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Abstract—The static task scheduling problem in distributed 

systems is very important because of optimal usage of available 
machines and accepted computation time for scheduling 
algorithm. Solving this problem using the dynamic 
programming and the back tracking needs much more time. 
Therefore, there are more attempts to solve it using the 
heuristic methods. In this paper, a new genetic algorithm, 
named TDGASA, is presented which its running time depends 
on the number of tasks in the scheduling problem. Then, the 
computation time of TDGASA to find a sub-optimal schedule is 
improved by Simulated Annealing (SA). The results show that 
the computation time of the proposed algorithm decreases 
compared to an existing GA-based algorithm, although, the 
completion time of the final scheduled task in the system 
decreases a little. 
 

Index Terms—Genetic algorithm, static task scheduling, 
distributed systems, simulated annealing, (TDGASA) Task 
Dependent Genetic Algorithm using Simulated Annealing 
 

I. INTRODUCTION 
The complicated tasks can not be executed on the 

computing machine in an accepted interval time. Therefore, 
they must be divided into small sub-tasks. The sub-tasks can 
be executed either in the expensive multiprocessors or in the 
distributed systems. The latter choice is preferred due to 
better ratio of cost per performance. On the other hand, in 
most cases because of some constraints on multiprocessor 
systems or the natural distribution of tasks, the only optimum 
choice is employing the distributed systems [1]. 

The distributed system consists of some computing 
machines with different performances which are connected to 
each other using the high speed interconnections, and, are 
useful for much more computing applications [2]. The task 
scheduling problem in the distributed systems is known to be 
NP-hard, since, for allocating T tasks to H machines, the 
number of allocation will be TH  and the number of states 
for running will be !T . One of the goals of scheduling is to 
determine an assignment of tasks to computing machines in 
order to optimize the completion time of the final task in the 
system. 

If the number of tasks and computing systems are too high, 
finding the optimal or sub-optimal task scheduling would be 
time-consuming and in some cases it consumes more time 
than a random execution of tasks. Hence, we must use the 

 
 

heuristic algorithms based on the problem conditions instead 
of employing the classic methods such as the back tracking 
and the dynamic programming.  

The heuristic algorithms prevent the popular errors in their 
own operation while trying to find the optimal solution. 
Therefore, they appear to be appropriate for solving problems 
[3]. There are more heuristic methods for solving the static 
task scheduling, some of which are: Opportunistic Load 
Balancing (OLB) [4], Minimum Execution Time (MET) [4], 
Minimum Completion Time (MCT) [4], Genetic Algorithms 
(GAs) [5-8], Simulated Annealing [9], Tabu Search [7]. 

One of the best heuristic methods is Genetic Algorithm 
(GA). There are many researches under the topics of solving 
the static task scheduling using GAs in the multiprocessor 
systems [3, 8, 10, 11, 12] and the distributed systems [3, 5, 6, 
13, 14]. In this paper, a novel GA is presented which has a 
good ability to solve the above problem using the simulated 
annealing.  

In section 2, the task scheduling problem in the distributed 
systems is discussed and a mathematical model is presented. 
The genetic algorithm and related work (Basic GA) are 
introduced in section 3. In section 4, the proposed algorithm 
is introduced. The simulation result and the comparison 
between the algorithms are presented in section 5 and section 
6 concludes on our findings. 

II. MODELING OF THE SCHEDULING PROBLEM 
A program can be considered as a set of tasks and can be 

modeled as a Weighted Directed Acyclic Graph as below: 
WDAG = (T, <, E, D) [13], where { }nitT i ,...,1; ==  is a set 
of tasks, < is a partial order defined on T which specifies 
operational precedence constraints. That is, ti < tj means that 
ti must be completed before tj can start execution. E is a set of 
directed edges. A directed edge, (i, j), between two tasks ti 
and tj specifies a partial order. D is an n×n matrix of 
communication data, where Di, j is the amount of data 
required to be transmitted from task ti to task tj. 

If the distributed system consists a set of m machines 
which are connected to each other using a fast 
interconnection network, then, Estimated Completion Time 
(ECT) would be a n×m matrix, where ECTi, j shows the 
estimated completion time of the task ti on the machine mj. 

A WDAG is shown in figure (1-a) and a distributed system 
consisting three machines is shown in figure (1-b). Table (1) 
illustrates the ECT matrix of the graph shown in figure (1). 
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Fig. 1 a) A WDAG. b) A distributed system consisting three machines 

TABLE  I: THE ECT MATRIX OF THE GRAPH SHOWN FIGURE (1) 

H3 H1 H0 
Machines 
Tasks 

708 898 872 t1  
778 624 251 t2  
23 786 542 t3  
257 737 40 t4  
535 247 742 t5  
776 749 970 t6  
105 451 457 t7  

 
R is a m×m matrix which shows the data transfer rate 

between different machines. If two tasks schedule on the 
same machine, the communication cost of transferring data 
will be zero; otherwise, it is obtained based on Equation (1). 

)](),([
),( ,

jHiHR
D

ttCommCost ji
ji =

               (1) 
Di, j is the amount of data required to be transmitted from 

task ti to task tj and R[H(i), H(j)] is the data transfer rate of 
two different machines. 

According to the outlined concepts, the static task 
scheduling problem in the distributed system becomes a 
Π:T→H mapping. This mapping allocates a set of tasks T to a 
set of machines H, where the precedence constraints on the 
tasks is satisfied and the completion time of tasks on the 
machines is minimized. The problem’s answer or Scheduling 
Length (SL) will be given by Equation (2). 

{ })1,...,0maxmin( −=== mjFSLAnswer j
       (2) 

Fj is the completion time of final scheduled task on 
machine Hj including computation time, communication time 
and waiting time because of precedence constraints. 

Two other parameters are defined for each node (task) in 
the graph known as b-level (the bottom level) and t-level (the 
top level). The b-level of a node is the length of the longest 
path from the node to a leaf node. If a node has no children, 
its b-level is equal to the average execution time of the task 
on the different computing machines. The t-level of a node 
(task) is the length of the longest path from the node to a root 

node in the WDAG without considering the execution time of 
that task. In effect, the t-level determines the earliest 
beginning time of a task. Therefore, if a task has no parent its 
t-level will be zero. Table (2) shows the average Estimated 
Completion Time of the tasks (AvgECT) on the different 
machines, the b-levels and t-levels of the graph that are 
shown in figure (1). 

TABLE  II: THE B-LEVELS AND T-LEVELS OF THE GRAPH SHOWN IN FIGURE (1) 

t_level  b_level  AvgECT  Parameters  
Tasks 

0, 0  3767, 0  826, 0  t1  

0, 0  3189, 0  551, 0  t2  
1173, 0  2594, 0  450, 33  t3  
2212, 33  957, 33  344, 67  t4  
2212, 33  1554, 67  508, 0  t5  
2212, 33  831, 67  831, 67  t6  
3429, 33  337, 67  337, 67  t7  

III. THE GENETIC ALGORITHMS 
The GAs are random searching methods based on the 

evolution selection and the natural phenomena. These 
algorithms are started with a set of random solution called 
initial population. Each member of this population is called a 
chromosome. Each chromosome is a problem solution which 
consists of the string genes. The number of genes and their 
values in each chromosome depend on the problem 
specification. In algorithms discussed in this paper, the 
number of genes of each chromosome is equal to the number 
of the nodes (tasks) in the WDAG and the gene values 
demonstrate the scheduling priority of the related task to the 
node (each chromosome shows a scheduling), where the 
higher priority means that task must be executed early. 

A set of chromosomes in each iteration of GA is called a 
generation. The chromosomes are evaluated by their fitness 
functions. The offspring (the new generation) is created by 
applying some operators on the current generation. These 
operators are a) crossover which selects two chromosomes of 
the current population, combines them and generates a new 
offspring, and, b) mutation which changes randomly some 
gene values of a chromosome and creates a new offspring. 
Then, the best children and maybe their parents are selected 
by evolutionary select operator according to their fitness 
value(s). 

Three phases of the production, evaluation and selection 
are repeated until some condition is satisfied. Finally, a 
chromosome which has the best fitness value(s) is selected as 
a solution.  

A. Base Genetic Algorithm (BGA) 
The GA presented by Dhodhi et. al [13], named here Base 

Genetic Algorithm (BGA), has four steps as shown in figure 
(2). 

In the first step, the following parameters are read from a 
database: WDAG, ECT and R. Other parameters such as the 
initial population size (Np), the number of generations (Ng), 
the crossover probability (Xr), and the mutation probability 
(Mr) are provided by the user. 

In the second step, the b-level and t-level of each node in 
the WDAG are calculated and then, in the first chromosome 
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of the initial population, the gene value (priority) of each task 
is set to its b-level. The genes values (priorities) of the rest of 
the chromosomes are the total of the genes values of the first 
chromosome and the random numbers which are generated in 
the range of (t-level/2, -t-level/2) of the tasks. 

Using the Earliest Finish Time (EFT decoding, which 
schedules a candidate task onto a machine on which the finish 
time of the task is the earliest), the overall completion time of 
the final task in the system is chosen as a fitness function of 
each chromosome. For this reason, first, all the genes (tasks) 
of each chromosome are sorted in descending order 
according to their values (priorities) in a ready queue. If the 
precedence of the tasks in the WDAG are not observed in a 
chromosome, it is chosen as an illegal chromosome and its 
fitness value would be infinite. Otherwise, the tasks are 
selected from the ready queue according to their priorities, 
and scheduled to the most suitable machine on which the 
finish time of the task is the earliest. Finally, the best 
chromosome of the first population is stored as a first element 
of the Best_Schedule array. The length of this array is equal 
to Ng. 
 Step 1. Read the WDAG, ECT, and R from a database 

and get pN  , gN  , rX  and rM  from the user; 
 Step 2. Calculate the b-level and the t-level of each task in 

the WDAG; 
Generate Initial Population ( initialP  ); 

initialcurrent PP ← ;
);(_ currentPheuristicDecodingSchedules←  

←ScheduleBest _ evaluate (Schedules); 
 Step 3. while stop criterion not satisfied do begin 

{ }←newP ; /* empty new population */ 
3-1. repeat for )2/( pN  times 

);__,( fitnessofSumPselectdad current←  
);__,( fitnessofSumPselectmom current←  

);,2,1,,( rnewnew XchildchildmomdadcrsovrPP ←  
endrepeat; 

3-2. for each chromosome newP∈  do begin 
mutate (chromosome, rM ); 

    endfor; 
3-3. 

{ }currentnewnew PofschromosomebestfourPP ←  
    newcurrent PP ← ; 

);(_ currentPheuristicDecodingSchedules←  
←ScheduleBest _ evaluate (Schedules); 

         endwhile; 
 Step 4.  Report the best schedule. 
   

Fig. 2  The Base Genetic Algorithm (BGA) [13] 

In the third step, at long as the stop criterion, i.e. the 
number of generations, is not satisfied, the while loop will be 
repeated. The third step consists of three sub-steps. In the 
first sub-step, the two parent chromosomes (dad and mom) 
are selected by the select function using a roulette wheel 
selection in a loop. A roulette wheel places all chromosomes 

in their population which every of them has its place big 
according to its fitness function. The chromosomes with 
better fitness values will be selected more often and have a 
higher probability of generating the offspring. 

Then, the crossover operator is applied to the two parents. 
A random number between 0 and 1 is generated, if this 
number is equal or less than Xr, the parents will be selected 
directly for the new generation; otherwise, two children are 
created by the parents as it will be discussed later. For each 
gene a random number between 0 and 1 is generated. If that is 
less than 0.5 then, the gene related to the dad chromosome is 
copied to the first child and the gene related to the mom 
chromosome is copied to the second one. Otherwise, the gene 
related to the dad is copied to the second child and the gene 
related to the mom is copied to the first one. The first sub-step 
is repeated (Np /2) times since in each iteration two parent 
chromosomes must be selected. 

In the second sub-step, the mutation operator is used to 
prevent falling all solutions in population into the local 
minima of the solved problem and also used for finding the 
new points in the search space so that population diversity 
can be maintained. This operator acts on the chromosomes 
which are produced by crossover operator. A gene of a 
chromosome with a probability Mr is chosen by random and 
its value is added to a random number between the -t_level/2 
and t_level/2 of that node (chromosome) in WDAG. After 
applying mutation, if the gene value is bigger than 
(b-level+t-level) of that node, then its value becomes 
(b-level+t-level). Also, if the gene value is less than b-level, 
then its value becomes b-level of that node. 

Following the elitism method, in the third sub-step, the 
four best chromosomes with the best fitness functions are 
copied to the new generation. This means at least the four 
best solutions (schedules) are copied without changes to a 
new population, and therefore, the best found solution can 
survive until the end of run. Then, the current generation is 
replaced by the new one and after the decoding chromosomes 
using the EFT, their fitness functions are calculated and the 
best chromosome will be stored in the Best_Schedule array. 

In the step four, after the Ng iteration is completed; the 
final stored element in the Best_Schedule array is the best 
solution for the scheduling. 

IV. TDGASA: THE SUGGESTED ALGORITHM 
The discussed algorithm (BGA) by Dhodhi et. al [13] has 

used a fixed number of generations (Ng) for each WDAG with 
any number of tasks. This is a problem in the above algorithm 
because if the number of tasks is small, there is no need to 
tolerate high computation time of the algorithm, and if the 
number of tasks in WDAG is too large, it is possible that the 
number of generations and the number of iterations are not 
enough to find an optimal or sub-optimal solution. For 
tackling this problem, we can use a new idea (algorithm) 
which its running time depends on the number of tasks. 

In this new idea, two main parameters of this algorithm, i.e. 
Np and Ng are defined as factors of tasks’ numbers. These two 
factors are called NP_factor and Ng_factor. 

It is obvious that if the number of tasks in a WDAG is 
small, the computation time will be decreased because of 
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lessening two above parameters. However, if the number of 
tasks is large the computation time of the algorithm will be 
increased. For decreasing the computation time, the 
Simulated Annealing (SA) [15] will be employed here. 

To study a certain state of a material, an annealing process 
is used, where the material is first melted, and then slowly 
cooled in a controlled way to obtain a certain arrangement of 
the atoms. When the temperature is high, atoms can 
occasionally move to states with higher energy, but then, as 
the temperature drops, the probability of such moves is 
reduced. In the task scheduling algorithm, the energy of the 
state corresponds to its computation time, and the 
temperature becomes a control parameter which is reduced 
during the execution of the algorithm. 

For decreasing the temperature and applying the geometric 
cooling schedule in a proper time, a new method is used. 
Therefore, a new algorithm, so-called Task Dependent 
Genetic Algorithm using Simulated Annealing (TDGASA) is 
introduced. 

In TDGASA, if the convergence of the results is 
recognized after some iteration then, some parameters of the 
algorithm will be changed intentionally. This happens by 
decreasing the number of current population size (Np) and Xr 
by multiplying them to a value which is less than one and also, 
increasing Mr by multiplying its value to a number more than 
one. The computation time of a new algorithm is decreased 
by lessening current population and the crossover probability 
and there is an attempt to prevent to trap with local minima by 
increasing the mutation probability.  

 
Step 1. Read the WDAG, ECT and R from a database and 

get Crossover_Factor, Mutation_ Factor, 
pN , 

gN , 

FactorN p _ , FactorN g _ , Sliding_Window, rX  rM , 
, Population_ Factor and Comparison_ Factor, from 
the user; 

;_*__ FactorNtasksofNumberN pp ←  

;_*__ FactorNtasksofNumberN gg ←  
a) 

 
3-4. Calculate value of CD  
       if (CD >= Comparison_Base)  

/* So, Annealing happens */ 
;_* FactorPopulatoinNN pp ←  

;_* FactorCrossoverXX rr ←  
;_* FactorMutationMM rr ←  

Reset Sliding_Counter to zero; 
       endif; 

b)  
Fig 3.  a) The modification in the first step of algorithm shown in Figure 2. b) 
The fourth sub-step of step three is added to the algorithm shown in Figure 2. 

TDGASA algorithm is similar to BGA in figure (2), 
however, the first step is modified as shown in figure (3-a) 
and the fourth sub-step of step three is added to the algorithm 
as it is shown in figure (3-b). 

In the first step, in addition to reading WDAG, ECT and R 
from a database, other parameters are taken from the user. 

Population_Factor, Crossover_Factor and 
Mutation_Factor are the cooling schedules of the algorithm. 

The suitable time for applying these factors will be explained 
later.  

As mentioned earlier, after applying the crossover and 
mutation operators on the current generation and producing 
the new generation and also copying the four best 
chromosomes of the current generation without any changes 
to the new one, all the chromosomes of new generation are 
decoded and the best obtained solution is stored in the 
Best_Schedule array. Therefore, the stored fitness value (the 
overall completion time) of each element is better than the 
previous ones, so, the Best_Schedule is a descending array. 

For applying SA method, in the fourth sub-step, the 
convergence of the Best_Schedule elements is tested by a 
new suggestion idea. This idea uses a sliding window which 
its length depends on the number of tasks in the WDAG. The 
Sliding Window Length (SWL) is given by Equation (3) as 
below: 

SWL = Number_of_tasks * Sliding_Window        (3) 
Sliding_Window is a coefficient of the sliding window 

which its suitable value is determined later. If the beginning 
of sliding window is the index i of Best_Schedule, then the 
Convergence Degree (CD) is calculated by Equation (4): 

i

iSWL

ik
k

uleBest_SchedSWL

uleBest_Sched
CD

*

1

∑
−+

==
                       (4) 

Considering the descending array Best_Schedule, the CD 
is always equal or less than one. If the value of CD is near to 
one, the values of the elements are more convergent, then 
applying the cooling schedules will be more appropriate. The 
value of CD is compared to a Comparison_Base; if the CD is 
equal or more than that, the SA will happen and the sliding 
window counter will be set to zero; otherwise the next 
iteration of the algorithm will be done. The minimum 
distance between two SA events is equal to the SWL. 

A. Determining the optimal parameters of TDGASA  
A set of simulations is done on a Pentium IV with a 2.8 

MHz Intel processor and 1 Gigabyte of RAM to determine 
the optimal parameters of TDGASA algorithm.  

A set of 30 WDAG graphs consists of different tasks, the 
dependency matrix and the ECT are generated randomly by a 
written C# program. All elements of matrix R are set to one. 

To find out the proper value of each parameter 
(Crossover_Factor, Mutation_Factor, Population_Factor, 
Comparison_Base, Sliding_Window), the different values are 
assigned to each parameter, while the values of the other 
parameters remain fixed. Then, the computation time and the 
overall completion time for each WDAG are calculated and 
accordingly, the best value for each parameter is determined 
as follow: 

Crossover_Factor=0.6, Mutation_Factor=1.1, 
Population_Factor=0.8, Comparison_Base =0.95, 
Sliding_Window=0.25. 

V. SIMULATIONS AND RESULTS 
A set of simulations is done on a Pentium IV with a 2.8 

MHz Intel processor and 1 Gigabyte of RAM to compare 
TDGASA with BGA scheduling algorithm. A set of 15 
random WDAG graphs consists of 100 to 200 tasks and 4 to 9 
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machines are generated randomly as shown in table (3). The 
matrix ECT is generated by random and all elements of 
matrix R are set to one. Xr=0.6, Mr=0.05 are set for two 
algorithms and Np=500, Ng=1000 are defined for BGA. 

To run the simulations of two algorithms in the nearly 
same condition, the initial values for Np_Factor and 
Ng_Factor are set to 3 and 6 respectively, so that by 
multiplying their values to the number of tasks (between 100 
and 200), the Np and Ng are attained at BGA range value. The 
other TDGASA parameters are equal to the same values 
which are obtained in section 4.  

TABLE III: THE WDAGS USED FOR THE COMPARISON OF TWO ALGORITHMS 

Number of 
dependencies 

Number of 
machines 

Number 
of tasks 

Graph 
number 

563 4 104 1 
42 9 117 2 

1779 7 124 3 
3781 9 140 4 
9332 7 142 5 
7768 5 151 6 
6955 5 155 7 
5946 5 157 8 
3282 8 158 9 
5416 6 162 10 
676 6 179 11 
4562 6 180 12 
6517 6 189 13 
5665 5 199 14 
15205 4 199 15 

 
Both of two algorithms are run for each graph three times. 

After scheduling, the computation time and the overall 
completion time (by seconds) of each algorithm are shown in 
table (4). Also, the average computation time of TDGASA is 
selected as a base and the ratio between the average 
computation time of BGA and the average computation time 
of TDGASA is calculated for each graph. Then, by adding 
the obtained ratios and dividing the result by the number of 
graphs, the average ratio is achieved. The above steps are 
done for the average overall completion time which is shown 
in table (4). 

As the results show, the computation time of TDGASA is 
decreased by about 83 percent compared to BGA. However, 
the average total completion time is decreased a little. 

TABLE  IV: THE RESULT OF TDGASA AND BGA SCHEDULING ALGORITHMS 
FOR THE GRAPHS SHOWN IN TABLE III 

TDGASA BGA 
Overall 

completion 
time (s) 

Average 
computation 

time (s) 

Overall 
completion 

time (s) 

Average 
computatio
n time (s) 

Graph 
number 

22716 75 22716 261 1 
1772 636 1810 1576 2 
33263 220 32732 402 3 
51186 327 50334 684 4 
220869 577 220869 935 5 
256129 583 256129 1196 6 
210148 477 218869 940 7 
197808 460 197929 895 8 
51040 506 50808 721 9 
109050 493 108393 915 10 
13208 602 13629 908 11 
84132 683 84444 1039 12 
122508 891 123100 1234 13 
151198 1014 145318 1279 14 
553637 1638 553637 1812 15 

15 15 15.0219 27.5282 Sum of 
ratios  

1 1 1.0014 1.83520 Average 
ratios 

VI. CONCLUSIONS 
The task scheduling problem in the distributed systems is 

known to be NP-hard. Therefore, the heuristic algorithms 
which obtain near-optimal solution in an acceptable interval 
time are preferred to the back tracking and the dynamic 
programming. The genetic algorithm is one of the heuristic 
algorithms which have the high capability to solve the 
complicated problems like the task scheduling. 

In this paper, a new genetic algorithm, named TDGASA is 
presented which its population size and the number of 
generations depends on the number of tasks. The 
computation time of this algorithm is decreased by using 
simulated annealing. There is a tradeoff between the 
computation time and the total completion time. But with the 
proper using of simulated annealing, the computation time of 
the algorithm decreases more, although, the overall 
completion time is not increased. TDGASA proved highly 
influential in task scheduling problem; however, it can 
provide a number of contributions in fields such as the 
industrial engineering, the control projects, economy and etc.  
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