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ABSTRACT A dynamic path planning method based on a gated recurrent unit-recurrent neural network

model is proposed for the problem of path planning of a mobile robot in an unknown space. A deep neural

network with sensor input is used to generate a new control strategy output to the physical model to control

the movement of the robot and thus achieve collision avoidance behavior. Inputs and tags are derived from

sample sets generated by an improved artificial potential field and an improved ant colony optimization

algorithm. In order to make the ant colony algorithm converge quickly, the pheromone trail and the state

transition probability are improved. The field function of the artificial potential field method is modified.

Using the end-to-end network model to learn the mapping between input and output in the sample data,

the direction and speed of themobile robot are obtained. The simulation experiments and realistic simulations

show that the network model can plan a reasonable path in an unknown environment. Compared with other

traditional path planning algorithms, the proposed method is more robust than the traditional path planning

algorithms to differences in the robot structure.

INDEX TERMS Mobile robot, gated recurrent unit-recurrent neural network, dynamic path planning, ant

colony optimization, artificial potential field.

I. INTRODUCTION

Obstacle avoidance is one of the most basic problems faced

by mobile robots. Over the years, various methods for

autonomous mobile robot path planning have been studied,

with focusing on the development of collision-free path plan-

ning algorithms. The problem can be described as follows:

the mobile robot is given a starting point and an ending point

in a known or unknown environment, and environmental

information is detected by the robot’s sensor. Eventually,

autonomously avoiding obstacles, the robot finds amovement

trajectory from the starting point to the target point, in what

constitutes a type of real-time planning. In addition to the

security and smoothness of collision avoidance, the real-

time performance of the system is also an important aspect

of real-time collision avoidance planning. In practical path

planning, the environment (specifically the obstacles that

might be encountered) in which the mobile robot operates

is unknown or partially known. This requires the collision

avoidance program to use collected data so that the mobile

robot is able to make a series of decisions to avoid obstacles

in real time. For this kind of problem, many methods and

algorithms are commonly used, such as visibility graphs, arti-

ficial potential field (APF) and related algorithms, intelligent

optimization algorithms, and fuzzy logic. APF and its variants

are often used in mobile robot navigation [1]–[3], [11]. With

the traditional APF method, it is easy for the mobile robot

to become locally locked, for it to be subject to narrow path

vibration, and for neighboring obstacles to be too close to

allow planning of the path. In order to overcome the above

difficulties, some researchers have made different improve-

ments to the traditional APF method. Weerakoon et al. [4]

solves the deadlock problem by replacing the traditional

function with an exponential function. The APF method is

also combined with other intelligent algorithms to improve

the parameters of the intelligent algorithm [5]. The tradi-

tional ACO method does not deal well with the balance

between premature problems and slow convergence speed.

Chen et al. [6] proposes a combination of ‘‘scent pervasion’’

policy and ‘‘one minus search’’ strategy to pre-process grid

maps to speed up algorithm convergence and quickly com-

plete robot path planning. Cao et al. [7] adopt a novel mul-

tiagent pheromone-based traffic management framework to

15140
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0003-1435-7505


J. Yuan et al.: Novel GRU-RNN Network Model for Dynamic Path Planning of Mobile Robot (December 2018)

reduce traffic congestion. In order to speed up the algo-

rithm, Cekmez et al. [8] implement parallel ACO algorithm

on CUDA platform to solve the problem of UAV path

planning.

On the other hand, for swarm intelligence techniques such

as genetic algorithms (GA), the real-time performance is

poor, and requires a large data storage space and long com-

puting times. Other authors have proposed hybrid solutions

combining the two approaches. Das et al. [9] improved the

classical gravitational search algorithm (GSA) based on the

communication andmemory characteristics of particle swarm

optimization (PSO). Chaari et al. [10] proposed a new effi-

cient hybrid ACO-GAmethod, using the ACOmethod to find

the suboptimal solution, and then using the GA to search for

the optimal solution in the suboptimal solution, which is used

to solve the global robot path planning in static environment.

These method has been used successfully for navigation of

multiple mobile robots. However, in these study, the environ-

ment and obstacles were taken to be static. Bodhale et al. [11]

successfully implemented dynamic path planning by com-

bining the potential field method with a Monte Carlo posi-

tioning method. It is difficult to determine the force coef-

ficients influencing the velocity and direction of a mobile

in a complex environment. Li et al. [12] have designed

fuzzy controllers for path planning problems in dynamic

environments based on the angles and collision times between

dynamic obstacles and the direction of motion of the robot,

this method is suitable only for simple and small obstacles.

Matveev et al. [13] proposed an integrated guidance con-

trol strategy belonging to the class of sliding mode control

algorithms for autonomous vehicles. This method required

the establishment an accurate environmental model, which

limits the use of this algorithm in complex environments.

The accuracy of the environmental model also has an impact

on the algorithm’s time-consumption. Rapidly-exploring ran-

dom tree (RRT) and other methods rarely pay attention to the

information on obstacle movement [14], [15]. In the case of

difficult motion scenarios such as dense obstacles or frequent

movement of obstacles, a long time is required to find the

optimal solution.

The need for mathematical modeling of the environ-

ment, the limited real-time performance of the algorithms,

the occurrence local locking, and other issues arising with

the above methods, have all encouraged the search for new

approaches. Most previous studies have examined collision

avoidance planning strategies within the reinforcement learn-

ing (RL) framework [16]–[18]. Deep learning algorithms

don’t require the construction of an accurate model- and

after a large amount of training, the network can map an

input to obtain the corresponding output. For a trained net-

work, multiple iterations of the algorithm are necessary.

In the application of deep learning to obstacle avoidance

problems, the construction of an end-to-end model, allows a

network to learn the mapping between input data and output

strategies. Carrio et al. [18] used a combination of convolu-

tional neural networks (CNN), gated recurrent unit (GRU)

networks, and variant Q-learning to solve the problem of

unmanned autonomous vehicle (UAV) control when only

visual images were input. Inoue et al. [19] proposed a novel

method combining the rapidly-exploring tree and a long

short-term memory (LSTM) network, which overcomes the

difficulties involved in the acquisition of a large amount of

training data.

The main subject of the present paper is the develop-

ment of a collision avoidance algorithm for a mobile robot.

A teacher system based on an improved ACO algorithm and

an improved APF method is established. The pheromone

trail and state transition rules of the ACO algorithm are

improved to accelerate the convergence. The potential field

is built around the robot, and the influence of target point

gravitation is removed to avoid local locking. A dynamic

planning model based on a Gated Recurrent Unit-Recurrent

Neural Network (GRU-RNN) is then designed, with a teacher

system based on the above algorithm.

The main contributions of this paper can be summarized as

follows:
• We propose a novel pheromone update and state transi-

tion rule to speed up the convergence of the algorithm,

and we introduce a new potential field to solve the

shortcomings of the traditional APF.

• We design a GRU network model to learn the path

planning strategy produced by the improved ACO and

APF, and we verify the algorithm in both a simulated

environment and an outdoor environment.

II. CONSTRUCTION OF THE ENVIROMENT MODEL

In order to achieve accurate collision avoidance behavior, the

kinematics equation of the robot is established. Obtaining

accurate environmental information is extremely important

for robot control. In order to make the input state informa-

tion more accurate, reasonable coordinate systems must be

established. According to the conversion between the coordi-

nate systems, the information of the robot and surrounding

obstacles in the global coordinate system can be obtained.

The environmental model uses the grid method. Choosing

the reasonable grid size can reduce optimization time and

improve the quality of the solution.

A. COORDINATE MODEL

To ensure sufficient accuracy of the state information,

an appropriate coordinate system must be established, com-

prising a global coordinate system and two local coordinate

systems (Fig. 1): the global coordinate system XGOGYG,

the robot-centered local coordinate system XRORYR, and the

local coordinate system centered on the laser XLOLYL . The

global coordinates of an obstacle are obtained from the fol-

lowing coordinate transformation:
[
xg
yg

]
=

[
ρ cos |θ − π/2| + xe 0

0 ρ cos |θ − π/2| + xe

]

·

[
cosϕ

sinϕ

]
+

[
x

y

]
(1)
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FIGURE 1. Mobile robot coordinate system.

here (xg, yg) are the coordinates of the obstacle in the system

XGOGYG; (x, y) are the coordinates of the robot in the system

XLOLYL ; xe is the distance between the coordinate originsOL
andOR; ρ and θ are respectively the polar distances and polar

angle of the obstacle measured by the laser sensor. ϕ is the

angle between the current direction of motion of the robot and

the XG axis. In the outdoor simulation environment, counter-

clock-wise is positive, based on true north.

B. ROBOT MODEL

We make the following assumptions about robot and the

environment:
• The working environment of the robot is X × Y .

• The wheels do not slide.
At time t , we denote by (xt , yt ) the position of the mobile

robot in the coordinate system XGOGYG, and by ϕ the angle

between the direction of movement and the global coordinate

system XG axis. After a certain sampling time T , the robot

reaches a new position. Assuming that the robot moves with

constant speed v within this sampling time, we find that the

new position coordinate (x, y) at the next instant is given by:

[
x

y

]
= vT ·

[
1 0

0 1

]
·



cos(

π

2
− ϕ)

sin(
π

2
− ϕ)


 +

[
xt
yt

]
(2)

C. ENVIROMENT MODEL

The environment model is constructed as a grid model, with

the robot’s initial position (x0, y0) as its origin point.

We make the following assumptions:
• The robot works in a two-dimensional environment and

the number of grids in space is m× n.

• In order to ensure the safety of the robot, the boundary of

the obstacle is expanded, by half the length of the robot.

• A black grid indicates that the area is not accessible.
Obstacles in the mobile robot’s motion space can be divided

into two types: known and unknown. For obstacles in an

unknown environment, because there is no positional infor-

mation about obstacles in advance, they can be detected only

by sensors carried by the robot itself, and new effective track

points (including deterministic points and uncertain point),

must be added to the program as the motion progresses.

If an obstacle is small, then it is easy to determine the

visibility of vertices and other points. Such vertices are

termed deterministic vertices, examples of which are shown

in Fig. 2 by points B andC . If an obstacle is particularly large,

the sensor can detect only part of it, as shown in Fig. 3, where

points F and G are termed uncertain vertices.

FIGURE 2. Deterministic vertices.

Vertices have the following characteristics:

• A vertex is exactly at the detection edge of the sensor.

• There is an obstacle on one side of the vertex and not on

the other side.

• This vertex is visible from any other vertex.

In Fig. 2, there are no obstacles between points B and D,

so point D is visible from point B. An obstacle lies between

points B and E , so these two points are invisible to each

other. In Fig. 3, the two points are uncertain vertices, and it

is impossible to judge the specific distribution of obstacles

around these vertices. Since the set of visible points allowF of

the current point F cannot be determined, the path cannot be

planned when the improved ACO algorithm is applied. If the

point F is regarded as a visible point, when moving to the

point F , the robot finds a new uncertain vertex, and the set

of visible points allowk of the point K still does not satisfy

the condition. So when we have no determinate vertices,

we apply an improved APF to avoid collisions until the robot

is completely at the determined vertices.

FIGURE 3. Uncertain vertices.

III. AUTONOMOUS COLLISION AVOIDANCE

ALGORITHM FOR TEACHER SYSTEM

When the sensor detects new obstacles, the robot is required

to respond quickly. This requires that the collision avoid-

ance algorithm has a rapid planning ability. In this paper,

an improved ACO and an improved APF method are com-

bined to give the mobile robot the capacity for autonomous

collision avoidance. When an obstacle is far from the robot,
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the ACO algorithm is used as the collision avoidance algo-

rithm. This algorithm uses known environmental informa-

tion and local information detected by the sensor to perform

operations, and provides a long-term, optimized motion path.

When the distance between the obstacle and the robot is less

than 2/m, an improved APF method is used for emergency

collision avoidance. The APF algorithm ignores the influence

of the global environment and responds directly to the risk of

collision by using the sensor information in a short period of

time. To accelerate the convergence of the ACO algorithm,

the pheromone trail and state transition rules are improved.

An APF is established around the robot, and the gravitational

effect of the target point is removed to prevent the occurrence

of local extreme points. The pseudo code of the autonomous

collision avoidance algorithm of the teacher system can be

found in the appendix.

A. PATH PLANNING BASED ON IMPROVED ANT

COLONY ALGORITHM

1) PHEROMONE UPDATES

There are given by:

τij(t + 1) = (1 − ρ)τij(t) +

m∑

k=1

1τ kij (3)

1τ kij =





Q

Lk
if k pass eij

0 else

(4)

where, i, j are status point number. τ is the pheromone con-

centration trails; m is the total number of ants, ρ is the

pheromone evaporation rate (0 < ρ < 1); The path length of

ant k is Lk ,andQ is a constant. The parameter ρ is introduced

to avoid an infinite accumulation of pheromones and make

the program ignore previous bad decisions.

To speed up convergence, pheromone enhancement is per-

formed for the path taken by the first quarter of ants in each

generation of ants:

τij(t + 1) = λ × τij(t + 1) (5)

λ = 1 + 0.5 ×
D

Lk
(6)

where, D is the Euclidean distance from the start to the end.

To ensure that the algorithm retains its ability to explore in

the later stages of the search, after completion the pheromone

update and reinforcement, processing of the pheromone trail

limit is performed:

τij(t + 1) =





τmin if τij(t + 1) < τmin

τmax if τij(t + 1) > τmax

τij(t + 1) otherwise

(7)

where, τmin, τmax are the artificially set upper and lower limits

of pheromone trail.

2) STATE TRASITION RULES

The state transition rule is the selection rule for the next

state when the ant moves to that state from the current state.

In path planning is the selection of the visible points of

the current location, because normally, multiple points are

visible from any one location, and the next step is to select

which of these visible points leads to progress of the planning

process toward the optimal solution. This paper implements

probability transfer in the form of probability selection. The

state transition probability is formulated as follows:

pkij =





(τij)
α(ηj)

β

∑
r∈allowi

(τir )α(ηr )β
, if r ∈ Allowi

0 otherwise

(8)

pkij = γ pkij + (1 − γ )
Lij

N − 1
(9)

according to this formula, if ant k currently at point i and

probability of its next transfer to visible point j is pkij. allowi
is the set of visible points to which ant k can perform state

transition. η is a heuristic function, taken as the reciprocal

of the distance from the current point to the target point.

α is the importance of the pheromone. β is the importance

of the heuristic function. N is the number of visible points in

the range measured by the current point i. Lij is the distance

between points i and j. γ is a weight. (in this experiment,

γ takes the value 0.95).

B. IMPROVEMENT OF ARTIFICIAL POTENTIAL FIELD

In the traditional APF method, only distance information

about an obstacle is considered, and directional information

is ignored. When the obstacle is in the emergency collision

avoidance zone of the robot, the APF is used only for emer-

gency collision avoidance, and it is not necessary to consider

the influence of the target point. Therefore, in the improved

APF, the gravitational effect of the target point is removed to

prevent the creation of local extreme points. The improved

potential field takes the form:

V (xf , xr , xp, yxp) (10)

with its shape being determined by the parameters xf , xr ,

xp, yxp. In the simulation, the detection range of the sensor

is taken as 12/m, xf = 10.5/m, xr = 4/m, yxp = 6.8/m,

xp = 4/m. The parameter definition is shown in Fig. 4.

FIGURE 4. Parameter definition of improved APF.
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In this method, the smaller the potential, the closer is the

obstacle to the robot. The value of potential vp is given by

vp = (y2 + (ay+ c)x2)/(py+ q) (11)

where, p = xf −xr , q = xf ·xr , a = (−2yxp+p)/x2f , c = (q+

y2xp)/x
2
f , and py+ q 6= 0. The potential value vp is positively

related to |y|.

When there is an obstacle in the emergency collision avoid-

ance area of the robot, the linear velocity and angular velocity

of the robot are given by:

vl = (vpre + vmax) · e−(α·λ)2 − vmax (12)

ωr = (ωpre + ωmax) · e(β·λ)2 − ωmax (13)

λ = max(1 − vp, 0) (14)

where, vl, ωr represent the linear velocity and angular veloc-

ity obtained after planning, respectively; Current cornering

speed ωmax and maximum cornering speed ωpre. α, β are

intensity factors, with values of 1 and 2, respectively. If vp
approaches 0, this means that the robot is about to touch the

obstacle. At such a time, vl takes its minimum value and ωr
takes its maximum value.

IV. DESIGN OF GRU-RNN NETWORK MODEL

GRU, as a variant of LSTM, combines a forgotten gate and

input gate into a single update gate. In addition, there are some

other changes to the mixed cell state and the hidden state.

The final model is simpler than the standard LSTM model

and is a very popular variant. Given a set of observations,

the learned model can provide the corresponding control

output vector. The learning process terminates when the dif-

ferences between the actual and model output converges to

a very small value. Once the GRU-RNN network has been

trained, it can be used as a path planning model for mobile

robots, enabling them to move in an autonomous manner

while avoiding collision.

A. GRU-RNN DYNAMIC PATH PLANNING MODEL

The GRU-RNN model designed in this paper is shown

in Fig. 5. The input layer has a total of 61 dimensions,

of which the first 60 comprise the distance information

detected by the laser rangefinder. The final one-dimensional

piece of data is ϕ. There are two hidden layers in the model:

hidden layer 1 consists of 40GRUmodules and hidden layer 2

consists of 30 neurons. These hidden layers are fully con-

nected. There are two neurons in the output layer, the velocity

and angle of the mobile robot.

The most important structure in the GRU-RNN network

model is the GRU module unit, which receives the data in

chronological order: input data from time t − 9 to t , and the

output at time t . The output at the final instant constitutes

the true output of the module. The structure of the module is

shown in Fig. 6, where x t is the input at the current instant,

yt is the output layer, ht is the output of the module at the

current instant, and ht−1 is the output of the module at the

final instant.

FIGURE 5. GRU-RNN model for dynamic path planning.

FIGURE 6. GRU unit structure.

the update gate is given by

zt = σ

(
Whzh

t−1 +Wxzx
t + bz

)
(15)

the reset gate by

r t = σ

(
Whrh

t−1 +Wxrx
t + br

)
(16)

and the output layer by

ht = zt · ht−1 + (1 − zt ) · h̃t (17)

and the output layer by

yt = σ (net ty) (18)

E =

T∑

t=1

Et =

T∑

t=1

1

2
(ydt − yt )2 (19)

here h̃t = tanh(r tWhhh
t−1 + Wxhx

t + bh); z
t , r t and ht are

the output of the update gate, reset gate and memory module,

respectively, at time t; x t is the input vector of the memory

module at time t; ht−1 is the output vector of the memory

module at time t − 1; Wxz,Wxr ,Wxh are the weight matrices

between the module input and the update gate, reset gate, and

h̃t respectively;Whz,Whr are the weight matrices between the

output of the memory module and the update gates and reset

gates, respectively, at time t − 1; bz, br , bh are the biases of

the update gate, reset gate, and h̃t , respectively.
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The gradient of the parameter matrix is calculated using the

chain rule for derivatives, and the weight updates are given

by the following expressions: the weight update between the

output of the module and the output layer is

∂E

∂W y
= ht

∂E

∂yt
∂yt

∂net ty
(20)

that between the input and the update gate z is

∂E

∂W z
= (x t )T

∂E

∂ht
∂ht

∂zt
∂zt

∂net tz
(21)

that from the module output to the update gate z at the

previous instant is

∂E

∂U z
= (ht−1)T

∂E

∂ht
∂ht

∂zt
∂zt

∂net tz
(22)

that from the input to h̃t :

∂E

∂W
= (x t )T · δth · zt · g′(net t

h̃
) (23)

that from the module output to the update gate z at the

previous instant is

∂E

∂U
= (r t · ht−1)T · δth · zt · g′(net t

h̃
) (24)

that from the input to the reset gate r is

∂E

∂W r
= (x t )T · ht−1 · [(δth · zt · g′(net t

h̃
))UT ] · f ′(net tr )

(25)

and that from the module output to the update gate r at the

previous instant is:

∂E

∂U r
= (ht−1)T · ht−1 · [(δth · zt · g′(net t

h̃
))UT ] · f ′(net tr )

(26)

where, δth = δtyW
yT + δt+1

z U zT + δt+1UT r t+1 +

δt+1
r U rT + δt+1

h (1 − zt+1), net tz = x tW z + ht−1U z, net tr =

x tW r + ht−1U r , net ty = htW y. For the GRU-RNN network

defined by these expressions, the weights are denoted by

Whc,Wxz,Whr ,Wxr ,Whh,Wxh,W
z,W r ,W y etc.

B. COLLECTING SAMPLES AND PREPROCESSING

Before the start of training, the first thing to do is to collect

and preprocess the sample data. In the simulation training

phase, the mobile robot performs dynamic collision avoid-

ance and path planning under the improved ACO algo-

rithm and the APF algorithm, and collects sample data.

Each set of sample data has a total of 184 dimensions. The

first 181-dimensions of data are obtained by the laser sen-

sor collecting surrounding environmental information, ϕ is

the 182th dimension of data, and the final two dimensions

of data comprise the robot’s angle and velocity. The first

182 dimensions of data are used as the input value of the

network, and the final two dimensions of data are used as the

training label. The network input laser data are measured in

real time. The output labels are taken as the angle and speed

of the robot obtained from the improved ACO algorithm and

APF. In order to speed up the training of the model and

enhance the robustness of the model (small fluctuations in the

input cause dramatic fluctuations in the output), the data must

be processed before entering the input layer. First, regularize

the input data and merge the first 181 data dimensions. The

182th dimension data remains unchanged, and after process-

ing, there are 61 dimensions of input data in total.

For an accurate training result of the network model,

the input data are normalized to give a pure value.

c∗ij =
cij − min(cj)

max(cj) − min(cj)
(27)

The training data here are stored in the form of row vectors:

cij denotes the data before normalized while max(cj) and

min(cj) are the maximum and minimum values of column j.

V. SIMULATION RESULTS AND ANALYSIS

In this section, the network model is trained by samples

generated by the teacher system, which is implemented using

the improvedACO algorithm andAPF. In the test experiment,

the planning capabilities of the two methods are compared,

and the ability of the GRU network to avoid obstacles is

verified.

The improved ACO algorithm and APF are applied, and

the mobile robot performs collision avoidance training in the

simulation training field. The generated training set contains

60312 sets of data, which are used for network model train-

ing. The test set contains 1000 sets of data for testing the

trained network model. Using the data in the training set,

the network is trained 8 million times, with each training

procedure being performed 2,000 times. A certain amount of

data is selected from the test set, and the error is tested using

the final network weight. To eliminate correlation from the

sample, the position and shape of the obstacles, their density

are randomly generated. In our example, the training set is

used as GRU-RNN network input to learn weights in a given

observation sequence that will reproduce the corresponding

control output ϕ.

The input of the GRU-RNN network at time step t is a

61-dimensional vector consisting of a 60-dimensional input

distance vector xt =
[
x0t , x

1
t , · · · , x60t

]
and ϕt . In order to

improve the generalize ability of the model, Gaussian noise

N (µ, σ 2) is added to xt and ϕt , with µ = 0.2, σ = 0.3 in this

experiment.

A total of 50 datasets of obstacle size and position are ran-

domly selected within a certain range. At each time, the initial

heading angle is randomly chosen from a uniform distribution

{−π
2
, π
2
}. Of these datasets, 45 are used for training the

model, and the remaining five datasets are used for testing.

Stochastic Gradient Descent (SGD) is used for parameter

optimization. To examine the robustness of the model, it is

necessary to test the final model on a different workspace

that is unlike the training phase. The results show that the
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FIGURE 7. GRUs loss function convergence curve.

FIGURE 8. GRUs loss function curve between updates 32600-32850.

GRU-RNN model gives good output values even in test envi-

ronments. Hence, the learned model can provide very good

path planning capabilities in an unknown environment. For

a particular test case, a comparison it with the path of the

teacher system, can be seen in Fig. 11 and Fig. 14 below.

In the verification environment, the learning model can

be used to predict the control output angle at the next

instant. The average value of the loss function is calculated

and represents the generalization ability of the network:

the smaller this value, the greater is the generalize ability.

Fig. 7 shows the convergence curve of the loss function for

different GRU-RNN network models. The largest value of

the loss function at the beginning of training is 3.8. After

35, 000 iterations, the value is close to zero, indicating that

convergence has been achieved. The horizontal axis repre-

sents the number of trainings, and the vertical axis is the

Mean Squared Error. Fig. 8 shows the loss function curves

for each model after learning is complete. From Table. 1, it is

TABLE 1. Performance of different numbers of GRUs during training.

FIGURE 9. Compare the planned routes of different GRU units.

concluded that GRU30 achieves the smallest iteration error,

and GRU10 has the fastest convergence rate. Evaluate the

planning path capabilities (such as path length, planning time)

of different models in the same environment. Fig. 9 shows

the planned route for different GRU models. It shows that

GRU10 has the shortest planning time and GRU40 has the

shortest path length in Table. 2. The path length and planning

time are the average of 50 experiments.

TABLE 2. Performance of different GRUs in statistical experiments.

The success rate is given by:

Success rate =

∑
N 1(s, g)

N
(28)

where, 1(s, g) is equal to 1 if the robot can safely reach the

goal point from the starting point on the test dataset(100 dif-

ferent environments). Fig. 10 curve shows the success rate

achieved by the learned GRU-RNN network model for differ-

ent test environments. It can be seen that the learned model

can provide very good predictions of the robot head-ing angle

in unknown dynamic environments from Fig. 12, 15. Thus,

the GRU-RNN model can be used as an efficient method for

offline path planning.

From the above comparison, it can be concluded that

GRU40 has little difference between the convergence speed

and the minimum iteration error and the optimal value. How-

ever, it is clearly dominant in the length of the planned path

and the ability to successfully avoid obstacles. So we choose

GRU40 to compare with the algorithm of the teacher system.

Fig. 12 shows the direction of movement of the mobile

robot, and it can be seen that the trend of the orientation
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FIGURE 10. Success rate achieved by the learned model for different test
environments.

FIGURE 11. Comparison of planning routes in an unknown environment
with simple obstacles.

FIGURE 12. Curves of the heading process.

angle of the robot is generally the same for the two plan-

ning methods. It can also be seen that the direction given

by the improved ACO algorithm changes very steeply at

times 12-22, 27-30, 73-78, 104-112, and 121-131. The direc-

tion angle of the GRU-RNN network also changes frequently,

but, in the same time range, it changes slowly, which is

beneficial for the robot’s motor when executing instructions

in real-world applications.

Fig. 13 shows the variation of the heading change angle

at each instant for the mobile robot according to the two

planning algorithms. It can be seen that the results of the

two methods are very different. The improved ACO algo-

rithm leads to much sharper cornering by the robot with the

greatest change in direction angle beingmore than 36◦. Under

GRU-RNN planning, the rotation angle of the robot changes

more frequently, but the maximum variation is only 15◦.

Frequent changes occur because the network model must

maintain a certain degree of generalization so that it is

valid for all input data. For a given location, the GRU-RNN

FIGURE 13. Curve of the heading change process.

FIGURE 14. Comparison of algorithm planning routes with more
complicate obstacles.

network is unable to reduce the cornering to zero as in con-

trast to the ACO algorithm, but it can reduce the cornering

changing by continuous training. In the final curve of Fig. 13,

there is no obstacle within the detection range of the mobile

robot, so the change in rotation angle given by both methods

is close to zero.

The situation shown in Fig. 15, the GRU-RNN algorithm

gives a smoother curve. It can be seen that the emergency

collision avoidance algorithm is called from obstacle number

3 to 6, and from number 8 to 9. The path planned using the

improved APF is clear close to the obstacle, and the path of

the GRU-RNN is safer.

FIGURE 15. Curves of the heading process.
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FIGURE 16. Curves of the heading change process.

Fig. 15 shows the improved ACO algorithm and APF with

multiple stages maintains the same direction angle, while

the GRU-RNN has few, but when the rotation is needed,

the former is more intense and the latter is smoother. It can be

seen from Fig. 16 that according to the GRU-RNN algorithm

the change in rotation angle is within 10◦, although there

are frequent changes between steps 50-65 because the robot

will then encounter obstacles 1,2 and will continually be

adjusting its direction. However, when the heading angle

is adjusted according to the improved ACO and APF algo-

rithm, the change can reach 34◦, and in practical application,

it would then be difficult for the implementing agency to

complete the action within the specified time.

From the comparison of the simulation results of the two

algorithms, it can be seen that the GRU-RNN network model

proposed in this paper has a strong learning ability. The

results show that the learned GRU-RNN network model

almost replicates the teacher system trajectory in test cases.

After training, the network model can output the appropriate

velocity and direction of movement. To test the robustness of

the algorithm, a network trained in a complex environment

is applied to a simple environment. It can be seen from

Fig. 17 that the proposed algorithm in this paper can also

implement path planning ability in a simple environment. Its

dynamic programming effect is better than that obtained with

the improved ACO and APF algorithm.

FIGURE 17. Comparison of the algorithm planning routes in a simple
environment.

Figure 18 shows the planning routes for all algorithm.

The data in Table. 3 shows that the planned path of GRU40 is

the shortest. The time required for each step is almost half of

FIGURE 18. Comparison of all algorithm planning routes.

TABLE 3. Performance of different algorithm.

the improved ACO and APF algorithm. The planning time of

all GRUmodels is less than the time required to improveACO

and APF, indicating that the GRU models has high real-time

performance. The path length of GRU40 is also smaller than

the improved ACO and APF algorithm.

FIGURE 19. Comparison of planning time and number of obstacles
between the two algorithms.

Fig.19 provides statistics on the relationship between plan-

ning time and the number of obstacles for the two algorithms.

It can be seen that with an increase number of obstacles,

the planning time advantage of the GRU-RNN algorithm also

gradually increases. In terms of computational time required,

the GRU-RNN network model is superior to the improved

ACO algorithm. This is because traditional intelligent algo-

rithms must iterate multiple times, which increases the run-

time of the algorithm. After the data is input, the trained
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network can output the result after a series of mathematical

operations, which undoubtedly shortens the running time

of the program. For the GRU-RNN network model, if the

training set can be increased in size, the network model will

give a more stable and better performance.

FIGURE 20. Path map for outdoor collision avoidance planning.

FIGURE 21. Curves of the heading process.

Fig. 20 shows the application of the best network model

for final training to real case of robot collision avoidance

planning. The outdoor collision avoidance planning experi-

ment is performed and the results are compared with those of

the improved ACO and APF algorithm. It can be seen from

Fig. 21 that the network model proposed in this paper makes

the robot angle smoother and also significantly reduces the

changes in angle, especially at the corner at steps 150-200.

The angle is based on true North.

VI. CONCLUSION

This paper introduces the development of a mobile robot col-

lision avoidance algorithm based on improved ACO and APF

and designs a new GRU-RNN network model for dynamic

path planning of mobile robots in an unknown environment.

From the results of simulation, it can be concluded that the

GRU-RNN network has learned the planning policy of the

teacher system and that there is an overall performance due

to the use of the improved ACO and APF algorithm. The

network model can learn the input data, learn the correspond-

ing input-output mapping relationship, estimate the output

and make the correct decision. Strengths: The algorithm in

this paper has a good performance in terms of real-time and

smoothness of the planning path. The time required for each

step of planning is much smaller than that of the teacher

system. The training of the completed network is directly

transplanted to the real robot, and the results are also sat-

isfactory to show that the algorithm is robust. In addition,

the algorithm can be applied to the new environment without

the need to change parameters, and can also achieve collision

avoidance planning. Weakness: The disadvantage is that the

training network needs samples generated by the teacher

system, sometimes it is impossible to reach the target point

accurately, although the probability is less than 2%.

In the future, we will focus on the use of deep reinforce-

ment learning methods (such as deep Q-learning (DQN),

deterministic policy gradient algorithm (DDPG), policy

search, asynchronous advantage actor-critic(A3C) ) to deal

with robot navigation tasks by learning from its own suc-

cess or failure experience. This approach eliminates the need

for additional teacher systems to generate training samples.

APPENDIX

Algorithm Teacher System Collision Avoidance Algorithm

Initialize the environment, and parameters.

if there is no effective visible point or robot is located in the

emergency collision avoidance zone, the improved APF

method is used to avoid collision.

else: #Using improved ACO for collision avoidance.

Step 1: each visible point i is defined with a

correspond-ing set of visual points allowi.

Step 2: give pheromone trails τij a smaller positive

number, historically optimal retained algebraic counter

count = 0, evolution algebraic counter Gcount = 0

set historical optimal maximum retained algebra Max and

maximum evolution algebra Generation, set the initial his-

torical optimal ant path cost historybest = ∞,for each ant

population m = 30.

Step 3: k = 1

Step 4: if k > m, go to Step7; otherwise, place the ant k

in the starting position gs and go to Step 5.

Step 5: set current position of the ant k is gi, if the visible

point list allowi of ant k is empty, then the ant k die, and

go to Step 4.

Step 6: if the target point ge ∈ allowi, the ant k finds the

complete path, k = k + 1 and goes to Step 4; otherwise,

according to formula (9), the probability is selected that the

ant k selects any point gj ∈ allowi from the allowi of the

current position gi, and delete gi from allowi, set gj is the

current position of ant k , and go to Step 5.

Step 7: Gcount+ = 1, if the path of the ant k in

this iteration is the best, update historybest and count =

0,otherwise count+ = 1.

Step 8: if count > Max or Gcount ≥ Generation, end.

Otherwise, the pheromone trail is processed according to

the formulas (3) (5) (7), then go to Step 3.
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