure 10 at 97%. The accuracy of the
model was calculated in discriminator using segmented truth from the generator minus the
ground truth. The accuracy graphs are shown in the following figure, and as the number of
epochs rises, accuracy also rises. When the model is put through 100 epochs of testing, the
test accuracy rises.
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Figure 10. Accuracy.

The quantitative findings from the GAN algorithm are presented in this section. Table 3
Image 1 has a Structured Similarity Index (SSIM) value of 0.9021, a Peak Signal-to-Noise
Ratio (PSNR) value of 57.30dB, and a Dice Score Coefficient (DSC) value of 0.87. The PSNR
value is 69.01 dB, the DSC value is 0.88, and the SSIM value is 0.90110, as shown in Image 2.
The PSNR value is 59.32 dB, the DSC value is 0.93, and the SSIM value is 0.8251, as shown
in Image 3. The value for the dice score coefficient (DSC) is 0.93, 61.21 dB for the PSNR,
and 0.8761 for the SSIM, as shown in Image 4. In Image 5, the SSIM value is 0.9121, the
PSNR value is 61.65 dB, and the DSC value is 0.80. Image 6 displays the SSIM value as
0.9561, the PSNR value as 60.23 dB, and the DSC value as 0.94. Image 7 displays the SSIM
value as 0.9231, PSNR value as 62.16 dB, and DSC value as 0.90
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Table 3. Results using RT-GAN algorithm.

Images Image Number Structured Similarity Index
(SSIM)

Peak Signal-to-Noise Ratio
(PSNR) Dice Score Coefficient (DSC)

I1 0.9021 57.30 dB 0.87

I2 0.9110 69.01 dB 0.88

I3 0.8251 59.32 dB 0.93

I4 0.8761 61.21 dB 0.93Medicina 2023, 59, x FOR PEER REVIEW 16 of 19 
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7. Conclusions and Future Scope

According to earlier research, GANs are superior to CNN at segmenting medical
images. In this study, it is suggested to segment brain tumours in real time using a GAN-
based model. Given their better effectiveness, short processing speeds, ability to diagnose
problems in real time, and independence from labelled datasets, GANs are preferable to
CNN. GANs are hybrid deep learning models, not discriminative deep learning models
such as CNNs. Unlike CNNs, GANs do not need large datasets for training because they
are unsupervised learning algorithms. The training time for GANs is decreased while the
network’s accuracy and effectiveness are increased when only a few labelled datasets are
used in training.

This work proposes RTGAN, which consists of a generator and a discriminator. The
generator network includes the dense, leaky ReLU, reshape Conv2DT, and Conv2D in
addition to the output form of change in param for each layer type. Conv2d, leaky ReLU,
flatten, dropout, and dense are some of the different types of discriminator GAN layers.
The output parameter variation forms for each layer type also belong to this group.

The effectiveness of the segmented images was assessed after the model was trained
across a number of epochs for 100 epochs at a time. The segmentation quality of the
images is good, and PSNR, SSIM, and DSC are used for quantitative analysis. RTGAN has
demonstrated its ability to generate high-quality segmentation results for evaluation criteria
such as the structural similarity index, dice score coefficient, and peak signal-to-noise ratio.
DSC, PSNR, and SSIM are all generally 0.894, 62.084 dB, and 0.88912, respectively. The
model’s accuracy has improved to 97 percent, and its loss has reduced to 0.012. The
suggested model is ideal for real-time applications due to its high precision and dice
scoring coefficient. This work’s drawback is that it needs to be tested using a variety of
additional image modalities, including those for low-grade gliomas, glioblastomas, and
astrocytomas. The correctness of the final test is then obtained. The work could also
be compared to other models based on different parameters related to accuracy such as
precision, F1 score, etc.
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