
International Journal of Computer Theory and Engineering, Vol. 1, No. 1, April 2009
1793-8201

- 1 -

Abstract—The static task scheduling problem in distributed

systems is very important because of optimal usage of available
machines and accepted computation time for scheduling
algorithm. Solving this problem using the dynamic
programming and the back tracking needs much more time.
Therefore, there are more attempts to solve it using the
heuristic methods. In this paper, a new genetic algorithm,
named TDGASA, is presented which its running time depends
on the number of tasks in the scheduling problem. Then, the
computation time of TDGASA to find a sub-optimal schedule is
improved by Simulated Annealing (SA). The results show that
the computation time of the proposed algorithm decreases
compared to an existing GA-based algorithm, although, the
completion time of the final scheduled task in the system
decreases a little.

Index Terms—Genetic algorithm, static task scheduling,
distributed systems, simulated annealing, (TDGASA) Task
Dependent Genetic Algorithm using Simulated Annealing

I. INTRODUCTION
The complicated tasks can not be executed on the

computing machine in an accepted interval time. Therefore,
they must be divided into small sub-tasks. The sub-tasks can
be executed either in the expensive multiprocessors or in the
distributed systems. The latter choice is preferred due to
better ratio of cost per performance. On the other hand, in
most cases because of some constraints on multiprocessor
systems or the natural distribution of tasks, the only optimum
choice is employing the distributed systems [1].

The distributed system consists of some computing
machines with different performances which are connected to
each other using the high speed interconnections, and, are
useful for much more computing applications [2]. The task
scheduling problem in the distributed systems is known to be
NP-hard, since, for allocating T tasks to H machines, the
number of allocation will be TH and the number of states
for running will be !T . One of the goals of scheduling is to
determine an assignment of tasks to computing machines in
order to optimize the completion time of the final task in the
system.

If the number of tasks and computing systems are too high,
finding the optimal or sub-optimal task scheduling would be
time-consuming and in some cases it consumes more time
than a random execution of tasks. Hence, we must use the

heuristic algorithms based on the problem conditions instead
of employing the classic methods such as the back tracking
and the dynamic programming.

The heuristic algorithms prevent the popular errors in their
own operation while trying to find the optimal solution.
Therefore, they appear to be appropriate for solving problems
[3]. There are more heuristic methods for solving the static
task scheduling, some of which are: Opportunistic Load
Balancing (OLB) [4], Minimum Execution Time (MET) [4],
Minimum Completion Time (MCT) [4], Genetic Algorithms
(GAs) [5-8], Simulated Annealing [9], Tabu Search [7].

One of the best heuristic methods is Genetic Algorithm
(GA). There are many researches under the topics of solving
the static task scheduling using GAs in the multiprocessor
systems [3, 8, 10, 11, 12] and the distributed systems [3, 5, 6,
13, 14]. In this paper, a novel GA is presented which has a
good ability to solve the above problem using the simulated
annealing.

In section 2, the task scheduling problem in the distributed
systems is discussed and a mathematical model is presented.
The genetic algorithm and related work (Basic GA) are
introduced in section 3. In section 4, the proposed algorithm
is introduced. The simulation result and the comparison
between the algorithms are presented in section 5 and section
6 concludes on our findings.

II. MODELING OF THE SCHEDULING PROBLEM
A program can be considered as a set of tasks and can be

modeled as a Weighted Directed Acyclic Graph as below:
WDAG = (T, <, E, D) [13], where { }nitT i ,...,1; == is a set
of tasks, < is a partial order defined on T which specifies
operational precedence constraints. That is, ti < tj means that
ti must be completed before tj can start execution. E is a set of
directed edges. A directed edge, (i, j), between two tasks ti
and tj specifies a partial order. D is an n×n matrix of
communication data, where Di, j is the amount of data
required to be transmitted from task ti to task tj.

If the distributed system consists a set of m machines
which are connected to each other using a fast
interconnection network, then, Estimated Completion Time
(ECT) would be a n×m matrix, where ECTi, j shows the
estimated completion time of the task ti on the machine mj.

A WDAG is shown in figure (1-a) and a distributed system
consisting three machines is shown in figure (1-b). Table (1)
illustrates the ECT matrix of the graph shown in figure (1).

A Novel Genetic Algorithm for Static Task
Scheduling in Distributed Systems

Amir Masoud Rahmani and Mojtaba Rezvani

DOI: 10.7763/IJCTE.2009.V1.1

International Journal of Computer Theory and Engineering, Vol. 1, No. 1, April 2009
1793-8201

- 2 -

H0

H1 H2

b)

t1 t2

t3

t6

t5

t4

t7

347
883

347

589

44

44

589

589

709

275

a)
Fig. 1 a) A WDAG. b) A distributed system consisting three machines

TABLE I: THE ECT MATRIX OF THE GRAPH SHOWN FIGURE (1)

H3 H1 H0
Machines
Tasks

708 898 872 t1
778 624 251 t2
23 786 542 t3
257 737 40 t4
535 247 742 t5
776 749 970 t6
105 451 457 t7

R is a m×m matrix which shows the data transfer rate

between different machines. If two tasks schedule on the
same machine, the communication cost of transferring data
will be zero; otherwise, it is obtained based on Equation (1).

)](),([
),(,

jHiHR
D

ttCommCost ji
ji =

 (1)
Di, j is the amount of data required to be transmitted from

task ti to task tj and R[H(i), H(j)] is the data transfer rate of
two different machines.

According to the outlined concepts, the static task
scheduling problem in the distributed system becomes a
Π:T→H mapping. This mapping allocates a set of tasks T to a
set of machines H, where the precedence constraints on the
tasks is satisfied and the completion time of tasks on the
machines is minimized. The problem’s answer or Scheduling
Length (SL) will be given by Equation (2).

{ })1,...,0maxmin(−=== mjFSLAnswer j
 (2)

Fj is the completion time of final scheduled task on
machine Hj including computation time, communication time
and waiting time because of precedence constraints.

Two other parameters are defined for each node (task) in
the graph known as b-level (the bottom level) and t-level (the
top level). The b-level of a node is the length of the longest
path from the node to a leaf node. If a node has no children,
its b-level is equal to the average execution time of the task
on the different computing machines. The t-level of a node
(task) is the length of the longest path from the node to a root

node in the WDAG without considering the execution time of
that task. In effect, the t-level determines the earliest
beginning time of a task. Therefore, if a task has no parent its
t-level will be zero. Table (2) shows the average Estimated
Completion Time of the tasks (AvgECT) on the different
machines, the b-levels and t-levels of the graph that are
shown in figure (1).

TABLE II: THE B-LEVELS AND T-LEVELS OF THE GRAPH SHOWN IN FIGURE (1)

t_level b_level AvgECT Parameters
Tasks

0, 0 3767, 0 826, 0 t1

0, 0 3189, 0 551, 0 t2
1173, 0 2594, 0 450, 33 t3
2212, 33 957, 33 344, 67 t4
2212, 33 1554, 67 508, 0 t5
2212, 33 831, 67 831, 67 t6
3429, 33 337, 67 337, 67 t7

III. THE GENETIC ALGORITHMS
The GAs are random searching methods based on the

evolution selection and the natural phenomena. These
algorithms are started with a set of random solution called
initial population. Each member of this population is called a
chromosome. Each chromosome is a problem solution which
consists of the string genes. The number of genes and their
values in each chromosome depend on the problem
specification. In algorithms discussed in this paper, the
number of genes of each chromosome is equal to the number
of the nodes (tasks) in the WDAG and the gene values
demonstrate the scheduling priority of the related task to the
node (each chromosome shows a scheduling), where the
higher priority means that task must be executed early.

A set of chromosomes in each iteration of GA is called a
generation. The chromosomes are evaluated by their fitness
functions. The offspring (the new generation) is created by
applying some operators on the current generation. These
operators are a) crossover which selects two chromosomes of
the current population, combines them and generates a new
offspring, and, b) mutation which changes randomly some
gene values of a chromosome and creates a new offspring.
Then, the best children and maybe their parents are selected
by evolutionary select operator according to their fitness
value(s).

Three phases of the production, evaluation and selection
are repeated until some condition is satisfied. Finally, a
chromosome which has the best fitness value(s) is selected as
a solution.

A. Base Genetic Algorithm (BGA)
The GA presented by Dhodhi et. al [13], named here Base

Genetic Algorithm (BGA), has four steps as shown in figure
(2).

In the first step, the following parameters are read from a
database: WDAG, ECT and R. Other parameters such as the
initial population size (Np), the number of generations (Ng),
the crossover probability (Xr), and the mutation probability
(Mr) are provided by the user.

In the second step, the b-level and t-level of each node in
the WDAG are calculated and then, in the first chromosome

International Journal of Computer Theory and Engineering, Vol. 1, No. 1, April 2009
1793-8201

- 3 -

of the initial population, the gene value (priority) of each task
is set to its b-level. The genes values (priorities) of the rest of
the chromosomes are the total of the genes values of the first
chromosome and the random numbers which are generated in
the range of (t-level/2, -t-level/2) of the tasks.

Using the Earliest Finish Time (EFT decoding, which
schedules a candidate task onto a machine on which the finish
time of the task is the earliest), the overall completion time of
the final task in the system is chosen as a fitness function of
each chromosome. For this reason, first, all the genes (tasks)
of each chromosome are sorted in descending order
according to their values (priorities) in a ready queue. If the
precedence of the tasks in the WDAG are not observed in a
chromosome, it is chosen as an illegal chromosome and its
fitness value would be infinite. Otherwise, the tasks are
selected from the ready queue according to their priorities,
and scheduled to the most suitable machine on which the
finish time of the task is the earliest. Finally, the best
chromosome of the first population is stored as a first element
of the Best_Schedule array. The length of this array is equal
to Ng.
 Step 1. Read the WDAG, ECT, and R from a database

and get pN , gN , rX and rM from the user;
 Step 2. Calculate the b-level and the t-level of each task in

the WDAG;
Generate Initial Population (initialP);

initialcurrent PP ← ;
);(_ currentPheuristicDecodingSchedules←

←ScheduleBest _ evaluate (Schedules);
 Step 3. while stop criterion not satisfied do begin

{ }←newP ; /* empty new population */
3-1. repeat for)2/(pN times

);__,(fitnessofSumPselectdad current←
);__,(fitnessofSumPselectmom current←

);,2,1,,(rnewnew XchildchildmomdadcrsovrPP ←
endrepeat;

3-2. for each chromosome newP∈ do begin
mutate (chromosome, rM);

 endfor;
3-3.

{ }currentnewnew PofschromosomebestfourPP ←
 newcurrent PP ← ;

);(_ currentPheuristicDecodingSchedules←
←ScheduleBest _ evaluate (Schedules);

 endwhile;
 Step 4. Report the best schedule.

Fig. 2 The Base Genetic Algorithm (BGA) [13]

In the third step, at long as the stop criterion, i.e. the
number of generations, is not satisfied, the while loop will be
repeated. The third step consists of three sub-steps. In the
first sub-step, the two parent chromosomes (dad and mom)
are selected by the select function using a roulette wheel
selection in a loop. A roulette wheel places all chromosomes

in their population which every of them has its place big
according to its fitness function. The chromosomes with
better fitness values will be selected more often and have a
higher probability of generating the offspring.

Then, the crossover operator is applied to the two parents.
A random number between 0 and 1 is generated, if this
number is equal or less than Xr, the parents will be selected
directly for the new generation; otherwise, two children are
created by the parents as it will be discussed later. For each
gene a random number between 0 and 1 is generated. If that is
less than 0.5 then, the gene related to the dad chromosome is
copied to the first child and the gene related to the mom
chromosome is copied to the second one. Otherwise, the gene
related to the dad is copied to the second child and the gene
related to the mom is copied to the first one. The first sub-step
is repeated (Np /2) times since in each iteration two parent
chromosomes must be selected.

In the second sub-step, the mutation operator is used to
prevent falling all solutions in population into the local
minima of the solved problem and also used for finding the
new points in the search space so that population diversity
can be maintained. This operator acts on the chromosomes
which are produced by crossover operator. A gene of a
chromosome with a probability Mr is chosen by random and
its value is added to a random number between the -t_level/2
and t_level/2 of that node (chromosome) in WDAG. After
applying mutation, if the gene value is bigger than
(b-level+t-level) of that node, then its value becomes
(b-level+t-level). Also, if the gene value is less than b-level,
then its value becomes b-level of that node.

Following the elitism method, in the third sub-step, the
four best chromosomes with the best fitness functions are
copied to the new generation. This means at least the four
best solutions (schedules) are copied without changes to a
new population, and therefore, the best found solution can
survive until the end of run. Then, the current generation is
replaced by the new one and after the decoding chromosomes
using the EFT, their fitness functions are calculated and the
best chromosome will be stored in the Best_Schedule array.

In the step four, after the Ng iteration is completed; the
final stored element in the Best_Schedule array is the best
solution for the scheduling.

IV. TDGASA: THE SUGGESTED ALGORITHM
The discussed algorithm (BGA) by Dhodhi et. al [13] has

used a fixed number of generations (Ng) for each WDAG with
any number of tasks. This is a problem in the above algorithm
because if the number of tasks is small, there is no need to
tolerate high computation time of the algorithm, and if the
number of tasks in WDAG is too large, it is possible that the
number of generations and the number of iterations are not
enough to find an optimal or sub-optimal solution. For
tackling this problem, we can use a new idea (algorithm)
which its running time depends on the number of tasks.

In this new idea, two main parameters of this algorithm, i.e.
Np and Ng are defined as factors of tasks’ numbers. These two
factors are called NP_factor and Ng_factor.

It is obvious that if the number of tasks in a WDAG is
small, the computation time will be decreased because of

International Journal of Computer Theory and Engineering, Vol. 1, No. 1, April 2009
1793-8201

- 4 -

lessening two above parameters. However, if the number of
tasks is large the computation time of the algorithm will be
increased. For decreasing the computation time, the
Simulated Annealing (SA) [15] will be employed here.

To study a certain state of a material, an annealing process
is used, where the material is first melted, and then slowly
cooled in a controlled way to obtain a certain arrangement of
the atoms. When the temperature is high, atoms can
occasionally move to states with higher energy, but then, as
the temperature drops, the probability of such moves is
reduced. In the task scheduling algorithm, the energy of the
state corresponds to its computation time, and the
temperature becomes a control parameter which is reduced
during the execution of the algorithm.

For decreasing the temperature and applying the geometric
cooling schedule in a proper time, a new method is used.
Therefore, a new algorithm, so-called Task Dependent
Genetic Algorithm using Simulated Annealing (TDGASA) is
introduced.

In TDGASA, if the convergence of the results is
recognized after some iteration then, some parameters of the
algorithm will be changed intentionally. This happens by
decreasing the number of current population size (Np) and Xr
by multiplying them to a value which is less than one and also,
increasing Mr by multiplying its value to a number more than
one. The computation time of a new algorithm is decreased
by lessening current population and the crossover probability
and there is an attempt to prevent to trap with local minima by
increasing the mutation probability.

Step 1. Read the WDAG, ECT and R from a database and

get Crossover_Factor, Mutation_ Factor,
pN ,

gN ,

FactorN p _ , FactorN g _ , Sliding_Window, rX rM ,
, Population_ Factor and Comparison_ Factor, from
the user;

;_*__ FactorNtasksofNumberN pp ←

;_*__ FactorNtasksofNumberN gg ←
a)

3-4. Calculate value of CD
 if (CD >= Comparison_Base)

/* So, Annealing happens */
;_* FactorPopulatoinNN pp ←

;_* FactorCrossoverXX rr ←
;_* FactorMutationMM rr ←

Reset Sliding_Counter to zero;
 endif;

b)
Fig 3. a) The modification in the first step of algorithm shown in Figure 2. b)
The fourth sub-step of step three is added to the algorithm shown in Figure 2.

TDGASA algorithm is similar to BGA in figure (2),
however, the first step is modified as shown in figure (3-a)
and the fourth sub-step of step three is added to the algorithm
as it is shown in figure (3-b).

In the first step, in addition to reading WDAG, ECT and R
from a database, other parameters are taken from the user.

Population_Factor, Crossover_Factor and
Mutation_Factor are the cooling schedules of the algorithm.

The suitable time for applying these factors will be explained
later.

As mentioned earlier, after applying the crossover and
mutation operators on the current generation and producing
the new generation and also copying the four best
chromosomes of the current generation without any changes
to the new one, all the chromosomes of new generation are
decoded and the best obtained solution is stored in the
Best_Schedule array. Therefore, the stored fitness value (the
overall completion time) of each element is better than the
previous ones, so, the Best_Schedule is a descending array.

For applying SA method, in the fourth sub-step, the
convergence of the Best_Schedule elements is tested by a
new suggestion idea. This idea uses a sliding window which
its length depends on the number of tasks in the WDAG. The
Sliding Window Length (SWL) is given by Equation (3) as
below:

SWL = Number_of_tasks * Sliding_Window (3)
Sliding_Window is a coefficient of the sliding window

which its suitable value is determined later. If the beginning
of sliding window is the index i of Best_Schedule, then the
Convergence Degree (CD) is calculated by Equation (4):

i

iSWL

ik
k

uleBest_SchedSWL

uleBest_Sched
CD

*

1

∑
−+

==
 (4)

Considering the descending array Best_Schedule, the CD
is always equal or less than one. If the value of CD is near to
one, the values of the elements are more convergent, then
applying the cooling schedules will be more appropriate. The
value of CD is compared to a Comparison_Base; if the CD is
equal or more than that, the SA will happen and the sliding
window counter will be set to zero; otherwise the next
iteration of the algorithm will be done. The minimum
distance between two SA events is equal to the SWL.

A. Determining the optimal parameters of TDGASA
A set of simulations is done on a Pentium IV with a 2.8

MHz Intel processor and 1 Gigabyte of RAM to determine
the optimal parameters of TDGASA algorithm.

A set of 30 WDAG graphs consists of different tasks, the
dependency matrix and the ECT are generated randomly by a
written C# program. All elements of matrix R are set to one.

To find out the proper value of each parameter
(Crossover_Factor, Mutation_Factor, Population_Factor,
Comparison_Base, Sliding_Window), the different values are
assigned to each parameter, while the values of the other
parameters remain fixed. Then, the computation time and the
overall completion time for each WDAG are calculated and
accordingly, the best value for each parameter is determined
as follow:

Crossover_Factor=0.6, Mutation_Factor=1.1,
Population_Factor=0.8, Comparison_Base =0.95,
Sliding_Window=0.25.

V. SIMULATIONS AND RESULTS
A set of simulations is done on a Pentium IV with a 2.8

MHz Intel processor and 1 Gigabyte of RAM to compare
TDGASA with BGA scheduling algorithm. A set of 15
random WDAG graphs consists of 100 to 200 tasks and 4 to 9

International Journal of Computer Theory and Engineering, Vol. 1, No. 1, April 2009
1793-8201

- 5 -

machines are generated randomly as shown in table (3). The
matrix ECT is generated by random and all elements of
matrix R are set to one. Xr=0.6, Mr=0.05 are set for two
algorithms and Np=500, Ng=1000 are defined for BGA.

To run the simulations of two algorithms in the nearly
same condition, the initial values for Np_Factor and
Ng_Factor are set to 3 and 6 respectively, so that by
multiplying their values to the number of tasks (between 100
and 200), the Np and Ng are attained at BGA range value. The
other TDGASA parameters are equal to the same values
which are obtained in section 4.

TABLE III: THE WDAGS USED FOR THE COMPARISON OF TWO ALGORITHMS

Number of
dependencies

Number of
machines

Number
of tasks

Graph
number

563 4 104 1
42 9 117 2

1779 7 124 3
3781 9 140 4
9332 7 142 5
7768 5 151 6
6955 5 155 7
5946 5 157 8
3282 8 158 9
5416 6 162 10
676 6 179 11
4562 6 180 12
6517 6 189 13
5665 5 199 14
15205 4 199 15

Both of two algorithms are run for each graph three times.

After scheduling, the computation time and the overall
completion time (by seconds) of each algorithm are shown in
table (4). Also, the average computation time of TDGASA is
selected as a base and the ratio between the average
computation time of BGA and the average computation time
of TDGASA is calculated for each graph. Then, by adding
the obtained ratios and dividing the result by the number of
graphs, the average ratio is achieved. The above steps are
done for the average overall completion time which is shown
in table (4).

As the results show, the computation time of TDGASA is
decreased by about 83 percent compared to BGA. However,
the average total completion time is decreased a little.

TABLE IV: THE RESULT OF TDGASA AND BGA SCHEDULING ALGORITHMS
FOR THE GRAPHS SHOWN IN TABLE III

TDGASA BGA
Overall

completion
time (s)

Average
computation

time (s)

Overall
completion

time (s)

Average
computatio
n time (s)

Graph
number

22716 75 22716 261 1
1772 636 1810 1576 2
33263 220 32732 402 3
51186 327 50334 684 4
220869 577 220869 935 5
256129 583 256129 1196 6
210148 477 218869 940 7
197808 460 197929 895 8
51040 506 50808 721 9
109050 493 108393 915 10
13208 602 13629 908 11
84132 683 84444 1039 12
122508 891 123100 1234 13
151198 1014 145318 1279 14
553637 1638 553637 1812 15

15 15 15.0219 27.5282 Sum of
ratios

1 1 1.0014 1.83520 Average
ratios

VI. CONCLUSIONS
The task scheduling problem in the distributed systems is

known to be NP-hard. Therefore, the heuristic algorithms
which obtain near-optimal solution in an acceptable interval
time are preferred to the back tracking and the dynamic
programming. The genetic algorithm is one of the heuristic
algorithms which have the high capability to solve the
complicated problems like the task scheduling.

In this paper, a new genetic algorithm, named TDGASA is
presented which its population size and the number of
generations depends on the number of tasks. The
computation time of this algorithm is decreased by using
simulated annealing. There is a tradeoff between the
computation time and the total completion time. But with the
proper using of simulated annealing, the computation time of
the algorithm decreases more, although, the overall
completion time is not increased. TDGASA proved highly
influential in task scheduling problem; however, it can
provide a number of contributions in fields such as the
industrial engineering, the control projects, economy and etc.

REFERENCES
[1] Tanenbaum, A. S., Modern Operating Systems, Prentice Hall, 1992.
[2] Watson, D.W., Antonio, J. K., Siegel, H. Gupta, J., R., and Atallah,

M.J., "Static matching of ordered program segments to dedicated
machines in a heterogeneous computing environment", Proceedings
of the Heterogeneous Computing Workshop, April 1996, pp. 24–37.

[3] Haupt, R.L., Haupt, S.E., Practical genetic algorithms, John willy &
Sons, 2004.

[4] Armstrong, R., Hensgen, D., and Kidd, T., "The relative
performance of various mapping algorithms is independent of
sizable variances in run-time predictions", 7th IEEE Heterogeneous
Computing Workshop (HCW '98), 1998, pp. 79-87.

[5] Ali, S., Braun, T. D., Siegel, H. J., and Maciejewski, A. A.,
Heterogeneous computing, in Encyclopedia of Distributed
Computing, Kluwer Academic, Norwell, MA, 2001.

[6] Braun, T. D., Siegel, H. J. and Beck, N., "A comparison of eleven
static heuristics for mapping a class of independent tasks onto
heterogeneous distributed systems", Journal of Parallel and
Distributed Computing Vol. 61, 2001, pp. 810-837.

International Journal of Computer Theory and Engineering, Vol. 1, No. 1, April 2009
1793-8201

- 6 -

[7] Zafarani Moattar E., Rahmani A.M., Feizi Derakhshi M.R., "Job
Scheduling in Multi Processor Architecture Using Genetic
Algorithm", 4th IEEE International conference on Innovations in
Information Technology, dubai, 2007, pp. 248-251.

[8] Shenassa, M. H., Mahmoodi, M., "A novel intelligent method for
task scheduling in multiprocessor systems using genetic algorithm",
journal of Franklin Institute, Elsevier, 2006, pp. 1-11.

[9] Pourhaji Kazem A. A., Rahmani A. M. and Habibi Aghdam H., , “A
Modified Simulated Annealing Algorithm for Static Scheduling in
Grid Computing”, International Conference on Computer Science
and Information Technology 2008 (ICCSIT 2008), Singapore
August 29 – September, 2008, pp. 623-627.

[10] Rahmani A. M., Vahedi M. A., "A Novel Task Scheduling in
Multiprocessor Systems with Genetic Algorithm by Using Elitism
Stepping Method", INFOCOMP – Journal of Computer Science,
Vol. 7(2), 2008, pp.58-64.

[11] Abdeyazdan M. and Rahmani A. M., "Multiprocessor Task
Scheduling using a new Prioritizing Genetic Algorithm based on
number of Task Children", Book chapter of Distributed and Parallel
Systems in Focus: Desktop Grid Computing, Springer Verlag, 2008,
pp. 105-114.

[12] Lee, Y.H., Chen, C., "A Modified Genetic Algorithm for Task
Scheduling in Multiprocessor Systems", the 9th workshop on
compiler techniques for high-performance computing, 2003.

[13] Dhodhi, M. K., Ahmad, I., Yatama, A. and Ahmad, I., "An
integrated technique for task matching and scheduling onto
distributed heterogeneous computing systems", Journal of Parallel
and Distributed Computing, Vol. 62, 2002, pp. 1338–1361.

[14] Radulescu, A., Gemund, A.van. "Fast and effective task scheduling
in heterogeneous systems", Proceeding of Heterogeneous
Computing Workshop, 2000.

[15] Kirkpatrick, S., C. D. Gelatt Jr., and M. P. Vecchi., "Optimization by
simulated annealing", Science, Vol. 220, 1983, pp. 671-680.

Amir Masoud Rahmani received his B.S. in
computer engineering from Amir Kabir University,
Tehran, in 1996, the M.S. in computer engineering
from Sharif University of technology, Tehran, in 1998
and the PhD degree in computer engineering from
IAU University, Tehran, in 2005. He is an assistant
professor in the Department of Computer and
Mechatronics Engineering at the IAU University.
He is the author/co-author of more than 60
publications in technical journals and conferences. He
served on the program committees of several national

and international conferences. His research interests are in the areas of
distributed systems, ad hoc and sensor wireless networks, scheduling
algorithms and evolutionary computing.

