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Faced with severe operating conditions, rolling bearings tend to be one of the most vulnerable components in mechanical systems.
Due to the requirements of economic efficiency and reliability, effective fault diagnosis methods for rolling bearings have long
been a hot research topic of rotary machinery fields. However, traditional methods such as support vector machine (SVM) and
backpropagation neural network (BP-NN) which are composed of shallow structures trap into a dilemmawhen further improving
their accuracies. Aiming to overcome shortcomings of shallow structures, a novel hierarchical algorithm based on stacked LSTM
(long short-term memory) is proposed in this text. Without any preprocessing operation or manual feature extraction, the
proposedmethod constructs a framework of end-to-end fault diagnosis system for rolling bearings. Beneficial from thememorize-
forget mechanism of LSTM, features inherent in raw temporal signals are extracted hierarchically and automatically by stacking
LSTM. A series of experiments demonstrate that the proposedmodel can not only achieve up to 99% accuracy but also outperform
some state-of-the-art intelligent fault diagnosis methods.

1. Introduction

Rolling bearings are vital elements in auto-manufacturing
and heavy-load mechanical systems [1, 2]. Due to the harsh
working conditions, any small fault that occurs to the
bearings may cause fatal consequences to machines, which
straightly leads to severe economic losses and casualties.
)erefore, an urgent demand of detecting and recognizing
faults automatically in rolling bearings as early as possible is
practical and meaningful. During the past decades, with the
rapid development of computer technology, scholars around
the world have dedicated considerable efforts to bearing fault
diagnosis, and many excellent intelligent algorithms have
been proposed and utilized in practical applications.

Vibration analysis is one of the prevalent signal pro-
cessing techniques which are widely used in fault diagnosis
[3]. Machinery fault diagnosis with vibration signal anal-
ysis can be transformed into the framework of pattern
recognition problem, which consists of three main steps:
feature extraction, feature selection, and classification
[4, 5]. Prevalent pattern recognition algorithms such as

backpropagation neural network (BP-NN) and support
vector machine (SVM) are representative ones used in
rotating machinery fault diagnosis issues [6, 7]. However,
signals collected by vibration sensors are usually non-
stationary and complex, and what is worse, heavy back-
ground noise contributes to the difficulty of feature
extraction. A labor-intensive workload or expertise
knowledge is indispensable before an effective model is
constructed for certain fault diagnosis issue. )erefore, it is
a great challenge to learn discriminative fault features ef-
fectively and automatically.

As far as the authors are concerned, two main typical
algorithms for feature extraction exist in bearing fault di-
agnosis: signal processing-based algorithms and artificial
intelligence-based algorithms. )e former, which take prior
knowledge of signal and make full use of signal processing
techniques, such as time-frequency analysis (TFA) [8],
wavelet package transform (WPT) [9], and recently prev-
alent empirical mode decomposition (EMD) with its vari-
ants [10], have proven their effectiveness in many advanced
achievements. Due to benefits from the maturity of signal
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processing techniques, methods mentioned above have been
widely used. However, lack of flexibility also limits its further
improvement in recognition accuracy. Namely, selecting
suitable parameters of the model, the model can be appli-
cable in a certain fault diagnosis issue, and the variation of
loads or other factors may affect the accuracy of the model.
)e latter, which are represented by SVM and BP-NN, have
newly sprung up because of its accessibility. Without
knowing internal mechanism, users can design a fault di-
agnosis system just based on the theory of pattern recog-
nition without much effort. We hold the view that the easier
for users, the more widespread an algorithm is used.
)erefore, in this paper, we lay emphasis on intelligent
methods for bearing fault diagnosis.

Recently, a large number of research achievements have
promoted intelligent methods to a new level. Chine et al. [11]
utilized several features and constructed an ANN-based
voltaic system for fault diagnosis. 24-dimension parame-
ters extracted by Jamadar and Vakharia [12] for describing
bearing working conditions are sent to a BP neural network
for fault recognition. Volterra series was utilized by Xia et al.
[13] for recognizing different working conditions of rotor-
bearing system, and backpropagation (BP) neural network
was used as classifier for fault diagnosis. Batista et al. [14]
took 13 statistical features in both time and frequency do-
mains for description of different bearing conditions, and
then employed radial-basis-based SVM for fault diagnosis.
Zhang et al. [15] combined EEMD permutation entropy for
input feature and SVM for fault recognition. Zheng et al. [16]
employed multiscale fuzzy entropy for input features and
SVM for classifier.

Although intelligent algorithms mentioned above have
achieved an acceptable accuracy and been widely applied in
practical engineering, two significant disadvantages cannot
be avoided: (1) the diagnosis effectiveness largely depends on
feature extraction which is obtained mainly by manual
extraction according to the knowledge of mechanical en-
gineering experts, and the quality of extracted and selected
features plays a vital role in the performance of methods.)e
features that are either manually selected or handcraftedmay
not optimally characterize vibration signals and thus cannot
fulfill a generic solution that can be used for any bearing fault
data [17]. What is worse, the task of selecting the most
sensitive features for different diagnosis issues is a time-
consuming and labor-intensive work, which increases the
burden of workers and researchers. (2) Intelligent diagnosis
methods such as BP-NN and SVM are both shallow learning
structures, that is to say, only one hidden layer is used for
nonlinear transformation. Several research results have
clearly illustrated that shallow architectures hinder the
ability of learning complex nonlinear relationships among
different fault diagnosis issues [18, 19]. )erefore, it is es-
sential to establish a deep and hierarchical architecture for
better feature learning in rolling bearing fault diagnosis
issues.

Deep learning, also known as deep neural network
(DNN), has attracted an increasing attention from scholars
of various fields in recent years. )e predominant supe-
riority of deep learning is the capacity of learning complex

nonlinear features, which can discover inherent structures
and useful features from raw data by a layerwise learning
procedure. A great number of research achievements have
demonstrated its powerful potential in many fields, such as
natural language processing (NLP) [20], computer vision
(CV) [21], and mechanical fault diagnosis [22]. Chen et al.
[23] introduced CNN-based deep learning to gearbox fault
diagnosis. Several time-domain and frequency-domain
features were extracted and sent to the framework of
CNN, and a softmax-based classifier was used for fault
diagnosis. Although CNN is used in fault diagnosis issue
mentioned above, it is more like a classifier than a feature
extractor.)erefore, the capacity of CNN has not been fully
utilized. Guo et al. [24] took a similar approach, which
made use of time, frequency, and time-frequency features
as input of deep neural network, constructing an
autoencoder-based DNN for whole life validation of
bearings.

Long short-term memory (LSTM) [25], which is an
important component of recurrent neural network (RNN),
has become a hot spot recently. By utilizing spatial and
temporal information inherent in raw temporal signal,
which imitates brainmemory of human beings, LSTM-based
structure has the potential for higher accuracy in fault di-
agnosis issues. Also, with the advantage of selective memory
mechanism, LSTM solves long-term dependency problems
derived from RNN network.

In this paper, a novel fault diagnosis method named as
hierarchical LSTM-based deep network is proposed for both
feature learning and fault recognition of rolling bearings.
Experiment results verify that the proposed method can
obtain a higher accuracy without relying on manual feature
extraction as well as advanced signal processing techniques.
To the best of the authors’ knowledge, this paper is the first
attempt to perform hierarchical LSTM-based strategy in
rolling bearing fault diagnosis issue, which is meaningful
and pioneering. )e rest of the paper is arranged as follows:
Section 2 makes a brief review of LSTM theory, Section 3
illustrates proposed methods for bearing fault diagnosis,
Section 4 is used for experiments, and Section 5 makes the
conclusion.

2. LSTM Theory

2.1. �e Origin of LSTM. Recurrent Neural Networks
(RNNs) were firstly introduced to solve time sequence
learning problems. Unlike traditional neural networks
which are formed by multilayer perceptron that can only
map input data to target vectors, RNNs have the capability
of tracing back the whole history of previous inputs in
principle. Like many other neural networks, back-
propagation algorithm is used for training RNNs. However,
faced with vanishing or exploding gradients during
backpropagation period, the performance and potential of
RNNs have greatly limited, which means that traditional
RNNs cannot capture long-term dependencies. )erefore,
LSTM is proposed to get rid of the limitation of RNNs
mentioned above. Forget gates which dominate the flow of
information among different cell states are utilized to avoid
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long-term dependency problem [26]. To learn effective
representation and nonlinear dynamic features in time-
series data, LSTM is superior to traditional RNNs in that
the former abandon vanishing or exploding gradient
problem, which have the capability of capturing long-term
dependencies.

2.2. Basic�eory of LSTM. �e main idea behind LSTM lies
in that a few gates that control the information flow along
time axis can capture more accurate long-term dependencies
at each time step. Specifically, at each time step t, hidden
state ht is updated by fusion of data at the same step xt, input
gate it, forget gate ft, output gate ot, memory cell ct, and
hidden state at last time step ht−1. �e updated equations are
as follows:

it � σ Wixt + Viht−1 + bi( ),

ft � σ Wfxt + Vfht−1 + bf( ),

ot � σ Woxt + Voht−1 + bo( ),

ct � ft ⊙ ct−1 + it ⊙ tanh Wcxt + Vcht−1 + bc( ),

ht � ot ⊙ tanh ct( ),

(1)

where model parameters including W ∈ Rd×k, V ∈ Rd×d,
and b ∈ Rd are learned during training and shared at each
time step, σ is sigmoid activation function, ⊙ means ele-
mentwise product, and k is a hyperparameter that charac-
terizes the dimensionality of hidden layers.

Firstly, basic LSTM is utilized to deal with time-series
data. And the final output, which is at endmost time step, is
utilized to predict the output by a linear regression layer, as is
shown in the following equation:

yi �W
rhTi , (2)

whereWr ∈ Rk×z and z are the dimensionality of output. In
the phase of model training, the cross-entropy is used as loss
function between the predicted label distribution q(x) and
the target label distribution p(x). So the cross-entropy
between p(x) and q(x) is

loss � H(p, q) � −∑
x

p(x) log q(x). (3)

Activation function enables the network to acquire a
nonlinear representation of the input signal, which enhances
the representation ability and makes the learned features
more discriminative. In this text, rectified linear unit (ReLU)
is adopted for fast convergence of our model. ReLU has the
advantage of making the network sparser and weights more
trainable during adjusting parameters. ReLU can be de-
scribed in the following equation:

al+1i (j) � f yl+1i (j)( ) � max 0, yl+1i (j){ }, (4)

where yl+1i (j) and al+1i (j) represent the output of LSTM and
activation value of yl+1i (j), respectively.

�e corresponding LSTM unit architecture is shown in
Figure 1.

2.3. Hierarchical LSTM. With the rapid development of
computer hardware and a series of deep learning algorithms
being put forward, deep architectures have shown their
powerful capability in feature self-learning. �erefore,
stacking several LSTM layers for a deep LSTM-based neural
network is meaningful. �e main idea of deep neural net-
work is that many nonlinear mapping layers between inputs
and outputs are utilized for hierarchically feature learning.
As is shown in Figure 2, the output of hidden layer is not
only propagated forward through time, but also used as one
of inputs of next LSTM hidden layer.�erefore, the l-th layer
can be updated by the following equations:

itl � σ Wi
lh
t
l−1 + V

i
lh
t−1
l + b

f
l( ),
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f
l h

t
l−1 + V

f
l h
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l h
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o
l h
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l ⊙ c

t−1
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lh
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l−1 + V

c
lh
t−1
l + bcl( ),

htl � o
t
l ⊙ tanh ctl( ).

(5)

�e input of 1st layer is raw temporal signals,
i.e., ht0 � x

t, while the output of the 1st layer is an abstraction
of raw signals, which is regarded as a hierarchical feature.
Other LSTM layers use the output of previous layer as input,
and the output of last LSTM is sent to a full-connect layer for
classification. �e advantages of stacked LSTM are obvious:
(1) stacking LSTM layers enables the model to learn char-
acteristics of raw temporal signal from different aspects at
each time step. (2)Model parameters are distributed over the
whole space of the model without increasing memory ca-
pacity, which enables the model to accelerate convergence
and refine nonlinear operations of raw data.

Note that LSTM neural network has the mechanism of
recalling memory with time steps. As for one-dimensional
signal processing, a signal with limited length can be re-
formed into a matrix with rows for input dimension and
columns for time steps. It is intuitive that LSTM imitates the
memory process as human beings do, which means it can
memorize a signal line by line and catch important points
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Figure 1: �e internal structure of an LSTM unit.
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inherent in raw temporal signal automatically. A deep LSTM
neural network may help reinforce the whole process.

3. Structure of Proposed Method

Based on the study of rolling bearing fault diagnosis of this
paper, a hierarchical structure of LSTM is proposed. Figure 3
depicts the flow chart of proposed method, which consists of
three parts: (1) data augmentation: training dataset is one of
the most important factors of all deep learning methods.
Raw data of each condition is one dimension temporal
signal, hence data augmentation strategy aims to enlarge
training datasets by dividing raw signal with overlap, which
helps to reduce computation cost and accelerate model
convergence. (2) Model training: based on built model
structure, the input data are divided into two groups with
their corresponding labels: training dataset and testing
dataset. In other words, the proposed method is a supervised
training process with unsupervised feature learning. A
dropout strategy [27] is adopted after each LSTM to avoid
overfitting for better generalization. (3) Evaluation with
testing dataset: after the model being trained, a test dataset is
utilized to validate the effectiveness of the model, and the
evaluation indicator is the accuracy of classification
obviously.

All steps above form the main framework of the pro-
posed hierarchical LSTM neural network. A series of ex-
periments will be performed in the following section.

4. Experiment Analysis and Discussion

As mentioned above, rolling bearings are essential elements
of rotating machinery, and recognizing their faults as timely
as possible has great effect on the reliability and performance
of machinery that they are mounted on. �erefore, a Case
Western Reserve University (CWRU) dataset for rolling
bearings with different fault rolling bearing conditions is
adopted in our experiments [28]. �e performance of
proposed hierarchical LSTM neural network is compared
with some existing state-of-the-art diagnosis algorithms,
with details listed in the following subsections.

4.1. Introduction of CWRU Dataset. �e CWRU dataset has
been regarded as a benchmark for testing algorithms related

to vibration signal analysis of rolling bearings. �e CWRU
datasets consist of vibration time-series of various rolling
bearing conditions which are generated by a test rig, which is
shown in Figure 4. �e test rig is composed of a 2-horse-
power (hp) motor for driving a shaft, a control circuit model
for controlling various speeds to meet different re-
quirements, and a torque converter for signal processing.
�e sampling frequency of the accelerometers is 12 kHz.

In our current experiment, the adopted vibration data
are collected from accelerometers mounted on the housing
with magnetic bases and installed at the 12 o’clock position
for the bearings.

4.2. Experiment Setup. In our experiments, 13 kinds of
health conditions with 1 hp are considered. All condition
samples are segmented with length 256 and overlap 50%,
and each condition has 300 samples, half for training and
half for testing. Detailed information about experiment
samples is listed in Table 1.

Also, some other key parameters used in proposed
model are listed as follows: the input layer has 256 units
which is equal to the dimension of input sample, the hidden
units of 1st LSTM to 3rd LSTM are 64, 32, and 32 re-
spectively, and a RMSprop optimization algorithm [29] is
used to train the model. Mean square error (MSE) is an
indicator for evaluation performance. In the output layer, a
softmax classifier is used for classification.

4.3. Experiment Results. For better and fair experiment re-
sults, a random selection strategy has been adopted for all
samples. Namely, 150 samples of each health condition are
randomly selected for training, while the remaining for
testing. Each raw temporal signal is 256 for balancing in-
formation coverage and computing efficiency. It is worth
noting that an “early stopping” strategy has been introduced
in the proposed method during training phase for better
generalization performance. Even though we set a max it-
eration 100, the training will stop if the loss of training
dataset does not change much for several iterations. Ac-
curacy and loss of our model during training phase are
plotted in Figure 5. From the curves, we can clearly see a
convergence after 43 iterations; obviously it greatly reduces
time and cost for training.
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Figure 2: �e hierarchical structure of LSTM.
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To better illustrate experiment results, a multiclass
confusion matrix for the third trail of proposed method is
shown in Figure 6. �e multiclass confusion matrix is an
exhibition method for visualizing classification results of all
conditions in detail, which consists of classification accuracy
and misclassification error. �e ordinate and horizontal axis
of a confusion matrix refers to predicted label and true label,
respectively.

Obviously, most faults have 100% accuracy in ourmodel.
�e worst accuracy, 94%, occurs in outer ring fault with 21
inch at 6 o’clock position. �e total average accuracy is up to
98.8%, which demonstrates the efficiency and feasibility of
the proposed method.

4.4. Comparison with Other Methods. For comparison, four
othermethods which consist of 1-layer LSTMneural network,

backpropagation neural network (BP-NN), SVM, and CNN
have been considered in our experiments. �e detailed
parameter settings of other methods in the experiment are
depicted as follows: (1) 1-layer LSTM neural network: the
architecture is the same as the 1st layer of proposed
method. (2) BP-NN: it is also an “end-to-end” neural
network with a 32-unit hidden layer.�e whole structure is
256-32-13. (3) SVM: the feature set includes time-domain
features (RMS, kurtosis, skewness, variance, standard
deviation, etc.), frequency-domain features (frequency

Table 1: Experiment samples.

Condition Label Sample length Sample number

Normal 0 256 300
IF—7 inch 1 256 300
BF—7 inch 2 256 300
OF@6—7 inch 3 256 300
OF@3—7 inch 4 256 300
OF@12—7 inch 5 256 300
IF—14 inch 6 256 300
BF—14 inch 7 256 300
OF@6—14 inch 8 256 300
IF—21 inch 9 256 300
OF@6—21 inch 10 256 300
OF@3—21 inch 11 256 300
OF@12—21 inch 12 256 300

Note. IF, OF, and BF mean inner, outer, and ball faults, respectively. 7 inch
means the diameter of faults, and so on. @6 means the location of faults in
outer fault, and so on.

Raw signal

Training
samples

Segmented
samples

Data
augmentation

Model
training

Input layer

LSTM1st LSTM layer

2nd LSTM layer

3rd LSTM layer

LSTM

LSTM

Trained model

Model
evaluation

Testing samples

Softmax
classifier

Classification
results

Figure 3: �e flow chart of the proposed method.

Figure 4: Test rig of rolling bearings.
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bands), and time-frequency domain features (3-level
wavelet package coefficients) which are utilized as the
input of SVM. Radius basis function is used for kernel
function with penalty factor 50 and radius of kernel
function 0.02. (4) CNN: the CNN method used in our
experiment is that referred in Reference [23], which has a
structure of input layer, 2 convolutional layers, and 2
pooling layers. Time-domain and frequency-domain sta-
tistical features are sent to input layer after transformed to
2D format, the shape of input feature map is 32 × 32 with 6
kernels, and max pooling size is set to 2 with learning rate
0.1 and maximum iteration 100.

Figure 7 shows diagnosis results of all methods in 10
trails. It is clear that the proposed method has the highest
recognition accuracy among all methods with average
accuracy up to 98.65%. 1-layer LSTM neural network has
the second highest accuracy partly because it has memory
mechanism, which is derived from LSTM. However, its
shallow structure hinders its accuracy from improvement.
It is worth noting that BP-NN has the worst accuracy
among all methods. BP-NN does not own memory
mechanism, and it just uses information for forward

propagation, which lacks the capacity of learning useful
information in previous data points. Also, a shallow
structure limits its performance.

In order to graphically display the performance of our
hierarchical LSTM neural network, T-SNE [30] has been
utilized for visualizing each layer of our model. After
selecting the first two important components obtained by
T-SNE, the outputs of all layers are shown in Figure 8. From
Figure 8, a clear and intuitive conclusion has arrived: from
input layer to output layer, the distribution of each category
has been shown more and more clearly. Namely, input layer
mixed all categories together, in which we cannot distinguish
any category. After the first layer of LSTM, categories of No.
0, No. 4, No. 10, and No. 12 have converged into their own
spaces. With the progress of deeper layers, a clearer dis-
tinguishability of each category can be obtained. Finally, in
the output of the third LSTM layer, each category almost gets
its own space in the 2D image, which demonstrates the
availability of our model.

4.5. Influence of Some Hyperparameters. In our proposed
model, two hyperparameters need to be discussed, namely the
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input size of samples and the layer number of LSTM neural
networks. We have conducted experiments for both hyper-
parameters, and the experiment results are shown in Figure 9.

Figure 9(a) shows the influence of input size on the
performance of proposed method.)e size of the input units
is set to 32, 64, 128, 256, 512, 768, and 1024, respectively. It is

6
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Figure 7: Experimental results of 10 trails.
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Figure 8: Layerwise visualization based on T-SNE. (a) Input layer, (b) 1st LSTM layer, (c) 2nd LSTM layer, and (d) 3rd LSTM layer.
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obvious that (1) samples with larger input size tend to ac-
complish better diagnosis performance than fewer ones. It is
probably that samples with larger input size contain more
fault information which is essential to feature learning, while
fewer data points may easily ignore the local spatial in-
formation inherent in the raw data. (2) �e time cost in-
creases rapidly with input size, which is not suitable for
online applications. We choose the input size 256 for
compromise. A similar conclusion can be reached in the
Figure 9(b), which shows the layer number of LSTM versus
accuracy and computation time, and we choose layer
number 3 in our model for the balance of accuracy and
computation cost.

4.6. Generalization Experiments. In order to investigate
generalization capacity of the proposed method, we form a
testing dataset by taking samples under 2 hp load and 3 hp
load corresponding to Section 4.1 samples. Similarly, we
use confusion matrix to illustrate our results, which is
shown in Figure 10. Although some accuracies fall in the
variations of loads, the proposed method still achieves
97.8% and 98.4% accuracy in total. Mentioning that the
worst fault recognition accuracy in our generalization
experiments is 90.0%, it is still higher than some intelligent
methods in 1 hp load such as SVM, BP-NN, and CNN in
our comparative experiments conducted above, which
clearly demonstrates the efficiency and superiority of the
proposed method.

5. Discussion

�rough various experiments conducted above, we can
safely conclude that the proposed stacked LSTM neural
network for self-learning method is able to adaptively mine
inherent fault characteristics and effectively identify faults
with high diagnosis accuracy. �e prominent superiority of
proposed method is that the features are extracted by deep

structure in a more identifiable way than extracted by hand-
engineered or prior knowledge, which makes it easier to
apply to other diagnosis issues.

However, the proposed method also has some short-
comings which need to be improved in the near future. (1)
�e computation cost of proposed method is relatively
higher than traditional ones such as SVM or BP-NN. Part
of the reason is for the limitation of computer hardware
used in our method. We believe that this defect can be
perfectly solved by the hardware improvement in the
future. (2) �e parameter selection of our method needs
consecutive trial-and-error experiments. Some necessary
experiments need to be conducted before a suitable model
constructed for a certain fault diagnosis issue. So far, no
perfect solution to this problem has been proposed yet. We
just follow a simple idea which has been introduced by
many other scholars that the input length should contain
several whole cycles of raw temporal signal and the
number of hidden units should be no larger than the
previous one. In practice, the principle works well in our
model.

6. Conclusions

�e proposed method of fault diagnosis for rolling bear-
ings based on stacked LSTM neural networks is novel and
promising. It has three main advantages that other tra-
ditional methods do not possess: (1) it gets rid of de-
pendencies of handcrafted features or advanced signal
processing techniques which are essential for traditional
methods. (2) �e learning process of LSTM is performed
automatically based on raw temporal signal without any
prior knowledge of signal types or inherent mechanism.
�anks to the memory capability of LSTM, the correlation
within signal is further strengthened. (3) Based on stacked
architecture, features are extracted hierarchically, and the
deeper structure gives the learning model more potential
for mining inherent characteristics.
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Figure 9: Experimental results of hyperparameters. (a) Input size. (b) Number of LSTM layers.
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All of the above demonstrate the efficiency and avail-
ability of the proposed method. However, the computation
cost still has room for improvement, which will be the focus
of our future work.
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Figure 10: Confusion matrix for generalization experiments. (a) 2 hp results. (b) 3 hp results.
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