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Rice sheath blight (ShB) caused by Rhizoctonia solani is one of the most destructive
diseases in rice. Fungicides are widely used to control ShB in agriculture. However,
decades of excessive traditional fungicide use have led to environmental pollution and
increased pathogen resistance. Generally, plant elicitors are regarded as environmentally
friendly biological pesticides that enhance plant disease resistance by triggering plant
immunity. Previously, we identified that the plant immune inducer ZhiNengCong (ZNC),
a crude extract of the endophyte, has high activity and a strong ability to protect plants
against pathogens. Here, we further found that guanine, which had a significant effect
on inducing plant resistance to pathogens, might be an active component of ZNC.
In our study, guanine activated bursts of reactive oxygen species, callose deposition
and mitogen-activated protein kinase phosphorylation. Moreover, guanine-induced plant
resistance to pathogens depends on ethylene and jasmonic acid but is independent of
the salicylic acid signaling pathway. Most importantly, guanine functions as a new plant
elicitor with broad-spectrum resistance to activate plant immunity, providing an efficient
and environmentally friendly biological elicitor for bacterial and fungal disease biocontrol.

Keywords: elicitor, ethylene (ET) signaling, guanine, jasmonic acid (JA) signaling, nucleobases, rice sheath blight
(ShB)

INTRODUCTION

Rice is one of the most important food crops in the world, and the future demands for rice
will be higher due to the trend of increasing populations worldwide. Plant pathogens not only
reduce rice yield but also produce toxins, resulting in food contamination, which further threatens
human health. Rice sheath blight (ShB) is caused by the necrotrophic fungus Rhizoctonia solani
(R. solani); ShB is one of the most destructive diseases and a serious threat to the stability of rice
production worldwide (Sathe et al., 2021). The cultivation of high-yielding varieties and heavy use
of nitrogen fertilizers have caused a sharp rise in ShB prevalence (Savary et al., 1995). ShB can
develop water-soaked, oval-shaped or irregularly elongated spots on leaf sheaths and leaf blades
that are infected by hyphae or sclerotia (Lin et al., 2020; Molla et al., 2020). In China, the straw
return policy returns almost all sclerotia produced back to rice fields. In addition, no effective ShB-
resistant cultivars have been applied to rice agricultural production to date (Chen et al., 2012; Molla
et al., 2020). At present, chemical fungicides are widely used to minimize the damage caused by
ShB; however, pathogens that are resistant to fungicides have emerged (Casida and Durkin, 2017;
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Singh et al., 2019; Abbas et al., 2021), and these pathogens
markedly reduce chemical fungicide efficacy. To make matters
worse, chemical pesticides pollute the soil, water resources
and crops, posing risks to human health and the ecological
environment (Rodriguez-Salus et al., 2016; Casida and Durkin,
2017; Kim et al., 2017). Together, these challenges require
pollution-free and efficient biological fungicides to control ShB.

In previous study, fungal biocontrol agents derived from
Aspergillus, Clonostachys, Chaetomium, Trichoderma, and
Streptoverticillium were used for seed germination pretreatment,
root dipping and foliar application (Park et al., 2002, 2005;
Naeimi et al., 2010; Shasmita et al., 2019). Unfortunately, no
effective commercial biocontrol agent has been successfully used
for ShB control thus far. To reduce the use of chemical fungicides,
plant immune elicitors (PIEs) have become developing trend
in elicitor-based biopesticide biopesticides (Schwessinger and
Ronald, 2012). The most important feature of PIEs is their
activation of plant immunity instead of killing pathogens
directly, in contrast to traditional chemical fungicides. Generally,
PIEs are classified as oligosaccharides, peptides, proteins, lipids
and small-molecule metabolite elicitors (Schwessinger and
Ronald, 2012; Yakhin et al., 2016). For instance, the lipid elicitor
lipopolysaccharide, protein-like elicitor BcGs1 and carbohydrate
elicitor β-glucan can protect plants against pathogen invasion
by triggering innate plant immunity (Yamaguchi et al., 2000; Ma
et al., 2015; Ranf et al., 2015).

Many studies have shown that PIEs enhance plant immunity
by directly or indirectly activating the signal transduction
pathway of plant endogenous hormones such as jasmonic acid
(JA), salicylic acid (SA), and ethylene (ET). For instance, copper
ions (Cu2+) can trigger plant immunity by upregulating AtACS8
gene expression through CuRE cis-acting elements, further
promoting the early biosynthesis of ethylene and promoting
the development of the ethylene pathway in Arabidopsis (Liu
et al., 2015; Zhang et al., 2018). In addition, rutin enhances
plant resistance to bacterial pathogens by activating the SA
signaling pathway (Yang et al., 2016). A recent study has shown
that silicon can enhance the resistance of potatoes to late
blight, which depends on the JA/ET signaling pathway (Xue
et al., 2021). Validamycin A induced broad-spectrum disease
resistance in both dicots and monocots through the SA and
JA/ET signaling pathways (Bian et al., 2020). ET and JA are
widely involved in the interactions between plants and pathogens.
JA activates plant resistance to necrotrophic pathogens and
chewing insects (Howe and Jander, 2008; Brenya et al., 2020). In
tomatoes, MYC2 positively regulates pathogen-responsive genes,
thereby improving plant resistance to Botrytis cinerea (Du et al.,
2017). The ERF1 and ERF6 ethylene-responsive factors can
enhance the resistance of Arabidopsis to the soilborne fungus
Fusarium oxysporum and the necrotrophic fungus powdery
mildew, respectively (Berrocal-Lobo and Molina, 2004; Meng
et al., 2013). TaCRK3 mediates wheat resistance to Rhizoctonia
cerealis by enhancing the expression of genes involved in ET
signaling pathway defense (Guo et al., 2021).

Nucleotide metabolism is a fundamental biological process
in many organisms and plays a vital role in plant development
and plant responses to biotic and abiotic stresses (Dahncke
and Witte, 2013). A recent study has shown that nucleotides

are also involved in plant immune responses. Both cyclic GMP
(cGMP) and cyclic nucleotide monophosphates (cNMPs) are
essential secondary messengers in plants and have been reported
to be involved in plant immune responses (Gehring and Turek,
2017; Isner and Maathuis, 2018). In addition, nicotinamide
adenine dinucleotide (NAD) is a common electronic carrier
involved in the plant response to pathogen invasion, extracellular
NAD-induced transcriptional changes and disease resistance to
citrus canker (Noctor et al., 2006; Hashida et al., 2009; Alferez
et al., 2018). Similarly, adenosine-5′-triphosphate (ATP) is the
most direct energy source in most organisms, and extracellular
ATP (eATP) can be recognized by the receptor-like kinase
DORN1 located on the surface of the plant cell membrane,
inducing immune responses such as calcium ion (Ca2+) bursts
and mitogen-activated protein kinase (MAPK) phosphorylation
in plants. Furthermore, eATP can improve plant resistance
to Botrytis cinerea by activating JA signaling (Tripathi et al.,
2018). A previous study has shown that guanosine phosphate
nucleotides play a significant role in affecting plant–pathogen
interactions and responses to plant hormones, such as SA, ET,
jasmonic acid JA, and abscisic acid (ABA; Takahashi et al., 2004;
Abdelkefi et al., 2018). Nevertheless, the role of nucleobases in
regulating plant immunity has not been reported.

Guanine is one of the primary components of DNA. Previous
research on guanine has been conducted mainly in the medical
field. Guanine is the most easily oxidized base. Guanine oxidation
produces 8-oxoguanine, which can pair with adenine and
induce guanine-thymine mutations in DNA (Freudenthal et al.,
2015). A guanine analog, favipiravir, was approved for influenza
treatment and can effectively inhibit the RNA-dependent RNA
polymerase of RNA viruses such as influenza, Ebola and
COVID-19 (Furuta et al., 2017; Ghasemnejad-Berenji and
Pashapour, 2021). In this study, we found that guanine enhanced
plant resistance to pathogens and induced reactive oxygen
species bursts, callose deposition and MAPK phosphorylation.
Comprehensive transcriptome analysis and the transcription of
signaling pathway genes with guanine-induced plant disease
resistance were analyzed, and further examination found that
guanine failed to activate rice resistance to ShB in the COI1b-
RNAi plants and etr2, etr3 mutant plants. Moreover, we propose
that guanine protected rice against ShB invasion depending on
the ET receptor genes OsETR2 and OsETR3 and JA receptor gene
OsCOI1b. In addition, guanine enhanced Arabidopsis resistance
to Pst DC3000 and depended on AtETR1, AtEIN2, and AtJAR1.
These results suggest that guanine induced plant immunity
depending on JA and ET signaling. Our study preliminarily
revealed the molecular mechanism by which guanine not only
activates plant immunity but also provides an environmentally
friendly, efficient prevention and control strategy for many
diseases, including ShB.

MATERIALS AND METHODS

Plant Materials and Guanine Treatments
In this study, the japonica rice (Oryza sativa) cultivar (Zhonghua
11, ZH11) was used as the wild type in rice experiments, the
T-DNA insertion mutants etr2 and etr3 had a Dongjin (DJ)
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background, and the RNA interference lines COI1b-RNAi and
SA-deficient NahG transgenic plants had a Nipponbare (NIP)
background. Arabidopsis thaliana ecotype Columbia (Col-0)
was used as a wild-type control in Arabidopsis experiments,
and all Arabidopsis mutants used in this research had a Col-0
background. All rice plants were grown at 28◦C with 75% relative
humidity and a 16/8 h light/dark photoperiod. All Arabidopsis
seedlings were grown at 22◦C with 70% relative humidity and a
12/12 h light/dark photoperiod. In our study, 4-week-old rice or
Arabidopsis plants were sprayed with guanine solution containing
0.05% silwet-L 77 or 0.05% Tween-20, respectively.

Pathogen Infection Experiments
The R. solani strain YWK196 was incubated on potato dextrose
agar (PDA) medium at 28◦C for 2 days, transferred to potato
dextrose medium containing matchsticks and grown at 28◦C
until the mycelium was wrapped around the matchstick. The
matchsticks with hyphae were inserted into plant sheaths after
guanine treatment for 2 h, and the lesion length was recorded
at 3–5 days postinoculation in the field. Leaf inoculation with
YWK196 involved the following steps. The clumps of R. solani
were placed onto the middle of leaves, which were kept moist
in a square petri dish (30 cm × 30 cm). The lesion areas
were photographed and measured by ImageJ.1 Inoculation of
Xanthomonas oryzae pv. oryzicola (Xoc) strain RS105, which
causes bacterial leaf streak in rice, and Xanthomonas oryzae pv.
oryzae (Xoo) strain PX099A (the causative agent of bacterial
blight in rice) was performed according to previously reported
methods (Ju et al., 2017; Li et al., 2018). Pseudomonas syringae pv.
tomato (Pst) strain DC3000 was cultured on potato saccharose
agar (PSA) medium at 28◦C for 24 h. Before inoculation, the
bacterial suspension was adjusted to an OD600 of 0.002. The
bacterial suspension was infiltrated into plant leaves with a
sterile needleless syringe after guanine treatment for 2 h. The
lesion area was observed, and the bacterial growth assay was
performed after 3 days.

Bacteria Growth Assay
For the quantification of bacteria, six diseased leaves from
different plants were harvested and weighed. Then, the diseased
leaves were surface sterilized with 75% alcohol for 1 min and
washed with sterile distilled water three times. After that, the
diseased leaves were ground with a mortar, and a gradient
dilution (1:10) of the homogenate was performed. Finally, 10 µL
of homogenate was plated on PSA medium and cultured at 28◦C,
and the number of colonies was calculated after 24 h.

Callose Deposition
Following guanine treatment for 24 h, 4-week-old rice or
Arabidopsis leaves were harvested and put into ethanol:phenol
[3:1 (v/v)] solution, vacuumed for 30 min, and then transferred
into a water bath at 60◦C until the leaves became white and
transparent. After being washed with water three times, the
samples were stained in aniline blue solution (0.1% w/v aniline
blue in 150 mM K2HPO4, pH = 9.5) in the dark overnight at room

1https://imagej.nih.gov/ij/

temperature, and then the samples were washed with deionized
water three times to remove excess dye solution. Callose
deposition was photographed under a fluorescence microscope.

Mitogen-Activated Protein Kinase
Detection
Four-week-old Arabidopsis seedlings were selected for protein
extraction after guanine treatment for 0, 10, 30, and 60 min. First,
leaf samples were rapidly frozen in liquid nitrogen and ground
to fine powder. Protein extraction was performed using plant
protein extraction reagent (CWBIO, China) according to the
manufacturer’s instructions. In addition, phosphorylated MAP
kinases were detected with anti-phospho-p44/42 MAP kinase
primary antibodies (Cell Signaling Technology, United States).

Detection of Hydrogen Peroxide
Production
The production of hydrogen peroxide (H2O2) in leaves was
detected using 3,3-diaminobenzidine (DAB) as an indicator.
Four-week-old rice and Arabidopsis leaves were harvested after
2 h of guanine treatment, and the samples were immediately
transferred into a DAB (0.5 mg/mL) staining solution and then
vacuum-infiltrated for 30 min. The samples were washed three
times with deionized water and then incubated for 8 h under light
at room temperature. Subsequently, the samples were decolorized
with boiled ethanol. Finally, the samples were imaged by using
a stereomicroscope (Lu et al., 2019). To detect ROS production
by using H2DCFDA under confocal microscopy, the plants were
treated with guanine (100 ng/mL) for 0, 2, 4, 8, 12 and 24 h,
10 µM H2DCFDA solution was infiltrated into plant leaves, and
the fluorescence signal was detected 20 min later using an EnSpire
Plate Reader (PerkinElmer, United States) with 502 nm excitation
and 530 nm emission.

RNA Extraction, Reverse Transcription,
and Quantitative Real-Time PCR
Rice leaf total RNA was extracted using TRIzol reagent
(T9424, Sigma-Aldrich, United States) following the
kit instructions provided by the manufacturer. Reverse
transcription was performed using HiScript III-RT SuperMix
for qPCR (+ gDNA wiper) (Vazyme, China). Genomic
DNA was first removed from 1 µg of total RNA using
4 × gDNA wiper mix and then reverse transcribed with
5 × HiScriptIII R© qRT SuperMix at 37◦C for 15 min and
85◦C for 5 s. Quantitative real-time PCR was carried out
on the QuantStudio 6 Flex Real-Time PCR System (Life
Technologies, United States) according to the method
provided in the UltraSYBR Mixture (CWBIO, China)
instructions. Expression of the rice endogenous actin gene
Actin (Accession No: AY212324) was used for internal analysis
of the results. The quantitative qRT-PCR primers are shown in
Supplementary Table 1.

RNA-Seq and Analysis
Four-week-old rice leaves were harvested at 0 h, 2 h, or 24 h
after guanine treatment with three replicates of each treatment
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for a total of nine samples. RNA samples were constructed
as previously reported (Feng et al., 2016; Wu et al., 2019),
and sequencing was performed with a BGISEQ-500 platform
by Wuhan Genomic Institution (2BGI, Shenzhen, China). The
expression levels of individual genes were normalized to FKPM
(fragments per kilobase million) reads by RNA-seq through
the expectation maximization algorithm. All differential gene
expression was based on the following standard: the t significantly
differential expression of genes was defined with the absolute
value of log2 ratio≥1 and P ≤ 0.05. Heatmap analysis of data was
performed via the BAR Heatmapper tool3.

RESULTS

Guanine Enhances Rice Resistance
Against Rice Sheath Blight
A previous study showed that ZhiNengCong (ZNC), an extract
of the endophyte Paecilomyces variotii, can protect plants
against pathogenic infection (Lu et al., 2019; Cao et al.,
2021). To investigate the effective immune fraction of ZNC,
high-performance liquid chromatography (HPLC) and liquid
chromatography-mass spectrometry (LC–MS) were performed.

2https://www.genomics.cn/
3http://bar.utoronto.ca/ntools/cgi-bin/ntools_heatmapper.cgi

Many nucleotides and their derivatives were identified as the
active fractions of ZNC, including guanine (Supplementary
Table 2). To determine whether guanine stimulates disease
resistance in plants and at what concentration, 1 ng/mL,
10 ng/mL, and 100 ng/mL guanine were selected to perform
the following experiments. The test was first performed
on Arabidopsis. Our results showed that guanine treatment
enhanced the resistance of Arabidopsis to Pst DC3000, and
the increase in Pst DC3000 resistance was consistent with an
increase in guanine treatment concentration (Supplementary
Figures 1A,B). The lowest effective concentration, 100 ng/mL,
was selected for further experiments. To investigate whether
guanine can enhance rice resistance to ShB, inoculation
experiments with the R. solani strain YWK196 were conducted
in rice. The results indicated that rice leaves treated with
guanine exhibited weaker disease symptoms, which showed
shorter lesions and smaller areas of disease in the greenhouse
(Figures 1A,B), suggesting that guanine significantly enhanced
the resistance of rice to ShB. In the field, the average ShB
lesion length on guanine-treated rice showed a 37% reduction
compared with that of the mock rice (Figures 1C,D). In
addition, 100 ng/mL guanine enhanced the resistance of rice
to Xanthomonas oryzae pv. oryzicola (Xoc) and Xanthomonas
oryzae pv. oryzae (Xoo), which caused rice bacterial leaf
streak and bacterial blight, respectively (Figures 1E–H). To
further determine whether guanine directly inhibits pathogen

FIGURE 1 | Guanine improved the resistance of rice to R. solani. (A) Rice sheath blight symptoms on the leaves after indoor guanine treatment. The images were
photographed at 3 dpi. (B) Lesion area after 3 days of inoculation with R. solani after guanine treatment. Error bars indicate the SD (n = 5). Asterisks indicate
P < 0.05 (*) in Student’s t-test analysis. (C) Phenotypes of the rice sheaths inoculated with R. solani after guanine treatment in the field. The images were
photographed at 3 dpi (n = 11). (D) Rice sheath blight disease lesion length 3 days after R. solani inoculation after rice sheath guanine treatment. Error bars indicate
the SD (n = 11). Asterisks indicate P < 0.001 (***) in Student’s t-test analysis. (E) Bacterial blight disease symptoms on rice leaves after guanine treatment. The
images were photographed at 10 days postinoculation. (F) Treatment with guanine 2 h before inoculation with PXO99A and lesion length measurement at 10 days
postinoculation (n = 8). Asterisks indicate P < 0.01 (**) in Student’s t-test analysis. (G) Rice leaves treated with 100 ng/mL guanine 2 h before Xoc strain RS105
inoculation. The images were photographed at 15 days postinoculation. (H) Lesion lengths after guanine treatment compared with that of the mock at 15 dpi with
Xoc strain RS105 (n = 20). Asterisks indicate P < 0.05 (*), P < 0.01 (**), P < 0.001 (***), and P < 0.001 (***) in Student’s t-test analysis. The experiment was repeated
three times with similar results.
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growth, pathogen growth experiments were conducted in solid
medium containing 0, 1, 10, 100, or 200 ng/mL guanine. As
shown in Supplementary Figure 2, guanine failed to inhibit
the growth of RS105, PXO99A, YWK196, and Pst DC3000,
which indicated that guanine conferred plant resistance to
pathogens independently of antimicrobial activity. According to
these results, we speculated that guanine may enhance disease
resistance by stimulating immunity in plants.

Guanine Activates Plant Immune
Responses
Plant elicitors, such as flagellin 22 and Cu2+, generally trigger
ROS bursts, callose deposition and MAPK phosphorylation in
plant leaves (Liu et al., 2015). Thus, we determined whether
guanine could induce plant immune responses. H2O2 is the
main component of ROS, and its accumulation can be detected
by diaminobenzidine (DAB) staining. In Arabidopsis, after
guanine treatment, a deeper brown color was observed 2 h
posttreatment (hpt) compared to that seen with the mock

treatment (Figure 2A). Aniline blue staining was used to
determine callose accumulation. As shown in Figures 2B,C,
Arabidopsis leaves had significantly more callose deposits in
response to treatment with guanine compared to the mock
treatment (Figures 2B,C). In addition, elicitor-triggered plant
immunity is often associated with MAPK phosphorylation
activation (Asai et al., 2002), and guanine treatment significantly
promoted the phosphorylation of MAPKs compared with the
mock treatment at the indicated times (Figure 2D). Ca2+

is identified as an essential secondary messenger regulating
multitudinous cellular processes (Bleecker and Kende, 2000),
and Ca2+ influx is the first event in the activation of the
defense response in plants. To determine whether Ca2+ influx
is required for the guanine-induced defense response, a calcium
channel blocker, lanthanum chloride (LaCl3), was used to treat
Arabidopsis leaves in combination with guanine. The results
showed that using LaCl3 significantly reduced guanine-induced
disease resistance, implying that Ca2+ influx is necessary for the
guanine-mediated defense response in Arabidopsis (Figure 2E).
In rice, guanine also promoted the accumulation of ROS, as

FIGURE 2 | Guanine-induced plant immune responses. (A) DAB staining to detect H2O2 accumulation at 2 hpt after guanine treatment in Arabidopsis; brown
deposits indicate H2O2 concentration. (B) Guanine-induced callose deposits in Arabidopsis. The leaves of 4-week-old Col-0 seedlings were treated with the mock
and 1, 10, and 100 ng/mL guanine, and callose deposits were revealed by aniline blue staining. Scale bars = 25 µm. (C) Quantification of callose fluorescence
intensity of guanine-treated Arabidopsis leaves was performed using ImageJ software. Error bars indicate the SD (n = 4). (D) Guanine-activated MAPK
phosphorylation in Arabidopsis leaves. MAPK phosphorylation was detected by the phospho-p44/42 MPK antibody at the indicated times. Coomassie brilliant blue
(CBB) staining of ribulose-1,5-bis-phosphate carboxylase/oxygenase was used to ensure equal protein loading in each lane. (E) Growth population of Pst DC3000 in
the leaves of Arabidopsis plants treated with mock, guanine, H2O + lacl3 or guanine + lacl3. Error bars indicate the SD. Asterisks indicate P < 0.001 (***) in Student’s
t-test analysis. (F) Accumulation of H2O2 in rice leaves after guanine treatment by DAB staining. (G) H2DCFDA was used to detect ROS accumulation in the rice
leaves after guanine treatment at 0, 2, 4, 8, 12 and 24 h. Error bars indicate the SD (n = 5). (H) Callose deposits in guanine-treated rice leaves after aniline blue
staining. The leaves of 4-week-old ZH-11 seedlings were treated with mock and 100 ng/mL guanine and then stained using aniline blue. Scale bars = 100 µm.
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shown by DAB staining (Figure 2F). In addition, H2DCFDA
fluorescence was used to detect ROS production. The results
showed that guanine increased the accumulation of ROS within
24 h and peaked at 4 hpt (Figure 2G). The rice leaves
showed a significant increase in callose deposition after guanine
treatment (Figure 2H).

Transcriptome Profiling Reveals That
Guanine Regulates the Expression of
Defense-Associated Genes
To further explore the role of guanine in regulating the expression
of genes at the transcriptional level in rice, we performed an
RNA sequencing transcriptome analysis of rice leaves treated
with guanine (100 ng/mL) at 0, 2, and 24 hpt. The samples were
divided into three groups with three biological replicates. Each
sample produced at least 44 million high-quality clean reads
with a clean date rate of 97% or higher for all samples, and

an average of 83.36% reads were mapped to the rice genome,
representing a total of 25045 genes expressed in all samples
(Supplementary Tables 3, 4). Here, 3270 and 1606 genes were
upregulated and 3251 and 794 genes were downregulated at 2
and 24 h after guanine treatment, respectively (Figures 3A–C).
A set of differentially expressed genes (DEGs) that negatively
regulate defense responses [namely, OsWRKY76 (Yokotani
et al., 2013), OsWRKY45 (Tao et al., 2009), OsWRKY62 (Liang
et al., 2017), OsMADS26 (Khong et al., 2015), OsTrxm (Hu
et al., 2021), and OsHPL3 (Hu et al., 2021)] were found to
be significantly downregulated with guanine treatment. Genes
[namely, OsWRKY13 (Xiao et al., 2013), OsWRKY53 (Chujo
et al., 2007), OsWRKY4 (Wang et al., 2015), OsWRKY19 (Du
et al., 2021), OsWRKY30 (Peng et al., 2012), OsWRKY89 (Wang
et al., 2007), OsWRKY71 (Liu et al., 2007), OsWRKY42 (Cheng
et al., 2015), OsMYB30 (Li et al., 2020), OsMYB55 (Kishi-Kaboshi
et al., 2018), OsMYB110 (Kishi-Kaboshi et al., 2018), OsJAMyb
(Cao et al., 2015), OsRap2.6 (Wamaitha et al., 2012), OsNAC4

FIGURE 3 | An overview of guanine-regulated gene expression in rice leaves. (A) Number of up- and downregulated genes after guanine treatment at 2 and 24 hpt.
(B) Venn diagram of upregulated genes in the mock vs. guanine-2 h and mock vs. guanine-24 h groups. (C) Downregulated expression of genes after 2 and 24 hpt
of guanine treatment. (D) Heatmap analysis of disease resistance-related gene expression after guanine treatment at 2 and 24 hpt.
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(Kaneda et al., 2009), and RAI1 (Kim et al., 2012)] that are
involved in the positive regulation of plant disease resistance
responses were markedly upregulated after guanine treatment
(Figure 3D). These results showed that guanine could regulate
the expression of disease resistance-related genes in rice.

Guanine-Induced Plant Disease
Resistance Is Dependent on the Ethylene
and Jasmonic Acid Signaling Pathways
To further investigate the molecular mechanism of guanine-
induced disease resistance in rice, multiple disease signaling
pathways were analyzed. The results showed that gene expression
in the ET, JA, and SA signaling pathways was significantly
upregulated. ET-JA and SA signaling pathways play an essential
role in plant defense against biotrophic and necrotrophic
pathogens (McDowell and Dangl, 2000; Berens et al., 2017;
Zhao Z. X. et al., 2021). RNA sequencing analysis suggested
that ethylene biosynthesis gene expression was upregulated by
guanine at 2 and 24 hpt (Figure 4A), including OsSASM1,
OsACS1, OsACS2, OsACS5, OsACO1, and OsACO7 (Li et al.,
2011). Similarly, guanine increased the expression of ethylene-
responsive transcriptional genes such as OsERF3 and OsERF62
(Hu et al., 2008; Lu et al., 2011; Figure 4A). Furthermore,
as shown in Figure 4B, qRT-PCR experiments demonstrated
that guanine treatment upregulated the expression of OsSASM1,

OsACO7, and OsERF62, which was consistent with the RNA-
seq data (Figure 4B). In rice, OsERS1, OsERS2, OsETR2,
OsETR3, and OsETR4 have been identified as ET receptors
(Wuriyanghan et al., 2009; Zhao H. et al., 2021). Here, the ET
receptor T-DNA insertion mutants etr2 and etr3 were used to
determine whether guanine induced rice resistance to R. solani
that relies on ET signaling. As shown in Figures 4C,D, the
lesion area was significantly smaller after guanine treatment
compared to that in the mock in wild-type plants Dongjin
(DJ); however, a similar lesion area between the mock and
guanine treatment groups in etr2 and etr3 mutant plants
was observed. In addition, the lesion areas of etr2 and etr3
were significantly greater than those of DJ, indicating that
OsETR2 and OsETR3 function as positive regulators in ShB
resistance and that guanine induces rice resistance to R. solani
YWK196 in an OsETR2/OsETR3-dependent manner. Col-0, etr1
and ein2 mutants were injected with Pst DC3000 after 2 h
of guanine and mock treatment. As a result, guanine failed
to induce plant resistance to Pst DC3000 in the etr1 and
ein2 mutants (Figure 4E), indicating that guanine activated
plant immunity and was dependent on ethylene signaling in
Arabidopsis.

In addition, both RNA-seq and qRT-PCR showed that JA
biosynthesis- and signal transduction-related gene expression
were upregulated by guanine, as illustrated in Figures 5A,B. To
explore whether JA signaling plays a role in the guanine-mediated

FIGURE 4 | Guanine activated ET signaling pathway gene expression and enhanced plant disease resistance dependent on ethylene receptors. (A) Heatmap
analysis of ET biosynthesis and response gene expression after guanine treatment at 2 and 24 hpt. (B) qRT-PCR for the detection of ethylene pathway genes
OsSAMS1, OsACO7, and OsERF62. The horizontal coordinates indicate the time of guanine- and mock-treated rice, and the vertical coordinates indicate the relative
gene expression levels of guanine compared to the mock at the same time point. (C) Susceptible phenotype of the etr2 and etr3 mutant plants. Leaves of the rice
plants treated with the mock and 100 ng/mL guanine prior to R. solani strain YWK196 inoculation. The disease symptoms were photographed at 3 dpi.
(D) Measurement of the area of (C) by ImageJ. Asterisks indicate P < 0.01 (**) in Student’s t-test analysis. (E) Bacterial population in Col-0, etr1 and ein2 plant
leaves. Arabidopsis leaves treated with the mock and 100 ng/mL guanine prior to Pst DC3000 inoculation. The bacterial population was calculated at 3 dpi.
Asterisks indicate P < 0.001 (***) in Student’s t-test analysis.
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resistance response, OsCOI1b-RNAi and NIP (wild type) were
inoculated with R. solani that was treated with guanine and mock
2 h later. The results showed that guanine failed to reduce the
lesion area in COI1b-RNAi plants (Figures 5C,D), suggesting
that the JA receptor OsCOI1b was necessary for guanine-induced
rice resistance to ShB. Furthermore, a Pst DC3000 inoculation
experiment was conducted in a JA biosynthesis mutant in
Arabidopsis. As shown in Figure 5E, guanine treatment did
not reduce the bacterial population in jar1 mutant plants but
significantly reduced the bacterial population in opr3. This
difference indicated that guanine-induced resistance to Pst
DC3000 is dependent onAtJAR1 but notAtOPR3. Taken together,
these results suggested that JA signaling is essential for guanine-
induced plant resistance.

A heatmap was used to determine the role of SA in
guanine-mediated defense responses, and the results showed
that OsPAL1, OsPAL3, and OsPAL7 (Tonnessen et al., 2015),
which are involved in SA biosynthesis, were upregulated by
guanine treatment. In addition, OsNPR1 and OsPR1a, marker
genes of the SA pathway (Sohn et al., 2007; Yuan et al.,
2007), were significantly upregulated by guanine treatment
(Figure 6A). Furthermore, qRT-PCR analysis showed similar
results as the transcriptome data (Figure 6B). Then, SA-
deficient NahG transgenic plants were used for the following
experiments. Guanine significantly reduced the lesion area in
both NIP and NahG plants (Figures 6C,D). Similarly, guanine
enhanced Arabidopsis resistance to Pst DC3000 in NahG and
sid2 mutant plants (Figure 6E). These results suggested that

SA signaling is not necessary for guanine-induced resistance to
pathogens in plants.

DISCUSSION

Here, we proposed a possible model to summarize the function of
guanine in triggering plant immunity based on the above results
(Figure 7). Guanine-enhanced rice resistance to ShB depends
on the ET receptors OsETR2 and OsETR3 and the JA receptor
OsCOI1b. In Arabidopsis, guanine-induced plant resistance to Pst
DC3000 required AtJAR1, AtETR1, and AtEIN2. In summary,
guanine activated jasmonic acid and ethylene signaling pathways
to protect plants against pathogens. The mechanism of rice
resistance to ShB is still largely unknown, and ShB control relies
heavily on chemical fungicides (Zheng et al., 2013; Li et al., 2019;
Wang et al., 2021). In this study, 100 ng/mL guanine significantly
enhanced rice resistance to ShB, providing a novel, green and
efficient strategy for ShB prevention and control.

At present, biological agents are usually used for the
prevention and treatment of ShB in agricultural production.
Rice ShB was effectively controlled by 0.1 mg/L Cu-based
water-dispersible humic acid (Cu-WH) fungicide (Tang et al.,
2019). In addition, previous studies have demonstrated that
extracts of Ginkgo biloba outer seedcoats can inhibit the
growth of R. solani Kuhn AG-1 and are considered most
effective at a concentration of 250 µg/mL (Oh et al., 2015).
Similarly, the rhizobacterium Bacillus amyloliquefaciens (SN13),

FIGURE 5 | Guanine upregulated the expression of JA signaling pathway genes and enhanced plant disease resistance dependent on the JA signaling pathway.
(A) Heatmap of JA-related gene expression after guanine treatment. (B) qRT-PCR for the detection of JA pathway genes OsLOX8, OsAOS3, OsOPR5, and
OsJAZ10. The horizontal coordinates indicate the time of guanine- and mock-treated rice, and the vertical coordinates indicate the relative gene expression levels of
guanine compared to the mock at the same time point. (C) Evaluation of the effect of guanine on COI1b-RNAi against R. solani. (D) Measurement of the lesion area
by ImageJ. Lesion area after 3 days of inoculation with R. solani strain YWK196 after guanine treatment in NIP and COI1b-RNAi. Asterisks indicate P < 0.001 (***)
and P < 0.05 (*) in Student’s t-test analysis. (E) Inoculation of Pst DC3000 after guanine treatment and bacterial growth in Col-0, jar1 and opr3 after 3 days.
Asterisks indicate P < 0.001 (***) in Student’s t-test analysis.
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FIGURE 6 | Guanine upregulated the expression of SA signaling pathway genes but still enhanced plant disease resistance in SA-deficient mutant plants.
(A) Heatmap analysis of SA biosynthesis and responsive gene expression after guanine treatment at 2 and 24 hpt. (B) qRT-PCR for the detection of the SA pathway
gene OsPR1a. The horizontal coordinates indicate the time of guanine- and mock-treated rice, and the vertical coordinates indicate the relative gene expression
levels of guanine compared to the mock at the same time point. Asterisks indicate P < 0.05 (*), P < 0.01 (**) in Student’s t-test analysis. (C) Disease symptoms of
the NahG transgenic plants. Leaves of the rice plants treated with the mock and 100 ng/mL guanine prior to R. solani strain YWK196 inoculation. The disease
symptoms were photographed at 3 dpi. (D) Measurement of the lesion area of (C) by ImageJ. Asterisks indicate P < 0.001 (***) in Student’s t-test analysis.
(E) Bacterial population in Col-0, NahG and sid2 plant leaves. Arabidopsis leaves treated with the mock and 100 ng/mL guanine prior to Pst DC3000 inoculation.
Bacterial population was calculated at 3 dpi. Asterisks indicate P < 0.05 (*), P < 0.001 (***) in Student’s t-test analysis.

FIGURE 7 | A proposed model of guanine-mediated plant immunity. In rice, OsETR2, OsETR3, and OsCOI1b are required for guanine-induced plant immunity to
ShB. Similarly, guanine also needs AtETR1, AtEIN2, and AtJAR1 to enhance plant resistance to pst DC3000 in Arabidopsis.

as a biocontrol agent, can enhance immune responses against
R. solani in rice by modulating various physiological, metabolic
and molecular functions (Srivastava et al., 2016). In this study,
100 ng/mL guanine significantly enhanced the resistance of
rice to ShB in both greenhouses and fields by triggering
rice immunity (Figure 1). Furthermore, the concentration of
guanine (100 ng/mL) also activated the ROS burst, MAPK
phosphorylation, callose deposition and the expression of
pathogen resistance-associated genes (Figures 2, 3), which was

similar to the effects of Cu2+ and flg22. In the field, R. solani
was inoculated on rice after 2 h of guanine treatment. The
guanine-treated rice maintained better resistance to ShB after
3–5 days than the mock rice (Figures 1C,D). This finding
indicates that the resistance of guanine-induced plants to ShB
can be maintained for at least 3–5 days in the field. Thus,
guanine is a highly efficient and environmentally friendly
plant elicitor for ShB prevention and control in agricultural
plant production.
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In general, JA- and ET-mediated signaling pathways are
considered to play a synergistic role in defense responses to
necrotizing pathogens such as R. solani (Glazebrook, 2005).
The JA/ET signaling pathway plays a crucial role in WRKY4-
mediated defense responses to rice sheath blight (Wang et al.,
2015). ET also plays an important role in plant growth and
development (van Loon et al., 2006). ET is synthesized from
the precursor intermediate 1-aminocyclopropane-1-carboxylate
(ACC), which is catalyzed by ACC oxidase and derived from
S-adenosylmethionine (SAM) via a reaction catalyzed by the
ACC synthase ACS (Bleecker and Kende, 2000). A previous
study showed that ET plays an essential role in rice immunity.
For example, exogenous ET application induces pathogenesis-
related (PR) gene expression in rice (Agrawal et al., 2001). In
addition, overexpression of the ET biosynthetic gene OsACS2
can enhance rice resistance to ShB (Helliwell et al., 2013).
These studies indicate that the ET pathway can positively
regulate rice resistance to ShB. Similarly, our results confirmed
that guanine regulates rice disease resistance through the ET
pathway. Transcriptome analysis showed that guanine treatment
increased the upregulated expression of the ET biosynthesis genes
OsSAMS1 and OsACO7 and ET response transcription factors
OsERF62 (Figures 4A,B). Interestingly, the ET receptors OsETR2
and OsETR3 were more sensitive to R. solani than the wild-type
plants, and guanine treatment did not increase plant resistance to
R. solani (Figures 4C,D). A possible explanation for this might
be that guanine-induced resistance to ShB mainly depends on
ET signal transduction. In Arabidopsis, guanine failed to induce
plant resistance to Pst DC3000 in the etr1 and ein2 mutants
(Figure 4E). These results suggested that guanine-mediated
resistance to Pst DC3000 depends on ET signaling.

On the other hand, jasmonic acid plays a crucial role in
plant resistance to insect and fungal pathogens. Exogenous JA
can activate the expression of hundreds of defense-related genes,
and the resulting feedback leads to the upregulation of the
biosynthesis of resistance proteins and metabolites, including
antifungal proteins and plant antitoxins (Ferrari et al., 2003;
Srivastava et al., 2018; Ruan et al., 2019; Hu et al., 2021). In
addition, WRKY30 overexpression in rice enhances resistance
to the rice sheath blight fungus R. solani, which also depends
on the JA pathway (Peng et al., 2012). This study found
that guanine was involved in the induction of JA biosynthesis
and responses in plants, which was largely dependent on the
receptor OsCOI1b for the regulation of rice resistance to ShB.
Furthermore, guanine-enhanced plant resistance to pathogens
also required AtJAR1 but not the JA biosynthesis gene AtOPR3
in Arabidopsis (Figure 5). Hence, we proposed that guanine-
enhanced resistance to pathogens mainly depends on the ethylene
and jasmonic acid signaling pathways.

CONCLUSION

Our results demonstrated that guanine enhances the resistance of
plants against bacteria and fungi. The ET and JA phytohormone
signaling pathways are involved in guanine-mediated immunity.
ET receptors OsETR2 and OsETR3 and JA receptor OsCOI1b
are necessary for guanine-enhanced rice resistance to ShB. In

Arabidopsis, guanine-induced plant resistance to Pst DC3000
depends on AtJAR1, AtETR1, and AtEIN2.
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