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Abstract: It is necessary but difficult to accurately predict the water levels in front of the pumping sta-
tions of an open-channel water transfer project because of the complex interactions among hydraulic
structures. In this study, a novel GRA-NARX (gray relation analysis—nonlinear auto-regressive
exogenous) model is proposed based on a gray relation analysis (GRA) and nonlinear auto-regressive
exogenous (NARX) neural network for 2 h ahead for the prediction of water levels in front of pump-
ing stations, in which an improved algorithm of the NARX neural network is used to obtain the
optimal combination of the time delay and the hidden neurons number, and GRA is used to reduce
the prediction complexity and improve the prediction accuracy by filtering input factors. Then, the
sensitivity to changes of the training algorithm is analyzed, and the prediction performance is com-
pared with that of the NARX and GRA-BP (gray relation analysis back-propagation) models. A case
study is performed in the Tundian pumping station of the Miyun project, China, to demonstrate the
reliability and accuracy of the proposed model. It is revealed that the GRA-NARX-BR (gray relation
analysis—nonlinear auto-regressive exogenous—Bayesian regularization) model has higher accuracy
than the model based only on a NARX neural network and the GRA-BP model with a correlation
coefficient (R) of 0.9856 and a mean absolute error (MAE) of 0.00984 m. The proposed model is
effective in predicting the water levels in front of the pumping stations of a complex open-channel
water transfer project.

Keywords: gray relation analysis; NARX neural network; pumping station; water level prediction

1. Introduction

Large-scale water transfer projects contribute significantly to mitigating the uneven
distribution of water resources in a country. In an open-channel water transfer project
consisting of a wide variety of hydraulic structures for different purposes, the water level
between two adjacent pumping stations should be kept as constant as possible to avoid
possible channel overflow or drying-up of the pumping station forebay. A sharp change in
water level may cause water supply disruption and substantial hydraulic oscillation [1].
For this reason, an accurate prediction of water levels in front of pumping stations is of
vital importance for the normal operation of these pumping stations.

The water levels of open-channel water transfer projects, natural lakes, or rivers are
usually predicted using physically based models or machine learning models. The physi-
cally based models are mainly based on hydrodynamic models with Saint Venant equations
as the governing equations to simulate one-dimensional channel flow, and the use of these
models is somewhat limited because they require complete information about the study
area [2,3]. Machine learning models mainly include the relevance vector machine (RVM)
model [4], grey model(1,1) (GM (1,1)) model [5], multiple linear regression model [6], and
neural network model [7–20]. The first three models are applicable to complex predic-
tion situations, but their prediction accuracy is not sufficiently high. In contrast, neural
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network models are increasingly used for water-level prediction in recent years. The back-
propagation (BP) neural network has a strong nonlinear fitting ability but has no feedback
memory nodes [13–15]. The long short-term memory (LSTM) network has several memory
blocks consisting of an output gate, an input gate, a forget gate, and a memory cell, and it is
effective for volatile time series [21]. The Elman neural network (ENN) has a high capacity
for learning any dynamic input–output relationship. However, it substitutes less trustwor-
thy learning for streamlined derivative calculations [22]. The nonlinear auto-regressive
exogenous (NARX) neural network is a recurrent dynamic network composed of input
delay and feedback memory nodes, and it is widely used for complex multi-input and
multi-output systems [23]. It also significantly outperforms other artificial neural network
(ANN) methods in terms of how quickly it reaches the weights for connections between
neurons and input parameters [24] and reduces the number of the parameters to build
an efficient model [25]. Previous studies about the NARX models have focused more on
extreme values in high-tide prediction, groundwater-level prediction, and drought and
flood prediction. For example, Di Nunno et al. [26] established two different NARX-based
models for extreme storm tide events that were both more accurate than existing models.
Additionally, Di Nunno and Granata [27] discovered that the NARX neural network could
precisely forecast the fluctuation of the daily groundwater levels of 76 wells located in Apu-
lia, Italy. Wunsch et al. [28] found that the NARX neural network was stable for predicting
groundwater levels of several wells in fractured, porous, and karst aquifers in southwest
Germany for up to half a year. Ezzeldin and Hatata [29] revealed that the NARX neural
network was better than all other models available in the literature for predicting the flow
at the side orifice. Wang et al. [30] demonstrated that the NARX neural network could be
successfully used to predict droughts and floods in the Yangtze River basin, China. Fan
et al. [31] found that the NARX neural network was better than the BP neural network in
predicting the nonlinear and cumulative characteristics of dam deformation time series.

The choice of input variables will have an impact on the prediction accuracy of the neu-
ral network model. The input factors should be filtered to reduce the prediction complexity
and improve the prediction accuracy. Gray relational analysis (GRA) is a quantitative
method to explore the dissimilarity and similarity among factors, and it has no strict re-
quirement on the distribution and number of the dataset. In recent years, many prediction
models have been proposed by combining GRA with neural networks. When predicting the
fertilization of forests, Chen et al. [32] discovered that the gray relation analysis—particle
swarm optimization—back-propagation (GRA-PSO-BP) model was more reliable than
the BP and BP-PSO models. Chen and Lin [33] found that the GRA-LSTM model was
robust in the short-term forecasting of PV power plants. Chen et al. [34] developed the
GRA-NARX model to forecast changes of dissolved oxygen mass concentration in surface
water; however, the model’s accuracy tends to decline with time.

It is worth noting that few GRA-NARX models are available for predicting water
levels in front of pumping stations. Moreover, in previous NARX models, the time delay
and the hidden neurons number are selected based on experience [35,36], and there is
a need to determine the optimal combination of the time delay and the hidden neurons
number to obtain the most accurate prediction. In addition, Levenberg–Marquardt (LM)
is the most frequently used training algorithm in current NARX neural networks and
other algorithms are seldom used. The primary goal of this study is to investigate the
reliability and accuracy of the novel GRA-NARX model for the water-level prediction of a
pumping station forebay in an open-channel water transfer project, as well as the sensitivity
to changes in the training algorithm. Our major contributions are threefold:

1. A novel water-level prediction model is proposed based on gray relation analysis
(GRA) and NARX neural network with the optimal combination of the time delay
and the hidden neurons number for prediction of water levels in front of the pumping
stations of a water transfer project.

2. The sensitivity to changes of the training algorithm is analyzed.
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3. The case study is performed in the Tundian pumping station of the Miyun project, China,
and the results show that our model outperforms the NARX and GRA-BP models.

The remainder of this paper is structured as follows. Section 2 describes the study area
and methods used in this work. The experimental results are presented in Section 3. The dis-
cussion is presented in Section 4. Section 5 contains the conclusions and recommendations
for future work.

2. Study Area and Methods
2.1. Study Area

The Miyun project (Figure 1) was put into operation in May 2015 to supply water to
Beijing, the capital city of China. The hydrodynamic characteristics, such as water levels
in front of pumping stations, gate opening, and flow rates, were available under different
operating and weather conditions. Six pumping stations (P1–P6) were built at the Tundian
gate, Liulin inverted siphon, Jingtou inverted siphon, Xingshou inverted siphon, Lishishan
control gate, and Xitai plunge control gate to pump water from the Jingmi water diversion
canal to the Huairou Reservoir, and there is no storage reservoir along the route. Three
pumping stations (P7–P9) were built from Guojiawu to Xiwongzhuang with a total length
of 31 km, including 8 km of the original Jingmi water diversion canal, 22 km of single
prestressed concrete cylinder pipe (PCCP) (2.6 m in diameter), and 800 m of steel pipeline.
For the last three pressurized pumping stations, the flow rate is about 10 m3/s.
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Figure 1. A schematic diagram of the Miyun Reservoir project.

The Tundian pumping station located on the north side of the Tundian control gate of
the Jingmi water diversion canal in Haidian District was selected for the case study. This
pumping station is used in cooperation with the Tundian control gate for water lifting
with a design head of 1.71 m. It is 8.1 km away from the upstream control node at the
Tuancheng Lake north gate, and the main hydraulic structures along the route include
the Anhe Yang gate, Nongda diversion gate, Donggan diversion gate, Beigan diversion
gate, Huimin Cemetery Yanglui gate, Wuyi diversion gate, Hanjiachuan Yang gate, and
Cuijiayao diversion gate. It is 9.5 km away from the downstream control node at the former
Liulin pumping station, and the main hydraulic structures along the route include the
Lengquan Bridge floodgate, Tai Zhouwu floodgate, Samsung Zhuang floodgate, Hot Spring
inverted siphon, Bei’an River floodgate, and former Liulin inverted siphon. The water-flow
conditions are rather complex, making it difficult for water-level prediction.
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2.2. Methods
2.2.1. Cleaning and Interpolation of Water-Level Data

As outliers are frequently present in water-level data because of various factors, such
as equipment failure, human activities, and climate change, the original water-level data
needs to be cleaned to ensure the accuracy of the prediction. The box plot method is often
used to detect possible outliers in a dataset, and, unlike the z-score method or the Grubbs
method, it does not require the data to follow a normal distribution [37]. The box plot
contains five statistical points: lower quartile S1, median S2, upper quartile S3, lower limit,
and upper limit. The distance between upper and lower quartiles is the inter-quartile
distance IQR, and the upper and lower limit are expressed as S3 + 1.5IQR and S1− 1.5IQR,
respectively, as shown in Figure 2. A value smaller than the lower limit or larger than the
upper limit is identified as an outlier. Finally, all outliers are rejected and interpolated.
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Figure 2. A schematic diagram of the box plot.

2.2.2. Selection of the Main Influencing Factors of Water-Level Information

The current water level in front of a pumping station can be influenced by a number
of factors, such as the water level at the previous moment, or an earlier flow rate of the
pumping station, or the flow-rate difference between the downstream and upstream of the
pumping station. However, only the main influencing factors are considered to reduce the
prediction complexity and improve the prediction accuracy. GRA is a statistical technique
to explore the dissimilarity and similarity among influencing factors and it has no strict
requirement on the number and distribution of the dataset. The specific steps are as follows:

Step 1: Determine the comparison and reference sequences. The current water level in front
of the pumping station is taken as the reference sequence (x0 = {x0(k)|k = 1, 2, 3, . . . , n}), and
the influencing factors are taken as the comparison sequences
(xi = {xi(k)|k = 1, 2, 3, . . . , n}, i = 1, 2, 3, . . . m ). There are m comparison sequences and n
evaluation indexes.

Step 2: Dimensionless processing of comparison and reference sequences.
Step 3: Calculate the gray relational coefficient between reference and comparison

sequences, which is defined as follows:

ξi(k) =
min

i
(min

k
|x0(k)− xi(k)|) + ρmax

i
(max

k
|x0(k)− xi(k)|)

|x0(k)− xi(k)|+ ρmax
i

(max
k
|x0(k)− xi(k)|)

(1)

where ρ is the resolution coefficient, which is in the range of (0, 1), and the larger the
resolution coefficient, the larger the resolution will be. The best resolution is ρ = 0.5463,
and it is usually taken to be ρ = 0.5.
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Step 4: Calculate the gray relation between reference and comparison sequences:

ri =
1
n

n

∑
k=1

ξi(k), i = 1, 2, 3, . . . , m (2)

Step 5: Sort the gray relation according to the size. The closer the ri value is to 1, the
higher the influence of the comparison sequence on the reference sequence will be. If the gray
relation is less than 0.6, the two sequences are considered to be not correlated, while if the
gray relation is greater than 0.8, the two sequences are considered to be highly correlated.

2.2.3. NARX Neural Network Model for Pumping Station Forebay

The NARX neural network is made up of interconnected nodes that stand in for
synthetic neurons that receive one or more inputs and elaborate them to produce an output.
These sums go through a nonlinear activation function. There are three layers in the
network: the input, hidden, and output layers (Figure 3). The input layer contains the
input parameters of the neural network, the hidden layer between input and output layers
has several hidden neurons, the output layer gives the predicted value y(t), and then the
output is fed back to the input. If one of the following conditions is fulfilled, the NARX
process is terminated: the maximum number of epochs; the training algorithm adjustment
parameter; or the error gradient below a minimal value. The NARX model is implemented
in MATLAB®2020.
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The NARX model can be expressed as:

y(t) = f (x(t− 1), x(t− 2), . . . x(t− d), y(t− 1), y(t− 2), . . . y(t− d)) (3)

where f is a nonlinear function; x(t) is the input value representing the influencing factors of
the current water level in front of the pumping station; y(t) is the output value representing
the current water level in front of the pumping station; and d is the time delay evaluated
by the optimal combination of the time delay and the hidden neurons number. y(t) can
be obtained from the previous values of x(t) and y(t) by nonlinear mapping. The network
inputs are x1, x2, . . . , xn, and the output of each layer is calculated as:

Hj = f (
n

∑
i=1

wijxi − bj) (4)

where wij is the weight; bj is the bias; and f ( f = f 1or f = f 2) is the activation function.
The sigmoid activation function f 1 is used for the hidden layer, while the linear activation
function f 2 with only one neuron, n, is used for the output layer. The weight wij and bias bj
of the NARX model are optimized based on the training algorithm. More details can be
found in [38].
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2.2.4. Training Algorithms

Three training algorithms including Levenberg–Marquardt (LM), Bayesian regular-
ization (BR), and scaled conjugate gradient (SCG) are used and compared in this study.
LM converges fast with a stable convergence rate and it is regularly employed for the
time-series prediction of neural networks; BR performs well in difficult problems and is
a Gauss–Newton approximation to the Hessian matrix; SCG is an iterative algorithm for
large linear systems with a convergence speed between the first two of the inputs [10].

2.2.5. Evaluation Metrics

The correlation coefficient (R), mean square error (MSE), root mean square error
(RMSE), and mean absolute error (MAE) are used to assess the performance of the GRA-
NARX, NARX, and GRA-BP models. R denotes the relationship between the observed and
predicted values and it is in the range of 0–1, where 1 denotes perfect agreement between
the observed and predicted values and 0 denotes no relationship. RMSE, MSE, and MAE
indicate the magnitude of the disparity between the predicted and observed values, and
the smaller the RMSE, MSE, and MAE values are, the better the prediction will be.

MAE =

m
∑

i=1
| fi − yi|

m
(5)

MSE =

m
∑

i=1
( fi − yi)

2

m
(6)

R =

∣∣∣∣ m
∑

i=1
(yi − yi)( fi − fi)

∣∣∣∣√
(

m
∑

i=1
yi − yi)

2
(

m
∑

i=1
fi − fi)

2
(7)

RMSE =

√√√√√ m
∑

i=1
( fi − yi)

2

m
(8)

where m is the total number of observed data; fi is the predicted value of the i th data; yi is
the observed value of the i th data; and yi and fi are the average of the observed data and
the predicted data.

2.2.6. Evaluation of the Time Delay and the Hidden Neurons Number

In the existing literature, the selection of the time delay and the hidden neurons
number is dependent entirely on the experience. To verify the accuracy of the GRA-NARX
model, different MSE values are obtained under different combinations of the time delay
and the hidden neurons number, and the minimal MSE indicates the optimal combination.
The improved algorithm of the NARX model is shown in Table 1.
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Table 1. Improved algorithm of the NARX model.

Algorithm 1 NARX Model Improved Algorithm

1. nDelays = 1:n;
2. Hidden neurons = 1:m;
3. bestPerformance = 1;
4. bestDeylay = 0;
5. bestHidden neurons = 0;
6. performanceMap = zeros(length(nDelays), length(hidden neurons));
7. for nd = 1:length(nDelays)
8. nDelay = nDelays(nd);
9. inputDelays = 1:nDelay;
10. feedbackDelays = 1:nDelay;
11. for hs = 1:length(hidden neurons)
12. hidden neurons = hidden neurons(hs);
13. net = narxnet(inputDelays, feedbackDelays, hidden neurons);
14. performanceMap(nd, hs) = performance;
15. if performance < bestPerformance
16. disp([‘best performance:’, num2str(performance)]);
17. disp([‘bset delay:’, num2str(nDelay)]);
18. disp([‘best hidden neurons: ’, num2str(hidden neurons)]);
19. bestPerformance = performance;
20. bestDeylay = nDelay;
21. besthidden neurons = hidden neurons;
22. bestNet = net;
23. end
24. end
25. end

2.2.7. GRA-NARX Neural Network Model for Pumping Station Forebay

The GRA-NARX neural network model is constructed as follows. First, the water-level
data is cleaned using the box plot method and interpolated using the mean fill method.
Then, the main influencing factors of the current water level are identified by GRA and
then input into the NARX neural network. The training algorithm, the time delay, and the
number of neurons in the hidden layer are determined. The flowchart of the water-level
prediction model based on the GRA-NARX neural network is shown in Figure 4.
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3. Results
3.1. Cleaning of Water-Level Data

A total of 2868 water levels were recorded at intervals of 2 h in front of the Tundian
pumping station from 11 March 2016 to 10 November 2016. The data were cleaned using
the box plot method as described in Section 2.2.1, in which the upper quartile was 49.2,
the lower quartile was 49.07, the upper limit was 49.395, and the lower limit was 48.875.
The values higher than the upper limit and lower than the lower limit were identified as
outliers. A total of 20 outliers were identified, as shown in Table 2, and then these values
and the original null values were interpolated using the mean fill method.

Table 2. Outliers in the monitoring data.

Time Water Level/m Time Water Level/m

20 July 20:00:00 49.52 17 September 14:00:00 48.85
20 July 22:00:00 49.59 7 October 22:00:00 48.87
20 July 00:00:00 49.59 9 October 04:00:00 48.86
20 July 02:00:00 49.45 10 October 12:00:00 48.86

17 September 00:00:00 48.87 14 October 04:00:00 48.87
17 September 02:00:00 48.77 15 October 08:00:00 48.87
17 September 04:00:00 48.75 26 October 02:00:00 48.86
17 September 06:00:00 48.86 3 November 04:00:00 48.87
17 September 10:00:00 48.87 3 November 06:00:00 48.86
17 September 12:00:00 48.80 6 November 16:00:00 48.87

3.2. Selection of the Main Influencing Factors of Water-Level Information

The current water level in front of the pumping station may be affected by a wide
variety of factors, mainly including the flow rate, water level before and after the pumping
station, and water level of the last station before and after the gate at the previous moment.
The current water level in front of the Tundian pumping station is used as the reference
sequence, and the five influencing factors at the previous moment (two hours ago) are
taken as the comparison sequences, where r1 is the previous moment flow rate in front of
the Tundian pumping station, r2 is the previous moment water level in front of the Tundian
pumping station, r3 is the previous moment water level after the Tundian pumping station,
r4 is the previous moment water level in front of the end of Tuan Cheng Lake, and r5
is the previous moment water level after Tuan Cheng Lake. The 2868 pieces of cleaned
data were converted into dimensionless values to eliminate the difference in scale and
unit, and the gray relational coefficients were calculated as described in Section 2.2.2. The
gray correlation between each influencing factor and the current water level in front of the
pumping station is shown in Table 3.

Table 3. Grey correlation between each influencing factor and the current water level in front of the
pumping station.

No. Factor Correlation

1 r1 0.6512
2 r2 0.9456
3 r3 0.8669
4 r4 0.6401
5 r5 0.6417

Therefore, the next-moment water level in front of the Tundian pumping station (two
hours later) is predicted using r2 and r3 as the inputs of the neural network model and the
current water level in front of the Tundian pumping station as the output of the GRA-NARX
neural network model.
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3.3. Construction of Prediction Model
3.3.1. GRA-NARX Model

Considering the GRA results, the previous-moment water levels in front of and after
the Tundian pumping station were used as the input factors of the neural network model,
and the current water level in front of the Tundian pumping station was used as the output
factor. Then, the NARX neural network model was used to train and test the dataset.
Respectively, 70%, 15%, and 15% of the 2868 pieces of water-level data were randomly
selected for training, verification, and testing, according to experience and the trial-and-
error method; “tansig” and “purelin” were the transfer functions of the hidden layer and
the output layer, respectively. The maximum iteration number was 1000, the learning rate
was 10−3, and the error gradient was 10−7. The range of the time delay and the hidden
neurons number was 1–14 and 1–20, respectively, and their optimal combination was
obtained as described in Section 2.2.6. Other parameters were set to default values.

3.3.2. GRA-BP Model

When using the same input, various neural networks can be compared for how they
affect it. The input and output factors, the ratio of input data division, the number of neurons
in the hidden layer, and the transfer functions of the hidden and output layers of the GRA-BP
neural network were the same as those of the GRA-NARX neural network, but the output of
the GRA-NARX neural network was fed back to the input at the next moment.

3.3.3. NARX Model

The input factors of the NARX model included the previous-moment flow of the Tun-
dian pumping station, the previous-moment water level in front of the Tundian pumping
station, the previous-moment water level after the Tundian pumping station, the previous-
moment water level before the gate at the end of Tuancheng Lake, and the previous-moment
water level after the gate at the end of Tuancheng Lake, and the output factor was the
current water level in front of the Tundian pumping station. Other network training
parameters were the same as those of the GRA-NARX neural network.

3.4. Results and Analysis of GRA-NARX Model

According to Sections 2.2.6 and 3.3.1, the range of the time delay is set to 1–14 and that
of the hidden neurons number is set to 1–20. The MSE values for the GRA-NARX model
under different combinations of the time delay and the hidden neurons number are shown
in Figure 5, where a lighter color indicates a smaller MSE value. Figure 5a reveals that when
BR is used as the training algorithm, the MSE value reaches a minimum of 0.0001975 when
the time delay is 9 and the hidden neurons number is 13. Figure 5b reveals that when LM
is used as the training algorithm, the MSE value reaches a minimum of 0.0002636 when the
time delay is 10 and the hidden neurons number is 12. Figure 5c reveals that when SCG is
used as the training algorithm, the MSE value reaches a minimum of 0.0004013 when the
time delay is 14 and the hidden neurons number is 18. Therefore, it is concluded that the
use of BR as the training algorithm yields the best prediction results.
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3.5. Comparison with Other Models

As seen in Figures 6–8, the index R serves as a summary and evaluation of the NARX
and GRA–NARX models’ performances. In comparison to the NARX model, it is discovered
that the GRA-NARX model is more reliable irrespective of the training algorithm used.
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Under the optimal combination of the time delay and the hidden neurons number, the
R values are 0.9856 and 0.98363 for the GRA-NARX and NARX models using BR as the
training algorithm, 0.98318 and 0.97962 for that using LM as the training algorithm, and
0.97726 and 0.97358 for that using SCG as the training algorithm, respectively.
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using SCG as the training algorithm: (a) NARX-SCG, (b) GRA-NARX-SCG.

The comparison of the performance between the GRA-BP and GRA-NARX models using
BR, LM, and SCG as the training algorithms is illustrated in Figures 9–11, respectively. Again,
the GRA-NARX model is more accurate than the GRA-BP model irrespective of the training
algorithm used. Under the optimal combination of the time delay and the hidden neurons
number, the R values are 0.9856 and 0.97294 for the GRA-NARX and GRA-BP models using
BR as the training algorithm, 0.98318 and 0.97082 for that using LM as the training algorithm,
and 0.97726 and 0.93706 for that using SCG as the training algorithm, respectively.
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Figure 11. Scatter plots of measured and predicted water levels for the GRA-NARX and GRA-BP
models using SCG as the training algorithm: (a) GRA-BP-SCG, (b) GRA-NARX-SCG.

Table 4 shows the MSE and MAE values for the GRA-NARX, GRA-BP, and NARX
models with different training algorithms under the optimal combination of the time delay
and the hidden neurons number. When BR is used as the training algorithm, the MSE is
2.3104 × 10−4, 5.7121 × 10−4, and 2.3716 × 10−4 with MAE of 0.00984, 0.01754, and 0.01042
for the GRA-NARX, GRA-BP, and NARX models, respectively; when LM is used as the
training algorithm, the MSE is 2.9929× 10−4, 7.1824× 10−4, and4.5796× 10−4 with MAE of
0.01216, 0.02080, and 0.01289 for the GRA-NARX, GRA-BP and NARX models, respectively;
and when SCG is used as the training algorithm, the MSE is 4.7089 × 10−4, 9.8596 × 10−4,
and 4.7961 × 10−4 with MAE of 0.01288, 0.02559, and 0.01324 for the GRA-NARX, GRA-BP,
and NARX models, respectively.

Table 4. The MSE and MAE values for the three models with different training algorithms.

Training
Algorithm

GRA-NARX GRA-BP NARX

MSE MAE MSE MAE MSE MAE

BR
LM
SCG

2.3104 × 10−4

2.9929 × 10−4

4.7089 × 10−4

0.00984
0.01216
0.01288

5.7121 × 10−4

7.1824 × 10−4

9.8596 × 10−4

0.01754
0.02080
0.02559

2.3716 × 10−4

4.5796 × 10−4

4.7961 × 10−4

0.01042
0.01289
0.01324
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In addition, Taylor diagrams [39] are used to assess the three models’ performances
(Figure 12). Figure 12 exhibits the higher performance of the GRA-NARX model, with both
the lowest RMSE value and the best correlation coefficient. The GRA-NARX-BR model can
be regarded as the best model for the water-level prediction of a pumping station forebay.
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The performances of the three models with different training algorithms are further
compared by means of MSE and MAE in the training, validation, and test periods (Table 5).
Under the optimal combination of the time delay and the hidden neurons number, we
can see from Table 5 that the GRA-NARX model is more accurate than other models. For
instance, it can be demonstrated that over the training period the GRA-NARX-BR model
has the smallest MSE (1.5449 × 10−4) and MAE (0.0092). The results from the GRA-BP-BR
model are, respectively, an MSE of 3.2041 × 10−4 and an MAE of 0.0135, and from the
NARX-BR model, an MSE of 1.6129 × 10−4 and an MAE of 0.0096.

Table 5. The MSE and MAE values for the three models with different training algorithms in the
training, validation, and test periods.

Samples Training
Algorithm

GRA-NARX GRA-BP NARX

MSE MAE MSE MAE MSE MAE

Training
BR
LM
SCG

1.5449 × 10−4

1.9321 × 10−4

2.6244 × 10−4

0.0092
0.0096
0.0110

3.2041 × 10−4

5.1076 × 10−4

5.4289 × 10−4

0.0135
0.0216
0.0186

1.6129 × 10−4

2.4649 × 10−4

2.9929 × 10−4

0.0096
0.0107
0.0115

Validation
BR
LM
SCG

1.4884 × 10−4

1.7689 × 10−4

2.2500 × 10−4

0.0094
0.0093
0.0113

4.7961 × 10−4

8.2369 × 10−4

8.5884 × 10−4

0.0193
0.0227
0.0232

1.801 × 10−4

2.4964 × 10−4

4.621 × 10−4

0.0091
0.0107
0.0123

Test
BR
LM
SCG

4.2436 × 10−4

9.0000 × 10−4

1.6892 × 10−3

0.0111
0.0167
0.0250

1.6241 × 10−3

1.4516 × 10−3

3.2149 × 10−3

0.0259
0.0267
0.0413

7.3441 × 10−4

4.7961 × 10−3

1.5445 × 10−3

0.0121
0.0233
0.0250

4. Discussion

The results demonstrate that the novel GRA-NARX model is effective for predicting
the water levels in front of the Tundian pumping station.

Figures 6–11 depict that the correlation of the GRA-NARX model is further improved.
From the MSE and MAE values for the three models (Table 4), we find that GRA-NARX model
has the smallest MSE and MAE values. Bedsides, the more comparable representation of the
model performance is shown by the Taylor diagram (Figure 12). The GRA-NARX model is
closest to the observed site, whereas the GRA-BP model was situated the farthest away. At
the same time, we give the estimation results of the three models in the training, validation,
and test periods (Table 5). The GRA-NARX model has smaller MSE and MAE values than
the GRA-BP model and the NARX model, which reveals that the GRA-NARX model has a
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good generalization ability. The novel GRA-NARX model can also be utilized to solve other
prediction problems because of its distinctive structural features and the improved algorithm
of the NARX neural network. It will perform better than many other models.

In comparison to earlier studies, our results are favorable. A classification—nonlinear
auto-regressive exogenous (C-NARX) model based on runoff classification and NARX was
used to predict the Linyi watershed’s runoff in the Huaihe River’s northeastern section.
With two input variables, one hidden layer, ten hidden neurons, and five-time delay based
on experience, the NARX model’s ideal architecture was established. The minimum of
MSE was 4.12 × 10−2 [36]. In our study, the optimal combination of the time delay and the
hidden neurons number was obtained by the improved algorithm and the minimum of
MSE was 1.975× 10−4. The results are satisfactory, and the proposed model is interpretable.

Although good results are obtained for water level prediction using the GRA-NARX
model in the study area, there are still some limitations. For example, Chen et al. [40,41]
evaluated the performance of the ANN approach with hydrodynamic models, they got
some promising results. While in our investigation, the GRA-NARX model was only
compared with ANN models.

5. Conclusions

The GRA-NARX model is proposed in this study based on GRA and the NARX neural
network for a 2 h ahead prediction of water levels in front of pumping stations, and an
improved algorithm is used to obtain the optimal combination of the time delay and the
hidden neurons number. The sensitivity to changes of the training algorithm is analyzed,
and the prediction performance is compared with that of the NARX and GRA-BP models.
A case study is performed in the Tundian pumping station of the Miyun Reservoir project
to demonstrate the reliability and accuracy of the proposed model. The main conclusions
are as follows:

(1) The optimal combination of the time delay and the hidden neurons number is obtained
by the GRA-NARX model with different training algorithms to minimize the MSE.

(2) The novel GRA-NARX neural network can reduce the prediction complexity and
improve the prediction accuracy. The model is applicable to the water-level prediction
of the water transfer project with the correlation coefficient of up to 0.98662 and the
minimum MAE of 0.00984 m.

(3) The GRA-NARX neural network using BR as the training algorithm (the GRA-NARX-
BR model) shows the highest R and the smallest MSE in the prediction of the water
level in front of the Tundian pumping station. It is more accurate than the NARX and
GRA-BP models and has less run time than the NARX model.

There are still some issues that warrant future research: (1) the novel GRA-NARX
model will be compared with a numerical model; (2) since there are numerous variables
influencing the water levels in front of a pumping station, it is important to further eval-
uate the complexity and variety of the model; and (3) it is possible to create additional
possibilities by using a wider range of the time delay and the number of hidden neurons.
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