
A novel haptics-based interface and sculpting system for physics-based
geometric design

F. Dachille IX*, H. Qin, A. Kaufman

Department of Computer Science, State University of New York at Stony Brook, Stony Brook, NY 11794-4400, USA

Abstract

Conventional geometric design techniques based on B-splines and NURBS often require tedious control-point manipulation and/or

painstaking constraint speci®cation via unnatural mouse-based computer interfaces. In this paper, we propose a novel and natural haptic

interface and present a physics-based geometric modeling approach that facilitates interactive sculpting of spline-based virtual material.

Using the PHANToM haptic device, modelers can feel the physically realistic presence of virtual spline objects and interactively deform

virtual materials with force feedback throughout the design process. We develop various haptic sculpting tools to expedite the deformation of

B-spline surfaces with haptic feedback and constraints. The most signi®cant contribution of this paper is that point, normal, and curvature

constraints can be speci®ed interactively and modi®ed naturally using forces. To achieve the real-time sculpting performance, we devise a

novel dual representation for B-spline surfaces in both physical and mathematical space: the physics-based mass-spring model is mathe-

matically constrained by the B-spline surface throughout the sculpting session. We envision that the integration of haptics with traditional

computer-aided design makes it possible to realize all the potential offered by both haptic sculpting and physics-based modeling in CAD/

CAM, virtual prototyping, human±computer interface, and medical training and simulation. q 2001 Elsevier Science Ltd. All rights

reserved.

Keywords: Geometric design; Physics-based modeling; Haptic sculpting; Dynamics; Interaction techniques

1. Introduction

During the past several decades, standard free-form

splines such as B-splines and NURBS are frequently

utilized to satisfy various design and manufacturing needs

within CAD/CAM systems. They have been employed for

the rapid modeling, ef®cient design and manufacturing of

aircraft, ship hulls, automobile bodies, various industrial

parts, consumer products, and natural objects. Moreover,

free-form splines are of paramount signi®cance to a much

wider range of ®elds such as real-time interactive graphics,

scienti®c visualization, medical imaging, and virtual envir-

onments.

Although the theoretical foundations and mathematical

properties of free-form splines have been extensively

researched, better and more ef®cient modeling techniques

using these splines have evolved rather slowly. Traditional

free-form spline modeling is often associated with the

tedious and indirect manipulation via a large number of

(often irregular) control vertices. In spite of the advent of

modern 3D graphics interaction tools, these indirect

geometric techniques remain inherently laborious. In

contrast, physics-based modeling offers a superior approach

to free-form geometric design such that it augments (rather

than supercedes) matured geometric modeling techniques,

offering users extra advantages. Within the physics-based

frame-work, free-form spline models are equipped with

mass distributions, internal deformation energies, and

other material properties. The models, governed by physical

laws, respond dynamically to applied forces in an intuitive

and natural manner (see Refs. [19,20] for the details of the

physics-based modeling methodology). Refer to Fig. 1 for

an example of a variety of shapes each modeled in a matter

of seconds by a non-artist.

Despite recent research advances in physics-based

modeling, it is not yet possible to achieve the full modeling

potential associated with the physics-based design frame-

work. This is due to the fact that existing modeling systems

often rely upon 2D mouse-based interfaces for 3D interac-

tion. Direct physical operations on virtual objects with a

mouse are not as natural and intuitive as interaction using

a 3D interface. To ameliorate, we present a novel haptic

Computer-Aided Design 33 (2001) 403±420

COMPUTER-AIDED

DESIGN

0010-4485/01/$ - see front matter q 2001 Elsevier Science Ltd. All rights reserved.

PII: S0010-4485(00)00131-7

www.elsevier.com/locate/cad

* Corresponding author. Tel.:11-631-632-8470; fax:11-631-632-8334.

E-mail addresses: dachille@cs.sunysb.edu (F. Dachille IX), qin@cs.-

sunysb.edu (H. Qin), ari@cs.sunysb.edu (A. Kaufman).

approach for the intuitive and natural design of free-form

spline models and integrate this easy-to-use interface with

physics-based design algorithms (Fig. 2).

Haptics provides users a hand-based mechanism for intui-

tive, manual interactions with virtual environments towards

realistic tactile exploration and manipulation. Haptics-based

human±computer interaction has emerged as a critical

metaphor in the ®elds of medicine, education, industry,

entertainment, and computer arts. This is primarily because

using force-feedback controls, designers, artists, as well as

non-expert users can feel the model representation and

modify the object directly, thus enhancing the understand-

ing of object properties and the overall design. To date,

practical devices for tactile interaction are commercially

viable. A typical haptic device provides between two and

six degrees of freedom (DOF) and its appearance ranges

from a simple joystick to a complex robotic arm. We

currently use the six DOF input and three DOF output

PHANToM haptic device manufactured by SensAble Tech-

nologies. This device includes a pen-like stylus with a click-

able button for interaction.

1.1. Motivation and contribution

Throughout a large variety of interactive graphics meth-

ods, few computer-based modeling techniques have come

close to enabling modelers to design various shapes directly

with their hands. Our goal is to allow users to reach toward

an object, feel the physical presence of its shape, grab the

object, manipulate it (with or without deformation), and

release it in the desired location. Using a standard haptic

device, our hand-based approach permits users to interac-

tively sculpt virtual materials having realistic properties and

feel the physically realistic presence with force feedback

throughout the design process.

One potential advantage of this research is the integration

of haptics with the computer-integrated design and manu-

facturing cycle. Using haptics in a virtual design environ-

ment, designers are able to feel and deform real objects in a

natural 3D setting, rather than being restricted to mere 2D

projections for input and output. Force feedback provides

additional sensory cues to designers. This tactile exploration

can afford designers to gain a richer understanding of the 3D

F. Dachille IX et al. / Computer-Aided Design 33 (2001) 403±420404

Fig. 1. A variety of shapes sculpted with the system each in a matter of seconds: (a) The surface formed into a ªcape,º; (b) rolled into a cylinder and deformed;

(c) the ends of the cylinder pinched to form a closed surface; and (d) the ends of the cylinder stitched together to form a torus.

nature using the human hand for spatial and temporal inter-

action. The use of haptics in a virtual design environment

promises to increase the bandwidth of information between

designers and the synthetic modeling world. Furthermore,

the use of haptics in design, analysis, and manufacturing

processes can potentially shorten the product development

cycle, enhancing the effectiveness of the design and analysis

process for industry.

Prior research primarily focused on haptic rendering (i.e.

the feeling of rigid surfaces/solids). In contrast, our haptic

modeling system allows modelers to interactively deform a

non-rigid free-form surface (e.g. a B-spline object) in real-

time. The B-spline surface sculpted by our haptic device is a

dynamic physics-based model, which inherits all the intrin-

sic behaviors of physical, real-world objects. The dynamic

behaviors of our free-form surfaces result from a set of

differential equations and produce intuitive shape varia-

tions. From an optimization point of view, our haptic

F. Dachille IX et al. / Computer-Aided Design 33 (2001) 403±420 405

Fig. 2. A demonstration of the haptic sculpting system in action. A deformable cylinder anchored to the ground plane is pulled and twisted.

sculpting dynamically optimizes an array of geometric and

physical constraints enforced upon an arbitrary set of

geometric degrees of freedom (i.e. control vertices). The

B-spline surface currently available in our haptic design

system is a speci®c case of a more general D-NURBS

[20] object with ®xed weights. Our on-going research

endeavor is to further extend the haptic system to sculpt

more powerful D-NURBS objects.

We develop several high-level haptic sculpting tools to

expedite the intuitive modi®cation of spline objects in a

natural way. The tools developed in this system allow direct

interactive modi®cation of position, tangent, normal, and

curvature constraints via forces. One key advantage for

introducing these high-level tools into haptic design is that

non-expert users are able to concentrate on visual shape

variation without necessarily comprehending the underlying

(rather complicated) mathematics of object representation.

In particular, the B-spline control points and their associated

basis functions become transparent to modelers in our haptic

design environment, only the objects of interest remain visi-

ble from the users' point of view.

We develop a dual representation for physics-based

geometric design. In physical space, a physics-based B-

spline surface is discretized into a mass-spring model

equipped with material and elastic properties to provide

dynamic realism. The physical model provides an ef®cient,

intuitive approach to specify curvature, normal, tangent, and

other constraints. This mass-spring model is constrained in

mathematical space by the B-spline surface throughout the

sculpting session. Its behavior evolves in response to the

Lagrangian equations of motion subject to various

geometric constraints. The equations of motion are solved

in real-time using a tractable numerical solver. Note that the

polyhedral representation can be approximated to any user-

speci®ed error tolerance making it useful for simultaneous

graphics rendering and haptic rendering.

It may be noted that the integration of a haptic interface

and physics-based modeling should be of interest to broader

communities. This novel approach also presents other

value-added potential:

² The haptics-based system is more user-friendly, more

intuitive, and easier-to-use from the viewpoint of both

professional designers and non-expert users such as

artists; it should appeal to the general public.

² The haptic interface should be more attractive to computer

professionals from diverse application domains. For exam-

ple, collaborative design, involving a group of artists,

computer programmers, and engineering designers, can

be readily accomplished.

The remainder of the paper is organized as follows.

Section 2 reviews research concerning physics-based model-

ing. Section 3 presents themathematical formulations. Section

4 describes the current state of haptics and addresses technical

challenges relevant to our haptic sculpting system. Section 5

describes the detailed components of our sculpting system and

implementation issues. Section 6 presents the components of

the application and addresses the issue of system assessment.

Section 7 concludes the paper and outlines future research

directions.

2. Physics-based modeling

Various techniques have been developed to generate fair

surfaces that satisfy multiple constraints and optimize an

energy-based objective functional [3,15,33]. It is also possi-

ble to construct dynamic surfaces with natural behavior

governed by physical laws [17,30]. The bene®t of physics-

based behavior during interactive design is that the devel-

opment of the surface follows intuitive physical paths and

the surfaces react to external manipulation in a predictable

way. For example, pulling on a ribbon will tend to bend

rather than twist and stretch it. Thus, the incorporation of

physics with sculpting aids the design task, especially with

the reality-based feedback obtained from the haptic device.

Terzopoulos and Fleischer [29] provided a basis for

physics-based design by combining the two techniques for

simple interactive sculpting using viscoelastic and plastic

models. Celniker and Gossard [3] developed a prototype

system for interactive design based on the ®nite-element

optimization of energy functionals. Bloor and Wilson [2]

used similar energies optimized through numerical methods

for B-splines. Moreton and SeÂquin [15] interpolated a mini-

mum energy curve network with quintic Bezier patches by

minimizing the variation of curvature. Celniker and Welch

[4] investigated deformable B-splines with linear

constraints. Welch and Witkin [33] proposed a variational

surface modeling method which automatically generates a

surface model that attempts to satisfy a set of desired prop-

erties. Our method similarly develops a surface in response

to the users' desired properties. Thingvold and Cohen [31]

proposed to use elasto-plastic mass-spring-hinge models on

the B-spline control points. Our approach assigns the masses

directly on the surface and hides the control points from the

user. Stewart and Beier [24] demonstrated a direct curve

manipulation technique which allows the direct control of

position, normal, and curvature. Our approach facilitates

direct manipulation of point, normal, and curvature

constraints using physically based techniques and direct

feedback via haptics. Halstead et al. [7] implemented

smooth interpolation with Catmull±Clark surfaces using a

thin-plate energy functional. We can use a large variety of

functionals in our system (e.g. stretching and bending) to

limit the degrees of freedom and impart realism. For exam-

ple, it could be helpful to de®ne a functional which resists

self-penetration by simulating an electrostatically charged

surface that avoids itself.

Other relevant work on physical models include the

realistic animation of volumetric objects and molecular

structure [17,25,26,30], and the direct manipulation of

F. Dachille IX et al. / Computer-Aided Design 33 (2001) 403±420406

spline models [5,8]. Our method dynamically sculpts with

haptics spline objects controlled by physical laws subject to

various constraints. The haptic device directly operates on

position, tangent, normal, and curvature with forces.

Recently, Grimm and Ayers [6] proposed a framework for

curve editing. Multiple representations of a curve are main-

tained in order to facilitate curve modi®cation in the most

appropriate domain. In particular, a particle representation

allows the user to push the particles around using a spatula

tool for the purpose of local and/or global curve deforma-

tion. In our haptic system, we formulate our spline models

with two synchronized representations that permit surfaces

to conform to B-splines in mathematical domain, while

exhibiting physical behavior and satisfying material proper-

ties subject to intrinsic geometric constraints (e.g. curvature,

etc.).

3. Dynamics formulation

We represent a continuous B-spline surface s(u,v) as the

combination of a set of basis functions Bi,k and Bj,l with �n1

1� £ �m1 1� control points p(t), where t denotes time

s�u; v� �
Xn

i�0

Xm

j�0

pi;jBi;k�u�Bj;l�v� �1�

Note that, Bi,k and Bj,l are piecewise polynomials of order

k and l, respectively. Both u and v are parametric variables.

Their parametric domain is determined by two sets of non-

decreasing knot sequences, respectively. In the interest of

the space here, we refer readers to Ref. [20] for the B-spline

details. Without loss of generality, we assume that u and v

belong to [0,1]. The control point vector, p, is the concate-

nation of all 3D control points pi � �x; y; z�
T

p � �p
T
0;0;p

T
0;1;¼;p

T
n;m�

T
;

where T denotes matrix transposition. We now discretize

the dynamic surface into a set of parametrically uniform g £

h points d, which form �g2 1� £ �h2 1� quadrilateral ®nite

elements. Our dynamic surface has dual representations in

the mathematical domain (p, A) and the physical space (d).

The two formulations are connected by

d � Ap �2�

where A is a transformation matrix whose entries are basis

functions evaluated at various parametric values. For B-

spline surfaces, A is uniquely determined by the parametric

values of d, thus it is constant when all parametric values of

the discretization are constant. In this case, the matrix and

this pseudo-inverse can be pre-computed.

The discretized dynamic model has material quantities

such as mass m(u, v), damping g(u, v), and stiffness r (u,
v) de®ned as functions over the surface. Often, these func-

tions are constant over the surface, yielding uniform, homo-

genous surface characteristics. However, as demonstrated

later in Section 6.1, our system allows the user to paint

these properties interactively and directly onto the model

in real-time. The discretized surface is modeled as point

masses connected by a network of springs across nearest

neighbors and along both diagonals forming a polyhedral

representation useful for haptic interaction (see Fig. 3). This

representation lumps all of the surface mass at discrete loca-

tions (ªmass pointsº) on the surface with zero-weight spring

connections. This representation is computationally simple

and can be simulated using only basic physical equations.

Alternatively, the dynamic surface can be approximated

using ®nite element methods based on d. The ®nite elements

derived from d are mathematically equivalent to our current

implementation. We use a mass-spring model instead

because of its simplicity and the critical needs of real-time

haptic sculpting. Note that, although one diagonal spring is

mathematically necessary to prevent skew in the rectangular

mesh, it makes the stiffness anisotropic.

We formulate the motion equation of all mass-points

using a discrete simulation of Lagrangian dynamics

M �d1 D _d1Kd � fd: �3�

The force at every mass-point in the mesh is the sum of all

possible external forces: fd � Sfext: The internal forces are

generated by the connecting springs, where each spring is

modeled with force f � kl: The rest length of each spring is

determined upon initialization, but it is free to vary if plastic

deformations or other non-linear phenomena are desired.

Because all discretized points and springs are constrained

by the dynamic B-spline surface (Eq. (2)), we shall formu-

late the motion equation of physical behavior for all the

control points

A
T
MA �p1 A

T
DA _p1 A

T
KAp � A

T
fd: �4�

Therefore, we can directly compute the acceleration of

the control point vector based on the sculpting forces in the

discretized mesh

A
T
MA �p1 A

T
D _d 1 A

T
Kd � A

T
fd �5�

A
T
MA �p � A

T
fd 2 A

T
D _d 2 A

T
Kd �6�

�p � �A
T
MA�

21
�A

T
fd 2 A

T
D _d 2 A

T
Kd�: �7�

Note that, if a ®nite element model is used in our system

instead, then non-linear effects would be rather dif®cult to

model. However, with our ®nite difference approach, non-

linear damping and stiffness effects can be enforced in a

straightforward fashion. Linear damping is implemented

by reducing the velocity of each mass-point by a certain

user-de®ned proportion. Non-linear damping reduces the

velocity of each model point by a certain proportion that

can be characterized by a function of time and spring-force

magnitude. Similarly, non-linear stiffness is achieved by

applying forces proportional to a function of the spring-

magnitude. These techniques need to evaluate only

F. Dachille IX et al. / Computer-Aided Design 33 (2001) 403±420 407

relatively inexpensive functions in the inner loops of the

stiffness and damping equations.

Error control is an integral part of the algorithm. Errors are

possibly introduced into the design system by either coarse

time steps or a low-resolution discretization. The time step is

normally very small since the haptic device requires a high

update rate. If the model is very complex, the time step may

become large and errors creep into the simulation unless an

adaptive time step is used. However, these errors do not

necessarily deteriorate the surface design task since the

system is continually evolving towards an equilibrium of

energyminimization. Temporary inconsistencies in dynamics

appear not to have a negative effect in our system toward the

®nal stable shape. Coarse discretization also leads to potential

errors, so an accurate bound is necessary for discretization.

Fortunately, the discretization density is user-speci®ed, thus

the error can be controlled by the users.

The surface dynamically optimizes its energy functional,

constantly seeking a lower total energy state. Because the

energy functional is physically based, the dynamic optimi-

zation imparts realism during the modeling session. The

modeler has the ability to specify constraints in several

domains simultaneously (Fig. 4). Constraints are supplied

in physical space, tangent space, and curvature space, corre-

sponding to location, ®rst derivative, and second derivative,

similar to Ref. [24].

F. Dachille IX et al. / Computer-Aided Design 33 (2001) 403±420408

Fig. 3. A depiction of the control mesh and its discretized mass-spring polyhedral representation.

4. Haptics techniques

Haptics and its associated techniques have been well

researched in recent years. A good review of haptics litera-

ture can be found in Ref. [23], where the terminology and

fundamentals of haptics simulation, including cognitive

studies and mechanical requirements, are also detailed.

Minsky et al. [14] investigated the conditions required to

sustain the illusion of reality in a haptic system. Thompson

et al. [32] investigated haptic rendering of NURBS surfaces.

The dif®culty in rendering NURBS surfaces is the complex-

ity of the intersection task. Special techniques were invented

in order to improve the computation. Haptic rendering

requires: (1) sensing the position of the user's ®nger; (2)

locating the nearest point to the surface; and (3) appropri-

ately generating a force to be applied to the ®nger. One

prime dif®culty of realistic haptic modeling and rendering

is speed. A rather high force update rate, on the order of

1000 Hz, is necessary to achieve convincing haptic feed-

back. This is because, although the nervous system of

human being can only perform tactile tasks at the order of

10±20 Hz, humans can sense small movements up to

1000 Hz. Hence, any attempts to emulate physical move-

ment with update rate less than 1 kHz will result in tactile

vibrations, leading to the uncomfortable perception of fric-

tion, ridges, and general roughness depending on the

frequency range. Note that, this is far greater than the neces-

sary threshold required for real-time visual display (up to

60 Hz).

Because haptics entails a great amount of time-critical

processing, a high haptic update rate is often achieved either

using a dedicated processor or using a multiprocessor

machine. Jacobs et al. [9] discussed the critical issues of

synchronizing sensors in virtual reality environments.

Inspired by Ref. [9], we also exploit the similar idea to

synchronize multiple simulation loops, (i.e. graphics,

haptics, dynamics simulation). It may be noted that provid-

ing a high force update rate is currently feasible for simple

objects with simple linear even non-linear characteristics.

For example, a solid wall and its physical behavior in a

virtual environments can be approximated using a high-

stiffness spring and a high-viscosity damper (see Fig. 5).

The spring is only activated when the user penetrates the

plane of the wall; and it then repels the user to the edge of

the wall. The strength of the spring and the viscosity of the

damper can be pre-determined to match the mass and velo-

city of a typical user's hand. It has been observed in Ref.

[23] that a wall should resist a force of about 5±15 N in

order to be perceived as a solid obstacle. The spring reaction

force is computed using Hooke's law f � kx; where k is the

spring stiffness. The direction of force application can be

one of the following: (1) opposite to the velocity; (2) normal

to the surface; (3) or any direction in between. Note that, if

the direction always is kept normal to the surface, the wall

will be perceived like frictionless ice. Varying quantities of

surface friction can be simulated by applying extra force

opposite to the velocity along the tangential direction. Addi-

tional non-linear effects, such as static and dynamic friction

are also possible, depending on the magnitude of the tangen-

tial velocity opposing force. Note that all of these techni-

ques can be easily implemented through simple vector

calculations, which can be reasonably completed in less

than the allotted 1 ms.

In contrast, effectively computing the reaction force for

complicated geometry is a much more dif®cult problem. In

general, ®nding the intersection between the user's haptic

interface point (HIP) and the surrounding environment char-

acterized by the complex geometry is not trivial. The haptic

interface point is generally a simple sphere, but it may actu-

ally not ®t into thin crevices or it may simply pass through

thin objects during the sculpting session. Computing the

intersection of a sphere with many small triangles of a

complex polyhedron can be highly time-consuming, in

spite of the fact that the complexity analysis shows that

the problem itself is virtually O(n). For the same reason,

F. Dachille IX et al. / Computer-Aided Design 33 (2001) 403±420 409

Fig. 5. Spring-damper simulation of a rigid wall.

Fig. 4. Surface constraints are speci®ed in multiple domains, and the

dynamic model evolves to optimize the shape subject to those constraints.

coherence and spatial sorting must be exploited to maximize

performance. In addition, ambiguities can also arise, such as

in the case of penetrating the corner of an object. It is

uncertain which directions the normal force should point

to: whether along the direction of the entrance or along

the direction of the nearest surface point. To ameliorate

this, force shading [16] has been devised, which blends

together neighboring normals to avoid discontinuities

between neighboring polygons. Please note that sometimes

an opposite effect is more desirable, e.g. when the user is

attempting to select an edge or a vertex. Instead of falling off

the polygon when the edge is reached, an in®nitesimally

small tactile ridge can be added to the edge of all surfaces

so that as long as the user contacts the surface, he/she can

not fall off the edge of the surface [13]. The best treatment of

edges is highly application dependent.

There have been several approaches to solve the inter-

section problem and make it feasible for generic environ-

ments. Massie and Salisbury [11] divided the virtual

environments into many sub-regions within which the

reaction force could be readily calculated, unfortunately,

this technique has been proved to be rather problematic in

general because of potentially overlapping regions. The

force computation was based on the penalty method similar

to the wall con®guration described above. Later, Zilles and

Salisbury [34] proposed to use a god objectwhich would be

constrained to the surface of the intersecting object. The

haptic simulation would then continually attempt to mini-

mize the distance between the god object and the haptic

cursor. More recently, Ruspini et al. [21] further improved

the god object, naming it a virtual proxy and making it

suf®ciently large in order to prevent it from penetrating

any objects in the scene. In Ref. [21], constraint-based

path planning was exploited to move the proxy toward

the physical position, hence improving both force shading

and surface texture rendering. A set of bounding spheres

was used to perform ef®cient computation of intersection

with large polygonal datasets. In our system, we do not

utilize continuous sliding contact with the surface, thus

sophisticated intersection routines are not required.

Alternatively, Randolph et al. [10] developed an

approach for haptic rendering of a complex surface by

using an intermediate representation. A locally planar

approximation to the surface was computed at the collision

point as frequently as possible, but not as fast as the haptic

device requires to sustain illusion (about 1 kHz). The inter-

mediate representation was used to generate the reaction

forces for the high-speed haptic loop. A further improved

method has been developed by Salisbury and Tarr [22].

Recently, Swarup [27] and Tarr [28] explored physically

based haptic interaction with compliant objects. Visco-elas-

tic virtual objects are modeled as a discrete network of

masses connected by springs and dampers. Our work

expands the notion of just touching compliant objects to

directly manipulating fully deformable objects for the

purpose of sculpting.

5. Sculpting system and implementation

The sculpting system allows the user to reach out toward

the surface and click the stylus button to grab hold of the

surface. In response, the surface reacts in a physically plau-

sible manner and deforms according to the manipulation of

the user. At any time, the user can lock-in changes and set a

persistent constraint.

Our haptic system executes in a tight loop for direct

manipulation. It constantly evolves the dynamic surface

(governed by physical equations) in response to the user's

sculpting forces and other inputs. At each time step, the

system samples the user's commands to obtain the current

six DOF position of the haptic device. The commands

(keyboard hotkeys, mouse clicks, haptic stylus clicks, and

haptic stylus movement) impart sculpting forces to the

physical model, and the internal forces are calculated. The

forces are applied, and the system estimates the position of

the dynamic model at the next time step. Note that, through-

out the entire sculpting process, the discrete ®nite elements

are constrained to form a B-spline surface, whose control

vertices are functions of time. The surface discretization is

then updated using the new deformed surface con®guration,

and the shape is sent to the display device. To reduce the

latency and maximize the throughput, we resort to multi-

threading the haptics, graphics, and dynamics processes

with weak synchronization. This technique leads to the

parallel processing of haptic sculpting.

We now detail the major components of the haptic inter-

action, including grabbing the nearest point on the surface,

interacting with arbitrary points on the surface, maintaining

realism, implementing sculpting tools, computing force

feedback, enforcing constraints, and numerical integration.

The fundamental sculpting tool is the rope tool, which

allows positioning and orienting the surface at a single

point via a virtual rope. A magnet tool permits gross defor-

mations of the surface. Other sculpting tools allow specify-

ing persistent constraints (position, normal, and curvature)

and interactively painting material properties.

5.1. Manipulating the surface via the rope tool

To achieve the ultimate goal of real-time haptic sculpting,

®rst of all, we shall address the fundamental question of how

to grab the surface location with the virtual haptic cursor

and subsequently move it with force feedback to any desired

six DOF position. The intrinsic physical properties of the

dynamic surface will govern the motion and behavior of the

deformable sheet in response to the user's input force.

Our system permits users to freely grab any position on

the surface and move it accordingly. The performance of

this function is enhanced by the accompanied polyhedral

representation. The polyhedral representation makes it

much easier to search for the nearest point on the surface,

unlike the complicated NURBS surface intersection task

[32]. The nearest point on the surface does not need to be

F. Dachille IX et al. / Computer-Aided Design 33 (2001) 403±420410

updated too frequently, so the system can compute the

distance from the cursor to all the vertices of the polyhedral

representation during the graphics loop which operates at

60 Hz. When the user invokes the grab instruction by press-

ing the button on the haptic stylus, he/she locks onto the

nearest point, obviating the need to re-compute the nearest

point on the surface. Furthermore, when the surface is not

being manipulated, the cursor is allowed to freely intersect

the surface without force feedback, aiding in the selection of

interior parts of the surface. It is also possible (although not

implemented) to constantly intersect the surface and feel the

existence of continuous surface geometry and discrete

vertices using the techniques in Ref. [32].

The user's cursor is attached to the surface by an incom-

pressible spring Ð a rope. The rope tool provides a way to

ªlassoº the surface and manipulate it by pulling on the rope.

When the user ®rst clicks the stylus button using the rope

tool, a spring (a virtual rope) is generated between the tool

and the surface. The user can not push on the surface via the

rope, but if the length exceeds a certain threshold, a high

spring force is generated so that it feels like a stiff rope. The

rest length of the spring is initially set to be the original

distance. The length of the spring decreases over time in

such a manner that within about 1 s, the length becomes

zero. This will attract the surface towards the tool (and of

course, draw the human hand toward the surface geometry)

so that the user will quickly feel that he/she is in fact holding

the surface directly. Note that the tool is tethered to the

surface by a high-stiffness spring, but the contact point is

a massless proxy constrained to a ®xed location on the

surface for as long as the user grasps the stylus button.

Gradually reeling in the surface toward the cursor prevents

high derivative jerking forces which can potentially injure

the user of the haptic device or damage the device.

Attaching the rope tool initially causes no change to the

surface. Only after engaging the rope tool for a fraction of a

second does any deformation result. Therefore, small defor-

mations are possible using only short clicks of the stylus

button. The extent of deformation can be controlled by

changing the overall mass of the surface, allowing the

surface to react either wildly or mildly to sculpting forces.

An area for future work would be to associate a ªtempera-

tureº with the surface parameterization which adjusts the

malleability via the mass; a ªhotº region would deform

easily, while a ªcoldº region would be very stiff. In addition

to the temperature always progressing toward ambient,

virtual heat and cool could be brushed over the surface to

vary the temperature.

5.2. Interaction with an arbitrary location

While it is straightforward to grab vertices of the poly-

hedral representation, the grabbing operation is easily

extended to interact with any point (not necessarily a mass

vertex) on the surface. Note that the point interaction

between the exact location on the surface and the cursor

in general is not solvable in a straightforward manner due

to the non-linear nature of this computation. Instead, a

simple iterative method is employed to compute an approx-

imate location. Our algorithm works as follows. Once the

nearest vertex is found, the four (or fewer) adjacent faces are

tested for proximity to the cursor. The nearest face is then

iteratively subdivided, and the nearest quadrant to the cursor

is successively selected for subsequent operation of subdi-

vision. We observe that about ®ve levels of subdivision are

suf®cient to locate an approximate surface location within

the satisfactory accuracy in the parametric domain.

When the user grabs an arbitrary point on the face de®ned

by the four vertices as shown in Fig. 6, the sculpting force

generated by the interaction must be transformed into an

equivalent force ®eld acting on all the adjacent control

points p. Note that this would require to compute four

basis functions corresponding to each of the control points,

respectively. On the other hand, the virtual force could be

transmitted to the four surrounding vertices using the idea

that the polygonal quadrilateral element is temporarily a

stiff non-deformed plate so that pushing in the vicinity of

central regions transmits a force to the four vertices. The

force for each of the vertices is simply computed as a

weighted bilinear interpolation of the distance from each

point to the contact point. Note that the latter approach

performs the weighted interpolation without the use of the

parametric domain, hence it is more ef®cient. The above

iterative search procedure only needs to be invoked at the

time of user selection, i.e. when the user grabs the surface by

clicking the stylus button, therefore, it is only required to be

as fast as 1/20th of a second, the limit of human ability for

manual dexterity.

5.3. Sculpting tools

If the user wishes to not only place, but also to orient the

F. Dachille IX et al. / Computer-Aided Design 33 (2001) 403±420 411

Fig. 6. Grabbing the dynamic surface at a non-vertex location distributes the

virtual force to the nearest vertices (v0±v3).

surface, then two additional springs are created. The goal is

to align the u and v direction vectors with the user's cursor

orientation. An orthogonal set of axes are generated at the

cursor position, which is located at the end of the pen-like

haptic device (Fig. 7). The axes are always ®xed relative to

the pen and the user's hand and the length of the vectors is

set to match the rest length of the springs. Five springs are

used to orient the surface relative to the cursor position.

The rope tool always grabs the nearest mass-point on the

surface. An alternative magnet tool allows the user to

manipulate a nearby subset of the mass-points simulta-

neously to allow gross deformations. The user ®rst selects

the magnet tool instead of the rope tool. Then, when the

stylus button is depressed, all the mass-points within an

effective radius are attracted to (or repelled from) the cursor

position based on their distance. The force is distributed

among nearby points using a user-de®ned function u [

R
3
; which can be constant across the region, inversely

proportional to distance squared (like a real magnet), or

any other distribution. Keyboard hotkeys allow selecting

the various options such as rope or magnet tool, polarity

of the magnet (either attractive or repulsive), and the magnet

distribution function.

5.4. Force feedback

By adding external input forces based on the user's

actions, the mesh deforms according to the physical proper-

ties of the model. Furthermore, Newton's third law must be

held throughout the haptic sculpting: any force that the user

applies to the model must be re¯ected back to the user via

the haptic feedback mechanism (see Fig. 8). When the rope

tool pulls on a mass-point by adding a force along a certain

direction, then an equal and opposite force is generated at

the other end of the rope (the cursor) along the direction of

the rope. (Note that a rope can only transmit forces axially,

not tangentially.) The force is calculated at 1000 Hz and

transmitted to the haptic device where the force values are

converted into motor torques leading to real forces at the

cursor position.

The particular haptic device that we use only senses the

orientation; therefore, it is not possible to transmit feedback

torque to the user. If torque motors were available, the qual-

ity of the simulation would be increased by the improved

haptic display. In that case, the net torque will be calculated

by simply re¯ecting the torque applied to the surface. For

more advanced tools such as the magnet, force is always

transmitted to relevant mass-points which re¯ect forces

back to the user along the opposite direction. Simple vector

calculation (i.e. addition and negation) leads to the exact

reaction force in all cases.

5.5. Constraints

Many methods have been used to implement constraints.

Hsu et al. [8] solved a spline curve for point constraints

using the matrix pseudo-inverse. The pseudo-inverse has

the property of ®nding the least-squared error when the

system becomes over-constrained. Welch and Witkin [33]

utilized Lagrange multipliers to enforce a least-squared

solution to a constraint matrix. Moreton and SeÂquin [15]

used a minimum-energy network to optimize a system of

linear and non-linear constraints. Terzopoulos [30] used the

penalty method to drive a dynamic deformation for anima-

tion. Qin and Terzopoulos [20] used linear constraint tech-

niques to deform physical models for design purposes. Platt

and Barr [17] discussed various constraint methods for

deformable models including the penalty method, reaction

constraints, Lagrange constraints, and augmented Lagrange

constraints. Among various techniques to handle

constraints, penalty methods exhibit the property of simpli-

city, but suffer from inexact solutions and the requirement of

F. Dachille IX et al. / Computer-Aided Design 33 (2001) 403±420412

Fig. 7. The set of ®ve springs is used to locate and orient the surface relative

to the cursor position.

Fig. 8. To compute the haptic reaction force, Newton's third law is applied. By pulling on the virtual rope, tension is generated in the rope pulling in opposite

directions for the surface and the user.

smaller time steps. Reaction constraints improve the penalty

method by ful®lling constraints exactly in the presence of

outside forces. Lagrange constraints and augmented

Lagrange constraints require complex differential equations

that are not suitable for the real-time requirement of our

haptic interaction.

Our system currently uses an explicit integration method

for updating the physical system. Although in principle

implicit solvers are capable of offering more stable and

robust solutions to complex physical systems, they typically

require a much higher computational effort, which may

make it impossible to achieve the vital objective of real-

time haptic interaction. Our experiments demonstrate that

even a small number (3±5) of conjugate-gradient iterations

requires roughly 20 times as much computation as the more

cost-effective explicit approach (please refer to Table 1 for

the detailed comparisons). Note that, stability and robust-

ness are preserved in our prototype system with the explicit

integration method. One technique we apply to our sculpt-

ing examples is an adaptive time step, i.e. if the acceleration

exceeds a user-de®ned threshold, the time step is recursively

halved.

Point constraints are implemented as high-stiffness

springs between a mass-point and the speci®ed location.

We adopt the penalty method because our system is non-

linear, and because it is physically plausible. Other methods

fail to solve non-linear systems which are often over-

constrained. At equilibrium, our method generates a least-

squared energy ®t to the speci®ed constraints. This is

because an ideal Hookean spring with energy E � kl
2 is

minimized by the kinematic simulation, and the energy

exactly corresponds to the squared error in the surface ®t.

Tangent plane, or ®rst derivative, constraints are imple-

mented in the physical model by adding four springs to the

system (similar to the four outer spring shown in Fig. 7). We

again use the penalty method since this constraint also is

non-linear. When a tangent plane constraint is enabled, the

current discrete �Ds=Du� and �Ds=Dv� are stored. At each

subsequent timestep, the derivatives are added to the activa-

tion point to establish the desired position of the four neigh-

boring points. Stiff springs are generated between the actual

and the desired points, forcing the neighboring points into

alignment with the tangent plane. Note that, this method

®xes the rotation of the surface normal.

To avoid ®xing the rotation, the tangent plane vectors can

be established in an alternate way. The desired normal

vector nd is crossed with the actual u direction vector ua

to obtain the desired v direction vector vd (see Fig. 9).

Then the actual v direction vector va is crossed with the

desired normal vector nd to obtain the desired u direction

vector ud. The two desired vectors are mirrored to compute

four desired point locations. The vectors are then normal-

ized to be the same length as the actual direction vectors so

as not to introduce length distortions. Just as in the previous

steps, stiff springs are generated between the four actual and

the four desired points to force the neighboring points into

alignment with the tangent plane. The vector sum of these

four forces would result in an undesired translation of the

mesh. Therefore, the vector sum is negated and added to the

center point. This results in a force equilibrium and zero

sum translation.

Curvature, or second derivative, constraints are imple-

mented in the physical model by adding two springs to the

system (see Fig. 10 for a 1D cross sectional example).

Once again, we use the penalty method for unconstrained

optimization since this constraint is non-linear. One spring

spans the two neighboring points in the u direction and the

other in the v direction. The length of each spring is deter-

mined as 2L sin (u /2), where L is the average edge length

and u is the desired angle of curvature. The desired curva-

ture is variable, and it can be set independently for u and v

by selecting with the mouse a point on a 2D map of possi-

ble curvatures. The actual curvature could be either posi-

tive or negative; this method does not force the sign of the

F. Dachille IX et al. / Computer-Aided Design 33 (2001) 403±420 413

Table 1

Run times of physical simulations using both an explicit and an implicit solver versus surface complexity

Control point resolution Discretized mesh resolution Explicit solver run times (ms) Implicit solver run times (ms)

4 £ 4 10 £ 10 0.5 10

4 £ 4 20 £ 20 2 11

4 £ 4 40 £ 40 10 19

8 £ 8 20 £ 20 5 100

8 £ 8 40 £ 40 25 120

12 £ 12 25 £ 25 42 780

Fig. 9. Demonstration of how the desired tangent udesired and binormal vdesired
vectors are generated from the desired normal ndesired, actual tangent uactual,

and actual binormal vactual vectors.

curvature, only its magnitude. It is up to the user to pull the

surface in the proper direction. If more than two springs

were used, the system would become over-constrained and

increase the computational effort. Furthermore, this

method does not force an absolute constraint, but in the

absence of completing constraints and sculpting forces,

the surface achieves the desired curvature.

Additional geometric constraints can be incorporated

easily. For instance, control points can be constrained to

be linear combinations of free control points using a special

constraint matrix B to convert the control point vector p into

a vector of free control points p 0 by

p � Bp
0
:

The constraint matrix B can be set up once at the begin-

ning, incorporated into the basis function matrix A of Eq.

(2), and the rest of the equations operate as before. B is

initially the identity matrix, but as the number of free control

points is reduced, each corresponding row of B is replaced

by a linear combination of the remaining free control points

p
0. As an example, we wrapped the edges of the control

point lattice around on itself forming a cylinder (see Fig.

1b). By overlapping three rows of control points we

achieved C2 continuity across the seam. Note that in our

system users specify high-level topological types without

worrying about the four-level control point alignment devel-

oped in B. From the cylinder we formed a topologically

closed surface by pinching the ends (see Fig. 1c). By further

overlapping three rows of control points in the other para-

metric direction, we can develop a torus topology (see Fig.

1d).

5.6. Numerical integration

To sculpt spline surfaces in a haptic modeling system, it is

vital to provide users with real-time feedback. Rather than

using costly time integration methods that take the largest

possible time steps, it is more important to provide a

smoothly animated display by maintaining the continuity

of the dynamics from one step to the next. Hence, less costly

yet stable time integration methods that take modest time

steps are desirable. In particular, we have developed simu-

lation algorithms using both explicit and implicit integration

methods in our system.

At each time-step of the explicit integration, the control

point vector of the sculpt object at time ti is computed based

on the previous values at ti21 and ti. The summarized forces

on the discretized mesh are applied, and the transformation

matrix is used to determine the virtual force on the B-spline

control vertices

fp � A
T
fd

The velocity �Dp=Dt� of the control points is updated

according to the applied forces and to the material quantities

such as mass, damping, and stiffness. The control points are

moved to a new position

_pi11 � _pi 1 �piDt �8�

pi11 � pi 1 _piDt �9�

The updated control points pi11 are further used to update

the discretized model de®ned by di11 � Api11:

A more robust and stable (yet less effective) simulation

solver using implicit time integration is also available in our

system. Analogous to the prior discussion, the state of the B-

spline vertices at time i1 1 is integrated using prior states at

time i and i2 1. Discrete derivatives of p are computed

using backward differences

�pi11 � �pi11 2 2pi 1 pi21�=�Dt
2
�;

and

_pi11 � �pi11 2 pi21�=�2Dt�:

We obtain the time integration formula

�2Mp 1 DtDp 1 2Dt2Kp�pi11 � 2Dt2fp 1 4Mppi 2 �2Mp

2 DtDp�pi21;

�10�

where

Mp � A
T
MA;

Dp � A
T
DA;

Dp � A
T
KA

and the subscripts denote evaluation of the quantities at the

indicated timesteps. The matrices and forces are evaluated

at time i. Instability due to large transient applied forces

may be mitigated by adaptively reducing the size of the

integration time step. It is straightforward to employ the

conjugate gradient method to obtain an iterative solution

for pi11 [18]. The discretized mesh vector di11 can be

updated in a similar way. The time performance of various

solvers is detailed later in Section 6.

F. Dachille IX et al. / Computer-Aided Design 33 (2001) 403±420414

Fig. 10. A 1D example in which a curvature spring is added to the surface to

cause bending to a desired curvature.

5.7. Multi-threading

The system is designed to run multi-threaded, preferably

on multiple processors. There are three processes that need

to run simultaneously at different rates (see Fig. 11). First,

the simulation runs at the maximum possible speed so that

the surface movement is as realistic as possible. Second, the

graphics process runs at its maximum speed (up to 60 Hz),

always using the most recent discretization from the simula-

tion thread. Finally, the haptics process always runs at

1000 Hz or above and it supplies the simulation process

with the most recent cursor position. The haptics process

also computes output forces based on the ®nger position and

the estimated surface position. A hardware mechanism in

the haptics device ensures that the update rate is at least

1000 Hz or else it signals the process to exit.

For simple systems, the simulation process can be rolled

into the haptic process. In our system, the simulation is very

complex, and thus the computation could not always be

completed in the 1 ms allotted. Therefore, we used three

processes and decoupled the interfaces using the techniques

presented in Ref. [9].

Normally, the simulation process takes longer than the

haptic process, so the haptic process must estimate the resul-

tant force several times in between updates. However, the

force is highly non-linear and dif®cult to estimate due to

discontinuities such as surface constraints. The position of

the surface changes relatively slowly, while the haptic

device updates very rapidly. Therefore, it is better to esti-

mate the surface position and compute the force directly

using the known cursor position, similar to the methods

used in Refs. [10,22].

Consider computing the force using only a piecewise

constant estimation of the surface position. This yields a

step-like curve shown in Fig. 12. This way, the user

would feel a snapping, as if pulling the surface over ridges.

A better technique would use linear (or higher degree) extra-

polation to predict the new surface position based on two (or

multiple) previous states. Unfortunately, extrapolation

ampli®es small measurement errors, potentially leading to

even greater discontinuities. Alternatively, we have imple-

mented an exponentially weighted average which has the

desirable characteristics of smoothing the result. The under-

lying mathematics can be simply formulated as

Ei11 � Eia1 Fi�12 a�;

where Ei is the expected value at time i, a [�0; 1� is the

smoothing factor, and Fi is the value of the sampled function

at time i. We can see how this works by carrying out the

iteration

Ei11 � Fi�12 a�1 Fi21�12 a�a1 Fi22�12 a�a2

1 Fi23�12 a�a3
1¼1 E0a

This shows that the jth most recent function sample is

multiplied by the smoothing factor a raised to the jth

power, leading to an exponential decay in in¯uence. A

more sophisticated method would ®rst automatically deter-

mine the uncertainty (i.e. noise) in the system and subse-

quently improve the computation accuracy with the extra

corrected term using ®ltered extrapolation. One typical

example is the Kalman ®lter technique by Azuma and

Bishop for their motion predictor in a virtual reality appli-

cation Ref. [1].

6. Results

This section presents the graphic interface functionalities,

details our experimental results, and discusses the system

limitation.

6.1. Graphic interface

The B-spline surface is shaded with two colors and

deformed into an odd shape (see Fig. 13). The control

points, not shown here, seem to be arranged randomly for

this shape. It would have been dif®cult and non-intuitive to

specify this shape just by placing various control points in

three dimensions with a mouse. The user's cursor is the

sphere, which has been attracted to the surface. Not

shown is a control panel that operates in 3D with sliders

to control the overall mass, damping, and stiffness variables.

Some constraints have been speci®ed and are shown as

small indicators on the surface.

F. Dachille IX et al. / Computer-Aided Design 33 (2001) 403±420 415

Fig. 11. The system is composed of three loosely coupled, independent

processes which control the input, output, and physical simulation.

Fig. 12. A graphical depiction of two different position estimation schemes.

At any time during the simulation, pressing a key will

toggle the existence of a point, normal, or curvature

constraint at the point nearest to the cursor on the discretized

mesh. A jack is drawn on the surface to indicate that a

constraint has been added. The point constraint is drawn

as a red cross, a normal constraint as an oriented blue

line, and a curvature constraint as a white circle. The

constraints are initially speci®ed at their current quantities,

i.e. the current position is used as the location for a point

constraint, the current normal for a normal constraint, and

the current curvature for the curvature constraint. Curvature

constraints are speci®ed separately in the two parametric

directions, and a 2D map allows interactive modi®cation

of their values.

Using a ®nite difference approach with a mass-spring

haptic system is computationally ef®cient; because only

springs are used to model the physics, the force calculations

can be optimized. Furthermore, mass, stiffness, and damp-

ing are quantities that are allowed to vary over the surface

according to arbitrary distribution functions. In our system,

the quantities vary according to a 2D map, like a texture

map, which is evaluated using a bilinear resampling lookup.

The haptic device enables intuitive modi®cation of the map;

the haptic device operates as an airbrush, literally painting

mass, stiffness, and damping on the B-spline surface. Press-

ing a certain key turns off normal light shading and turns on

map display, in which the 2D mass, stiffness, or damping

map is projected onto the surface using pseudo-colors to

represent value (see Fig. 14).

The curvature may be evaluated at every point on the

surface and visualized in real-time (Fig. 15). The curvature

is then visualized by mapping the u curvature to the magenta

channel of the surface color and v the yellow. This style of

visualization and interactive fairing has been extensively

employed in the automotive industry.

6.2. Experiments and performance

We have presented a method capable of modeling

dynamic free-form surfaces through an intuitive user inter-

face. The user interface integrates precise 3D input with

haptic feedback of a surface model. The method is capable

of modeling B-spline surfaces by an innovative, physics-

based formulation. By representing the surface in both

physical and geometric domains, a useful B-spline represen-

tation can be generated to represent a dynamic surface with

any user-speci®ed physical properties. By using the exact

physical properties of the surface, the designer can work

with material and dynamics in virtual reality, gaining an

intuitive understanding of its malleability.

The B-spline surface can be generated with a variable

number of control points and with a variable number of

discretized elements over the surface. We have examined

the run times achieved for physical simulations using

F. Dachille IX et al. / Computer-Aided Design 33 (2001) 403±420416

Fig. 13. Screen shot showing a shaded B-spline surface, the user's cursor as a large sphere and colored axes, the nearest point on the surface as a white sphere

and colored axes, point constraints as red jacks, a normal constraint as a blue vector, and a curvature constraint as a white circle. (See also on the color page).

various con®gurations of the control points and the discre-

tized mesh (Table 1). Theoretically, the timing achieved is

on the order of O(s1 m1 c) where s is the number of

springs, m is the number of mass points, and c is the number

of control points. As the numbers indicate, the simulation

update rate is inversely proportional to both the number of

control points and the number of mass/spring elements.

The times for reasonably sized meshes are on the order of

hundreds of updates per second, which provides a markedly

realistic simulation of real surfaces. Subjectively, as the

F. Dachille IX et al. / Computer-Aided Design 33 (2001) 403±420 417

Fig. 15. The B-spline curvature is evaluated over the surface and displayed in pseudo-color. The user is able to interactively modify constraints and

immediately visualize the results. In this case, the u curvature is shown using the magenta channel and v, the yellow. (See also on the color page).

Fig. 14. Stiffness quantities are projected onto the B-spline surface, then are interactively changed by ªairbrushingº with the haptic device. In this example, the

white area was brushed with a lower stiffness, thus allowing it to stretch outward more than the rest of the surface. (See also on the color page).

complexity of the surface increases, the surface reacts slug-

gishly since the propagation time with ®nite difference

depends on the size of the mesh. This feature does not

harm the ability to manipulate a surface; it only hampers

the ability to make quick movements. If the timestep were

indiscriminately increased to account for the time discre-

pancy for larger meshes, then stability problems would

result; therefore, an adaptive timestep (as described in

Section 5.6) is used with success.

6.3. Discussion

The penalty method used to optimize multiple constraints

suffers from the limitation that constraints are not always

met exactly. If con¯icting constraints are speci®ed, then the

method globally minimizes the energy set by the penalties

Ð considered the best solution by most metrics. Because it

is possible to specify con¯icting constraints, some

constraints may not be precisely met. In the case of con¯ict-

ing constraints, weight may be given to particular

constraints by increasing their strength via the particular

spring constant.

When the surface has homogeneous, isotropic spring

constants, then the surface minimizes energy by attempting

an equal surface area parameterization. Since the parame-

terization is ®xed to equal intervals, it achieves this by

moving the control points. Even without explicit point,

normal, or curvature constraints, the surface is constrained

by the surface area energy. Thus, as few as two point

constraints may actually over-constrain the system, leading

to a minimum energy con®guration without meeting both

point constraints exactly.

The described system has been demonstrated to a wide

variety of audiences consisting of both experts and non-

experts. The general assessment of the system based on

users' feedback has been that it provides a powerful new

tool for design because of the realism and spatial under-

standing that it imparts. Users claim to feel as if they are

directly holding and manipulating the surface without

appreciable lag and the spontaneous feedback force of the

haptics device prevents users from ªpunching throughº the

surface. Although the surface visually reacts to the input

rotation, users still feel as if they are connected to the

surface by a ball joint without rotational feedback. The

feel of the system would be improved if the currently used

haptics device were capable of not only sensing rotation, but

also imparting torque to the user. It might be helpful to

selectively enable four different combinations of force and

torque input and feedback at different sessions for precise

sculpting. The density of discretization does not affect the

quality of the simulation (the surface feels the same) as long

as (1) the system is able to provide a high enough update

rate and (2) the mass is properly distributed among the

discrete mass points. Without the proper adjustment for

the parameterization, the surface can feel arti®cially heavy

and dampened.

While highly realistic, the system does not yet achieve the

kind of performance and interactivity that is possible with

the human hand. With only six degrees of freedom operating

at 1 kHz, the haptic device cannot simulate the nearly in®-

nite degrees of freedom represented by a real elasto-plastic

material. The particular model chosen Ð a single rectan-

gular B-spline surface Ð limits our ability to model

complex shapes of arbitrary genus. As the mesh becomes

distorted, the static parameterization may unequally distri-

bute physical parameters (e.g. mass) leading to subtle non-

realistic behavior. Our model does not simultaneously

extend the surface with additional patches when deforma-

tions become large, as it would be dif®cult to maintain

consistent dynamics during transition. However, this

research provides a groundwork for future implementations

of the method using alternate representations (e.g. general

D-NURBS surfaces, subdivision surfaces, and even

Catmull±Clark subdivision solids [12]).

7. Conclusion

We have presented a novel haptics-based interface and

sculpting system that facilitates the direct manipulation of

dynamic surfaces based on a B-spline formulation. The 3D

haptics-based interface is more intuitive and natural than

conventional 2D mouse-based interfaces. We have demon-

strated a desktop haptic modeling system which is suitable

for a spectrum of users ranging from highly trained engi-

neering designers, computer professionals, artists, to even

computer illiterates. Our system offers users a set of inter-

action toolkits, supporting point, normal, tangent, and

curvature manipulation via haptic feedback devices. We

have formulated a dual representation for dynamic surfaces

satisfying various geometric, material, and elastic properties

for the maximum dynamic realism. We anticipate that

haptics offers great promise in interactive graphics,

geometric modeling and design, medical training and simu-

lation, and virtual environments.

It may be noted that the ever increasing amount of

human±computer bandwidth inherent to various haptics

devices provides the possibility for an increase of design

productivity, thus we shall further our efforts towards the

quantitative analysis of haptic sculpting effectiveness and its

implications for the CAD/CAM industry. Our other future

research agenda is to extend the functionalities of the haptic

modeling system to handle multiple dynamic objects and

their realistic interaction within a virtual design environ-

ment. First, our haptic approach should be generalized to

allow multiple connected and disconnected patches. When

gluing two patches together, for example, continuity

requirements must be maintained. This is a challenging

task to enforce smoothness criteria throughout physics-

based haptic interaction. More powerful formulations,

such as D-NURBS and dynamic subdivision-based models

for arbitrary topology, will also be investigated. More

F. Dachille IX et al. / Computer-Aided Design 33 (2001) 403±420418

advanced intuitive toolkits will be explored and developed

towards the ultimate industrial practice.

Acknowledgements

This work was partially supported by NSF grant

MIP9527694, NSF CAREER award CCR9896123, NSF

grant DMI9896170, ONR grant N000149710402, Intel

Corp, and Ford Motor Corp. The authors wish to thank

Justine Dachille, Kevin McDonnell, John Woodwark, and

several anonymous reviewers for their helpful comments.

References

[1] Azuma R, Bishop G. A frequency-domain analysis of head-motion

prediction. SIGGRAPH 95 Conference Proceedings, Annual Confer-

ence Series, August 1995. p. 401±8.

[2] Bloor MIG, Wilson MJ. Representing PDE surfaces in terms of B-

splines. Computer-Aided Design 1990;22(6):324±31.

[3] Celniker G, Gossard D. Deformable curve and surface ®nite elements

for free-form shape design. Computer Graphics (SIGGRAPH'91

Proceedings), vol. 25, 1991. p. 257±66.

[4] Celniker G, Welch W, Linear constraints for deformable B-spline

surfaces. In: Zeltzer D, editor. Computer Graphics (1992 Symposium

on Interactive 3D Graphics), vol. 25(2), 1992. p. 165±70.

[5] Gleicher M. Integrating constraints and direct manipulation. Compu-

ter Graphics (1992 Symposium on Interactive 3D Graphics), vol.

25(2), 1992. p. 171±4.

[6] Grimm C, Ayers M. A framework for synchronized editing of multi-

ple curve representations. Eurographics'93, Barcelona, Spain,

September 1998.

[7] Halstead M, Kass M, DeRose T. Ef®cient, fair interpolation using

Catmull±Clark surfaces. In: Kajiya JT, editor. Computer Graphics

(SIGGRAPH'93 Proceedings), vol. 27, 1993. p. 35±44.

[8] Hsu WM, Hughes JF, Kaufman H. Direct manipulation of free-form

deformations. Computer Graphics (SIGGRAPH'92 Proceedings), vol.

26, 1992. p. 177±84.

[9] Jacobs MC, Livingston MA, State A. Managing latency in complex

augmented reality systems. Computer Graphics Symposium on Inter-

active 3D Graphics), 1997. p. 49±54.

[10] Mark W, Randolph S, Finch M, Van Verth J, Taylor II RM. Adding

force feedback to graphics systems: issues and solutions. SIGGRAPH

96 Conference Proceedings, Annual Conference Series, August 1996.

p. 447±52.

[11] Massie TM, Salisbury JK. The PHANToM haptic interface: a device

for probing virtual objects. ASME haptic interfaces for virtual envir-

onment and teleoperator systems 1994, Dynamic Systems and Control

1994, vol. 1, 1994. p. 295±301.

[12] McDonnell K, Qin H. Dynamic modeling and sculpting of Catmull±

Clark subdivision solids. Proceedings of Computer Animation 2000.

[13] Miller T, Zeleznik RC. The Design of 3D Haptic Widgets. Computer

Graphics Symposium on Interactive 3D Graphics), 1999. p. 97±102.

[14] Minsky M, Ouh-Young M, Steele O, Brooks FP, Jr, Behensky M.

Feeling and seeing: Issues in force display. Riesenfeld R, Sequin C,

editors. Computer Graphics (1990 Symposium on Interactive 3D

Graphics), vol. 24(2), 1990. p. 235±43.

[15] Moreton HP, Sequin CH. Functional optimization for fair surface

design. Computer Graphics (SIGGRAPH'92 Proceedings), vol. 26,

1992. p. 167±76.

[16] Morgenbesser HB. Force shading for haptic shape perception in

haptic virtual environments. M. eng thesis, Massachusetts Institute

of Technology, 1995.

[17] Platt JC, Barr AH. Constraint methods for ¯exible models. In: Dill J,

editor. Computer Graphics (SIGGRAPH'88 Proceedings), vol. 22,

1988. p. 279±88.

[18] Press WH, Teukolsky SA, Vetterling WT, Flannery BP. Numerical

recipes in C: the art of scienti®c computing. 2nd ed. Cambridge:

Cambridge University Press, 1992 (ISBN 0-521-43108-5).

[19] Qin H, Mandal C, Vemuri BC. Dynamic Catmull±Clark subdivision

surfaces. IEEE Transactions on Visualization and Computer Graphics

1998;4(3):215±29.

[20] Qin H, Terzopoulos D. D-NURBS: a physics-based framework for

geometric design. IEEE Transactions on Visualization and Computer

Graphics 1996;2(1):85±96.

[21] Ruspini DC, Kolarov K, Khatib O. The haptic display of complex

graphical environments. SIGGRAPH 97 Conference Proceedings,

Annual Conference Series, August 1997. p. 345±52.

[22] Salisbury JK, Tarr C. Haptic rendering of surface de®ned by implicit

functions. ASME Dynamic Systems and Control Division, November

1997.

[23] Srinivasan MA, Basdogan C. Haptics in virtual environments: taxon-

omy, research status, and challenges. Computer and Graphics

1997;21(4):393±404.

[24] Stewart PJ, Beier K-P. Direct manipulation of free-form curves with

generalized parametric basis functions. Technical report, Personal

Communication, 1998.

[25] Surles MC. An algorithm with linear complexity for interactive,

physically-based modeling of large proteins. In: Catmull EE, editor.

Computer Graphics (SIGGRAPH '92 Proceedings), vol. 26, July

1992. p. 221±30.

[26] Surles MC. Interactive modeling enhanced with constraints and

physics with applications in molecular modeling. In: Zeltzer D, editor.

Computer Graphics (1992 Symposium on Interactive 3D Graphics),

vol. 25(2), March 1992. p. 175±82.

[27] Swarup N. Haptic Interaction with deformable objects using real-time

dynamic simulation. MS thesis, Massachusetts Institute of Technol-

ogy, 1995.

[28] Tarr CM. Rigid, plastic, and visco-elastic haptic surface interaction.

Advanced undergraduate thesis, Massachusetts Institute of Technol-

ogy, 1998.

[29] Terzopoulos D, Fleischer K. Deformable models. The Visual Compu-

ter 1988;4(6):306±31.

[30] Terzopoulos D, Platt J, Barr A, Fleischer K. Elastically deformable

models. In: Stone MC, editor. Computer Graphics (SIGGRAPH'87

Proceedings), vol. 21, July 1987, p. 205±14.

[31] Thingvold JA, Cohen E. Physical modeling with B-spline surfaces for

interactive design and animation. Computer Graphics (1990 Sympo-

sium on Interactive 3D Graphics), vol. 24(2), March 1990. p. 129±37.

[32] Thompson TV, Johnson DE, Cohen E. Direct haptic rendering of

sculptured models. Computer Graphics (1997 Symposium on Inter-

active 3D Graphics), 1997. p. 167±76.

[33] Welch W, Witkin A. Variational surface modeling. Computer

Graphics (SIGGRAPH'92 Proceedings), vol. 26, July 1992, 157±66.

[34] Zilles CB, Salisbury JK. A constraint-based god-object method for

haptic display. ASME Haptic Interfaces for Virtual Environment and

Teleoperator Systems 1994, Dynamic Systems and Control 1994,

vol. 1, November 1994. p. 146±50.

F. Dachille IX et al. / Computer-Aided Design 33 (2001) 403±420 419

F. Dachille IX et al. / Computer-Aided Design 33 (2001) 403±420420

Arie E. Kaufman is the Director of the Center
for Visual Computing (CVC), a Leading
Professor and Chair of Computer Science,
and Leading Professor of Radiology at the
State University of New York at Stony
Brook. He was the founding Editor-in-Chief
of the IEEE Transaction on Visualization
and Computer Graphics (TVCG), 1995±
1998. Kaufman has been the co-Chair for the
multiple Eurographics/Siggraph Graphics
Hardware Workshops, the Papers or Program

co-Chair for the IEEE Visualization '90±'94 and ACM Volume Visualiza-
tion Symposium '92, '94, '98, and the co-founder and member of the
steering committee of the IEEE Visualization conference series. He has
previously chaired and is currently a director of the IEEE Computer Society
Technical Committee on Computer Graphics. He is the recipient of a 1995
IEEE Outstanding Contribution Award, the 1996 IEEE Computer Society's
Golden Core Member, 1998 IEEE Fellow, 1998 ACM Service Award, and
1999 IEEE Computer Society's Meritorious Service Award. Kaufman has
conducted research and consulted for about 30 years specializing in volume
visualization; graphics architectures, algorithms, and languages; virtual
reality; user interfaces; and multimedia. He received a BS in Mathematics
and Physics from the Hebrew University of Jerusalem in 1969, an MS in
Computer Science from the Weizmann Institute of Science, Rehovot, in
1973, and a PhD in Computer Science from the Ben-Gurion University,
Israel, in 1977. For more information see http://www.cs.sunysb.edu/~ari.

Frank Dachille received a BS in Naval Archi-
tecture and Marine Engineering from Webb
Institute of Naval Architecture in 1994 on a
full-tuition scholarship. He worked for two
years developing collaborative virtual reality
environments at Concurrent Technologies
Corporation. He is currently a PhD candidate
in Computer Science at the State University of
New York at Stony Brook, where he is a
research assistant in the Center for Visual
Computing (CVC) headed by Dr Arie Kauf-
man. His current research interests include

global illumination, volume visualization, volume rendering architectures,
physics-based modeling, and virtual reality. For more information, see
http://www.cs.sunysb.edu/~dachille.

Hong Qin is an Assistant Professor of Compu-
ter Science at State University of New York at
Stony Brook, where he is also a member of the
Center for Visual Computing (CVC). He
received his BS (1986) degree and his MS
degree (1989) in Computer Science from
Peking University in Beijing, People's Repub-
lic of China. He received his PhD (1995)
degree in Computer Science from the Univer-
sity of Toronto. During 1989±1990, he was
research scientist at North-China Institute of
Computing Technologies. During 1990±

1991, he was a PhD candidate in Computer Science at the University of
North Carolina at Chapel Hill. During 1996±1997, he was an Assistant
Professor of Computer and Information Science and Engineering at the
University of Florida. He received the Honor Student Award from 1983
to 1985 and the Best Graduate Award in 1996 from Peking University.
During his years at the University of Toronto, he received a University
of Toronto Open Doctoral Fellowship. In 1997, Dr Qin was awarded
NSF CAREER Award from the National Science Foundation (NSF). He
is a member of ACM, IEEE and SIAM.

