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Abstract—In this paper the problem of semisupervised hyper-
spectral unmixing is considered. More specifically, the unmixing
process is formulated as a linear regression problem, where the
abundance’s physical constraints are taken into account. Based on
this formulation, a novel hierarchical Bayesian model is proposed
and suitable priors are selected for the model parameters such
that, on the one hand, they ensure the nonnegativity of the abun-
dances, while on the other hand they favor sparse solutions for the
abundances’ vector. Performing Bayesian inference based on the
proposed hierarchical Bayesian model, a new low-complexity it-
erative method is derived, and its connection with Gibbs sampling
and variational Bayesian inference is highlighted. Experimental re-
sults on both synthetic and real hyperspectral data illustrate that
the proposed method converges fast, favors sparsity in the abun-
dances’ vector, and offers improved estimation accuracy compared
to other related methods.

Index Terms—Compressive sensing, constrained optimization,
constrained sparse regression, hierarchical Bayesian analysis, hy-
perspectral imagery, sparse semisupervised unmixing.

I. INTRODUCTION

H
YPERSPECTRAL remote sensing has gained consider-

able attention in recent years, due to its wide range of

applications, e.g., environmental monitoring and terrain classi-

fication [1]–[3] and the maturation of the required technology.

Hyperspectral sensors are able to sample the electromagnetic

spectrum in tens or hundreds of contiguous spectral bands from

the visible to the near-infrared region. However, due to their

low spatial resolution, more than one different materials can be

mixed in a single pixel, which calls for spectral unmixing, [3].

In spectral unmixing, the measured spectrum of a mixed pixel

is decomposed into a collection of constituent spectra, called

endmembers and a set of corresponding fractions, called abun-

dances, that indicate the percentage contribution of each end-

member to the formation of the pixel.
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The process of hyperspectral unmixing is described by two

major steps: (a) the endmember extraction step, and (b) the in-

version process. In the endmember extraction step the spectral

signatures of the endmembers contributing to the hyperspec-

tral image are determined. Popular endmember extraction algo-

rithms include the pixel purity index (PPI), [4], the N-FINDR al-

gorithm, [5] and the vertex component analysis (VCA) method,

[6]. The inversion process determines the abundances corre-

sponding to the estimated endmembers obtained in the previous

step. The abundances should satisfy two constraints, in order

to remain physically meaningful; they should be nonnegative

and sum to one. Under these constraints, spectral unmixing is

formulated as a convex optimization problem, which can be

addressed using iterative methods, e.g., the fully constrained

least squares method, [7], or numerical optimization methods,

e.g., [8]. Bayesian methods have also been proposed for the

problem, e.g., the Gibbs sampling scheme applied to the hi-

erarchical Bayesian model of [9]. Semisupervised unmixing,

[9], [10], which is considered in this paper, assumes that the

endmembers’ spectral signatures are available. The objective of

semisupervised unmixing is to determine how many and which

endmembers are present in the mixed pixel under study and to

estimate their corresponding abundances.

An interesting perspective of the semisupervised spectral un-

mixing problem arises when the latent sparsity of the abundance

vector is taken into account. A reasonable assumption is that

only a small number of endmembers are mixed in a single pixel,

and hence, the solution to the endmember determination and

abundance estimation problem is inherently sparse. This lays the

ground for the utilization of sparse signal representation tech-

niques, e.g., [11]–[14], in semisupervised unmixing. A number

of such semisupervised unmixing techniques has been recently

proposed in [10], [15], and [16], based on the concept of

norm penalization to enhance sparsity. These methods assume

that the spectral signatures of many different materials are avail-

able, in the form of a spectral library. Since only a small number

of the available materials’ spectra are expected to be present in

the hyperspectral image, the abundance vector is expected to be

sparse.

In this paper, a novel hierarchical Bayesian approach for

semisupervised hyperspectral unmixing is presented, which is

based on the sparsity hypothesis and the nonnegativity prop-

erty of the abundances. In the proposed hierarchical model,

appropriate prior distributions are assigned to the unknown

parameters, which reflect prior knowledge about their natural

characteristics. More specifically, to account for the nonneg-

ativity of the abundances, a truncated nonnegative Gaussian

distribution is used as a first level prior. The variance param-
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eters of this distribution are then selected to be exponentially

distributed. This two-level hierarchical prior formulates a

Laplace type prior for the abundances, which is known to

promote sparsity, [17], [18]. In addition, compared to other

related hierarchical models, [14], [19], [20], which employ a

single sparsity-controlling hyperparameter, the proposed model

comprises multiple distinct sparsity-controlling hyperparame-

ters. It is proven that this extension makes the model equivalent

to a nonnegativity constrained variant of the adaptive least

absolute shrinkage and selection operator (Lasso) criterion of

[21], whose solution provides a consistent abundance estimator.

The proposed hierarchical model also retains the conjugacy of

the parameter distributions, which in the sequel is exploited to

obtain closed form expressions for the parameters’ posterior

distributions.

As is usually the case in Bayesian analysis, the resulting

joint posterior distribution of the proposed hierarchical model

does not possess a tractable analytical form. To overcome this

impediment, a novel iterative algorithm is developed, which

can be considered as a deterministic approximation of the

Gibbs sampler [22]. In this algorithmic scheme, the conditional

posterior distributions of the model parameters are derived and

their respective expectations are selected to replace the random

samples used by the Gibbs sampler. More specifically, as far

as the abundance vector is concerned, an efficient scheme is

developed to update its posterior conditional expectation, while

the conditional expectations of all remaining parameters are

updated through simple, closed form expressions. The proposed

Bayesian inference algorithm iterates through the derived con-

ditional expectations, updating each one of them based on the

current estimates of the remaining ones. To put the algorithm

to its proper setting, its connection to other Bayesian inference

methods, [23]–[26], is discussed. In particular, emphasis is

given to show the affinity of the proposed algorithm with a

variational Bayesian inference scheme, which is based on a

suitable factorization of the corresponding variational posterior

distribution.

Interestingly, the proposed algorithm produces a point esti-

mate of the abundance vector, which is sparse and satisfies the

nonnegativity constraint. As a by-product, estimates of all other

parameters involved in the problem are also naturally produced;

among them is the variance of the additive noise, which is as-

sumed to corrupt the hyperspectral image. The proposed algo-

rithm is computationally efficient and, as verified by extensive

simulations, it converges very fast to the true model parameters.

In addition, it offers enhanced estimation performance, as cor-

roborated by the application of the proposed and other related

methods for the unmixing of both simulated and real hyperspec-

tral data.

The remaining of the paper is organized as follows. The

sparse semisupervised hyperspectral unmixing problem is

formulated in Section II. Section III describes the proposed

hierarchical Bayesian model. In Section IV, the new iterative

conditional expectations algorithm used to perform Bayesian

inference is presented and analyzed. Simulation results both on

artificial and real hyperspectral data are reported in Section V.

Conclusions are provided in Section VI. Finally, the connection

of the proposed algorithm to variational Bayesian inference and

other methods is highlighted in Appendix E.

Notation: We use lowercase boldface and uppercase boldface

letters to represent vectors and matrices, respectively. With

we denote transposition, and with and the and

norm, respectively, . The

determinant of a matrix or the absolute value of a scalar is de-

noted by , while stands for a diagonal matrix, that

contains the elements of vector on its diagonal. Finally, is

the -dimensional Euclidean space, denotes the zero vector,

the all-ones vector, and is the identity matrix.

II. PROBLEM FORMULATION

In this section, we provide definitions and formulate rigor-

ously the sparse semisupervised unmixing problem. Let be a

hyperspectral image pixel vector, where is the number

of spectral bands. Also let stand for the

signature matrix of the problem, with , where

the dimensional vector represents the spectral signa-

ture (i.e., the reflectance values in all spectral bands) of the

endmember and is the total number of distinct endmembers.

Finally, let be the abundance

vector associated with , where denotes the abundance frac-

tion of in .

In this work, the linear mixture model (LMM) is adopted,

that is, the previous quantities are assumed to be interrelated as

follows

(1)

The additive noise is assumed to be a zero-mean Gaussian

distributed random vector, with independent and identically dis-

tributed (i.i.d.) elements, i.e., , where

denotes the inverse of the noise variance (precision). Due to the

nature of the problem, the abundance vector is usually assumed

to satisfy the following two constraints

(2)

namely, a nonnegativity constraint and a sum-to-one (addi-

tivity) constraint. Based on this formulation, a semisupervised

hyperspectral unmixing technique is introduced, where the

endmember matrix is assumed to be known a priori. As

mentioned before, each column of contains the spectral

signature of a single material, and its elements are nonnegative,

since they represent reflectance values. The mixing matrix

can either stem from a spectral library or it can be determined

using an endmember extraction technique, e.g., [6]. However,

the actual number of endmembers that compose a single pixel’s

spectrum, denoted as , is unknown and may vary from pixel to

pixel. Sparsity is introduced when , that is by assuming

that only few of the available endmembers are present in a

single pixel. This is a reasonable assumption, that is in line with

intuition, since it is likely for a pixel to comprise only a few

different materials from a library of several available materials.

Summarizing, in semisupervised unmixing, we are interested

in estimating the abundance vector for each image pixel,
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which is nonnegative and sparse, with out of its entries

being nonzero.

This problem can be solved using either one of the recently

proposed compressive sensing techniques, e.g., [11], [13], [14],

[19], that focus only on the sparsity issue, or quadratic program-

ming techniques, e.g., [8], that successfully enforce the con-

straints given in (2), but do not exploit sparsity. In the following,

a hierarchical Bayesian model is presented, that both (a) favors

sparsity and (b) takes into account the nonnegativity constraint

of the problem. Then, a novel algorithm that is suitable to per-

form Bayesian inference for this model is derived. Moreover, it

is shown that by a simple modification of the initial problem,

the additivity constraint could also be naturally embedded.

III. HIERARCHICAL BAYESIAN MODEL

This section introduces a novel hierarchical Bayesian model

to estimate the sparse abundance vector from (1), subject to

the nonnegativity constraint given in (2). In a Bayesian frame-

work, all unknown quantities are assumed to be random vari-

ables, each one described by a prior distribution, which models

our knowledge about its nature. Before we proceed, the defini-

tion of a truncated multivariate distribution is provided, which

will be frequently used in the sequel to follow.

Definition 1: Let be a subset of with

positive Lebesgue measure, a -variate distribution,

where is a vector of parameters, and the truncated

probability density function (pdf) resulting from the truncation

of on . Then, denotes a random

vector, whose pdf is proportional to , where

is the indicator function defined as,

.
(3)

A. Likelihood

Considering the observation model defined in (1) and the

Gaussian property of the additive noise, the likelihood function

of can be expressed as follows:

(4)

B. Parameter Prior Distributions

The Bayesian formulation requires that both the sparsity and

nonnegativity properties of should emanate from a suitably

selected prior distribution. A widely used prior that favors spar-

sity, [14], [17], [19], [20], [27], is the zero-mean Laplace prob-

ability density function, which, for a single , is defined as

(5)

where is the inverse of the Laplace distribution shape param-

eter, . Assuming prior independence of the individual co-

efficients ’s, the -dimensional prior over can be written

as

(6)

It can be easily shown, [17], that under the Laplace prior, the

maximum a posteriori (MAP) estimate of is given by

(7)

which is, surprisingly enough, the solution of the Lasso criterion

of [28]. However, if the Laplace prior was applied to the sparse

vector directly, conjugacy1 would not be satisfied with respect

to the Gaussian likelihood given in (4) and hence, the posterior

probability density function of could not be derived in closed

form. As noted in [29], a key property of the Laplace distribution

is that it can be expressed as a scaled mixture of normals, with

an exponential mixing density, i.e.,

(8)

In the framework of the problem at hand, (8) suggests that the

Laplace prior is equivalent to a two-level hierarchical Bayesian

model, where the vector of abundances follows a Gaussian

distribution (first level), with exponentially distributed variances

(second level). This hierarchical Bayesian model, which is a

type of a Gaussian scale mixture (GSM), [30], has been adopted

in [14], [17], [19], [20], [27], [31]. The main advantage of this

formulation is that it maintains the conjugacy of the involved

parameters.

In this paper, a slightly different Bayesian model is devel-

oped. More specifically, in order to satisfy the nonnegativity

constraint of the abundance vector , the proposed hierarchical

Bayesian approach uses a truncated normal distribution2 in

the nonnegative orthant of as a first-level prior for .

Assuming that all ’s are i.i.d. and ’s are the (normalized

by ) variances of ’s, the prior assigned to is expressed as

(see Appendix A)

(9)

is the nonnegative orthant of , stands for the

-variate truncated normal distribution in according to

Definition 1, and is the diagonal matrix with

, where . Note that the use of

as a normalization parameter in (9), ensures the unimodality of

the posterior distribution of , [20], [31].

For the second parameter, , appearing in the likelihood func-

tion (4), a Gamma prior distribution is assumed, defined as

(10)

where , is the shape parameter, , and is

the inverse of the scale parameter of the Gamma distribution,

. The mean and variance of the Gamma distribution are

and , respectively.

1In Bayesian probability theory, if the posterior ������ belongs to the same
distribution family with the prior ����, (for instance if they are both Gaussians),
the prior and posterior are then called conjugate distributions.

2Note that the truncation of the normal distribution preserves conjugacy.
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C. Hyperparameters’ Priors

Having defined the truncated Gaussian distribution for ’s,

we focus now on the definition of the exponential distributions

for ’s, in the spirit of (8). Before we describe the model for

the priors of the hyperparameters ’s proposed in this work,

let us first describe the model adopted in [17], [19]. There, the

following exponential priors on are used

(11)

where is a hyperparameter, which controls the level of spar-

sity, . If these priors were used for the elements of in

(9), the prior distribution of would be given as follows

(12)

With respect to Definition 1, is denoted

as and is a truncated Laplace distribution on

. We have already pointed out the relationship between the

Laplace density, shown in (6), and the Lasso criterion (7). In

a similar way, it can be easily shown that under the truncated

Laplace prior given in (12), the MAP estimator of would

be the solution of a nonnegativity constrained Lasso criterion.

Moreover, from a Lasso point of view, [28], it is known that as

increases, sparser solutions arise for .

After the previous parenthesis, we proceed with the descrip-

tion of the model for ’s proposed in this work. The latter is an

extension of that given in (11), where instead of having a single

for all ’s, a distinct is associated with each (the mo-

tivation for such a choice will become clear in the analysis to

follow). Thus, in the second stage of our hierarchical model,

independent Gamma priors are assigned to the elements of ,

each parameterized by a distinct , as follows

(13)

where . By assuming that all ’s are

independent, the joint distribution of can now be written as

(14)

where and .

The first two stages of the Bayesian model, summarized in

(9) and (14), constitute a sparsity-promoting nonnegative (trun-

cated) Laplace prior. This prior can be obtained by marginal-

izing the hyperparameter vector from the model. In the one

dimensional case, we get

(15)

whereas, for the full model, the truncated Laplace prior is given

by

(16)

Our intention behind the use of a hyperparameter vector in-

stead of a single for all ’s is to form a hierarchical Bayesian

analogue to the adaptive Lasso, proposed in [21]. Indeed, as it is

shown in Appendix B, the MAP estimator of that follows the

truncated Laplace prior of (16) coincides with the estimation

of resulting via the optimization of the nonnegativity con-

strained adaptive Lasso criterion, which is expressed as

(17)

for . As shown in (17), the main feature

of the adaptive Lasso is that each coordinate of is now

weighted by a distinct positive parameter . This modification

results in a consistent estimator, [21], which is not the case for

the original Lasso estimator (7).

It is obvious from (16) that the quality of the endmember

selection procedure depends on the tuning parameter vector

. Typically, tuning parameters reflect one’s prior knowledge

about the estimation problem and they can either be manually

set, or can be considered as random variables. We choose the

latter alternative, by assuming a Gamma hyperprior for ,

(18)

where and are hyperparameters, with and . Both

Gamma priors of , in (10) and , in (18), are flexible enough

to express prior information, by properly tuning their hyperpa-

rameters. In this paper, we use a noninformative Jeffrey’s prior

over these parameters, which is obtained from (10)

and (18) by setting all hyperparameters of the Gamma

distributions to zero, as in [9], [18], [19]. A schematic represen-

tation of the proposed hierarchical Bayesian model in the form

of a directed acyclic graph is shown in Fig. 1.
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Fig. 1. Directed acyclic graph of the proposed Bayesian model. The determin-
istic model parameters appear in boxes.

IV. THE PROPOSED BAYESIAN INFERENCE METHODOLOGY

As it is common in Bayesian inference, the estimation of the

parameters is based on their joint posterior distribution. This

posterior for the model presented in Section III is expressed as

(19)

which is intractable, in the sense that the integral

(20)

cannot be expressed in closed form. In such cases, the Gibbs

sampler [22] provides an alternative method for overcoming

this impediment. The Gibbs sampler generates random samples

from the conditional posterior distributions of the associated

model parameters iteratively. As explained in [32], this sam-

pling procedure generates a Markov chain of random variables,

which converges to the joint distribution (19) (usually the first

few iterations, also called burn-in, are ignored). In the sequel,

we compute first the conditional posterior distributions, which

are vital for the proposed Bayesian inference algorithm, and we

explain the difficulty of utilizing Gibbs sampling in the present

application. Then the proposed algorithm is discussed in detail.

A. Posterior Conditional Distributions

In this subsection, in accordance with the Gibbs sampler

spirit, we derive the conditional posterior distributions of the

model parameters , , and . Starting with , it is easily

shown (utilizing (4) and (9)) that its posterior conditional

density is a truncated multivariate Gaussian in ,

(21)

where and are expressed as follows, [33, theorem 10.3]

(22)

(23)

The posterior conditional for the precision parameter , after

eliminating the terms which are independent of , is expressed

as

(24)

Utilizing (4), (9) and (10), it is easily shown that is Gamma

distributed as follows

(25)

Straightforward computations, reported in Appendix C, yield

that the conditional pdf of given , , , is the following

generalized inverse Gaussian distribution [34]

(26)

Finally, the conditional posterior of given , , , is ex-

pressed as

(27)

which, using (13) and (18), is shown to be a Gamma pdf,

(28)

The Gibbs sampler generates a sequence of samples ,

, , and , by sampling the condi-

tional pdfs (21), (25), (26), and (28), respectively.

In this paper, a different procedure is followed. Specifically,

we propose a deterministic approximation of the Gibbs sampler,

where the randomly generated samples of the Gibbs sampler are

replaced by the means of the corresponding conditional distri-

butions, (21), (25), (26), and (28). Thus, a novel iterative scheme

among the conditional means of , , , and arises, termed

Bayesian inference iterative conditional expectations (BI-ICE)

algorithm. It should be emphasized that by following this ap-

proach, we depart from the statistical framework implied by

the Gibbs sampler and we end up with a new deterministic al-

gorithm for estimating the parameters of the proposed hierar-

chical model. Besides avoiding the complexity of sampling (26),

BI-ICE is expected to converge faster than the original Gibbs

sampler and, as a result, is expected to be much less computa-

tionally demanding. Also, as verified by extensive simulations,

BI-ICE leads to sparse solutions and offers robust estimation

performance under various experimental settings.

B. The BI-ICE Algorithm

As mentioned previously, BI-ICE needs the conditional ex-

pectations of the model parameters. These are computed ana-

lytically as described below.

1) Expectation of : As shown in (21),

is a truncated Gaussian distribution in . We



590 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 2, FEBRUARY 2012

know from [35] that in the one-dimensional case, the expecta-

tion of a random variable modeled by the truncated Gaussian

distribution in can be computed as

(29)

where is the complementary error function. Unfortu-

nately, to the best of our knowledge, there is no analogous

closed form expression for the -dimensional case. How-

ever, as shown in [36] and [37], the distribution of the

th element of conditioned on the remaining elements

can be expressed as

(30)

with

(31)

(32)

Recalling that , and represent the th

and th elements of and , respectively. The

matrix is formed by removing the th row and the th

column from , while the vector is the th

column of after removing its th element. By applying (29)

and utilizing (31)–(32), the expected values of all random vari-

ables can be analytically computed.

Based on this result, an iterative procedure is proposed in order

to compute the mean of the posterior . Specif-

ically, the th iteration, of this procedure is de-

scribed as follows3

...

(33)

This procedure is repeated iteratively until convergence. Exper-

imental results have shown that the iterative scheme in (33) con-

verges to the mean of after a few iterations.

2) Expectation of : The mean value of the

Gamma distribution in (25) is given by

(34)

3) Expectation of : As shown in

Appendix C, this expectation is expressed as

(35)

3In the following, for notational simplicity, the expectation � ��� of a
random variable�with conditional distribution ������ is denoted as���������.

TABLE I
THE BI-ICE ALGORITHM

where stands for the modified Bessel function of second

kind of order .

4) Expectation of : Again, the mean value

of the Gamma distribution in (28) is given by

(36)

Based on the previous expressions, the proposed BI-ICE al-

gorithm is summarized in Table I. As shown in the Table, the

algorithm is initialized with , and as in [19],

.

Regarding the updating of parameter , an auxiliary vari-

able has been utilized in Table I. This is initialized with

(the value of at iteration ) and is updated by performing a

single iteration of the scheme described in (33). The resulting

value of is assigned to . The rationale behind this choice

is that for a diagonal (which happens when the columns of

are orthogonal), it easily follows from (31), (32) that the ’s

in (33) are uncorrelated. Thus, a single iteration is sufficient to

obtain the mean of . Although, this is not valid

when is not diagonal, experimental results have evidenced

that the estimation of the mean of resulting after

the execution of a single iteration of the scheme in (33) is also

sufficient in the framework of the BI-ICE algorithm.

Due to the fact that the BI-ICE algorithm springs out from the

hierarchical Bayesian model described in Section III, it leads to

sparse estimations for , and the endmembers present in the

pixel are identified by the nonzero entries of . In addition, all

parameters of the model are naturally estimated from the data, as

a consequence of the Bayesian Lasso approach followed in this

paper. This is in contrast to deterministic algorithms for solving

the Lasso, e.g., [11], [21], or adaptive methods, [16], which face

the problem of fine-tuning specific parameters, (corresponding

to of our model), that control the sparsity of the solution. Be-

sides, useful by-products of the BI-ICE algorithm are the es-

timates of (a) the variance of the additive noise of the linear

model, as in [9], and (b) the variance of the abundance vector.

The latter, coupled with the estimate of , provides the poste-

rior distribution of the abundance vector, which can be used to

provide confidence intervals to assess the reliability of the pro-

posed estimator.
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Concerning the computational complexity, as it is clear

from Table I, the BI-ICE algorithm requires the evaluation

of simple closed form formulas. The main computational

burden is due to the calculation of the inverse matrices

appearing in (31) and (32). As shown

in Appendix D, all these matrices can be derived very efficiently

from , and thus only one matrix inversion per iteration

(related to the computation of in (23)) is required. This

results in a reduction of the computational complexity of the

BI-ICE algorithm by one order of magnitude per iteration.

Thus far, the proposed BI-ICE algorithm has been described

as a deterministic approximation of the Gibbs sampler. An alter-

native view of the BI-ICE algorithm in the framework of varia-

tional Bayesian inference is provided in Appendix E. As shown

in the Appendix, the adoption of a proper factorization of an

approximation of the posterior results to a vari-

ational Bayesian inference scheme that exploits the same type

of distributions and updates the same form of parameters. From

this point of view, BI-ICE can be thought of as a first moments

approximation to a variational Bayesian inference scheme.

C. Embedding the Sum-to-one Constraint

The sparsity-promoting hierarchical Bayesian model pre-

sented in the previous sections takes into consideration the

nonnegativity of the abundance vector . However, the abun-

dances’ sum-to-one constraint has not yet been considered.

As noted in [38], the sum-to-one constraint is prone to strong

criticisms. In real hyperspectral images the spectral signatures

are usually defined up to a scale factor, and thus, the sum-to-one

constraint should be replaced by a generalized constraint of

the form , in which the weights denote the

pixel-dependent scale factors. Moreover, it is known that the

sparse solution of a linear system with having nonnegative

entries already admits a generalized sum-to-one constraint,

[39]. Thus, it can be safely assumed that the impact of not

enforcing the sum-to-one constraint on the performance of the

algorithm is not expected to be severe. Despite this fact, in this

section we describe an efficient way to enforce this constraint,

although through a regularization parameter.

Note that direct incorporation of this constraint to the pro-

posed Bayesian framework would require truncation of the prior

normal distribution of over a simplex, rendering the deriva-

tion of closed form expressions for the conditional posterior dis-

tributions intractable. To alleviate this, we choose, as in [7], [10],

[40, p. 586], to impose the sum-to-one constraint deterministi-

cally, by augmenting the initial LMM of (1) with an extra equa-

tion as follows:

(37)

where is a scalar parameter, which controls the effect of the

sum-to-one constraint on the estimation of . Specifically, the

larger the value of is, the closer the sum of the estimated ’s

will be to one. It should be noticed that the augmentation of

the LMM as in (37) does not affect the proposed hierarchical

Bayesian model and the subsequent analysis.

V. EXPERIMENTAL RESULTS

A. Simulation Results on Synthetic Data

This section illustrates the effectiveness of the proposed

BI-ICE algorithm, by a series of experiments related to the

unmixing of a synthetic hyperspectral image. Following the

experimental settings of [38], where a thorough comparison

of several sparse semisupervised unmixing algorithms is pre-

sented, we consider two spectral data sets for the simulated

hyperspectral scene: (a) , which is a matrix

containing the spectral signatures of 220 endmembers selected

from the USGS spectral library, [41], and (b) ,

which is a matrix of i.i.d. components uniformly distributed in

the interval . As expected, the spectral signatures of the

materials of are highly correlated. The condition number

and the mutual coherence, [38], of are and

0.999933, respectively, whereas, for , the same measures are

equal to 82 and 0.8373, respectively.

The abundance fractions of the simulated image and the

number of different endmembers composing a single pixel

are generated according to a Dirichlet distribution, [6]. In all

simulations, the observations are considered to be corrupted

by either white Gaussian or colored noise. Colored noise

is produced by filtering a sequence of white noise using a

low-pass filter with a normalized cutoff frequency of .

The variance of the additive noise is determined by the SNR

level.

First, the fast convergence and sparse estimations of exhib-

ited by the new algorithm are depicted in Fig. 2. In this exper-

iment, a pixel with three nonzero abundances (0.1397, 0.2305,

0.6298) is considered, and white noise is added to the model,

such that the SNR is equal to 25dB. The curves in Fig. 2 are the

average of 50 noise realizations. We observe that less than 15

iterations are sufficient for the BI-ICE algorithm to converge to

the correct sparse solution of . That is, it determines correctly

the abundance fractions of the endmembers present in the pixel,

while all remaining abundance fractions converge to zero.

Next, the BI-ICE algorithm was compared to: (a) the least

squares (LS) algorithm, (b) a quadratic programming (QP) tech-

nique, which enforces the constraints, but does not specifically

exploit the problem’s sparsity, [8], (c) the orthogonal matching

pursuit (OMP) algorithm, [12], which is a widely used, greedy,

sparsity promoting algorithm, (d) the sparse unmixing by vari-

able splitting and augmented Lagrangian (SUnSAL) algorithm,

[16], [38], which is based on the alternating direction method

of multipliers to solve the penalization problem of (7) sub-

ject to the physical constraints of the unmixing problem, and (e)

the constrained version of SUnSAL, CSUnSAL, which solves

the constrained version of the problem in (7), (see also [38] for

details). In our experiments, the parameters used for SUnSAL

are and , while for CSUnSAL we used ,

and , see also [16]. Based on the following

metric:

(38)
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Fig. 2. Estimation of the entries of the sparse vector�, as BI-ICE progresses. The algorithm is applied to simulated data, generated using (a) a highly correlated
matrix of spectral data (b) a matrix of i.i.d uniform data. White noise is added (SNR = 25 dB). Dashed lines: True values. Solid lines: Estimated values.

Fig. 3. MSE as a function of the level of sparsity obtained by different unmixing methods when applied to simulated data with white additive noise (SNR = 20
dB) and using two different spectral libraries.

where and are the true and the estimated abundance vec-

tors, respectively, the corresponding MSE curves for different

sparsity levels ranging from 1 (pure pixel) to 20 are shown in

Fig. 3, for both spectral libraries and . Due to poor re-

sults, the MSE curve of the LS algorithm is not shown in the

figure. It can be seen that the proposed algorithm outperforms

the OMP, QP, and CSUnSAL algorithms and has similar perfor-

mance to the SUnSAL algorithm. In comparison to BI-ICE, the

adaptive methods SUnSAL and CSUnSAL are of lower compu-

tational complexity. However, it should be pointed out that the

comparable performance, in terms of MSE, of the alternating di-

rection algorithms SUnSAL and CSUnSAL with BI-ICE comes

at the additional expense of manually fine-tuning nontrivial pa-

rameters, such as the sparsity promoting parameter , (see (7),

and [38]). Thus, an advantage of the proposed BI-ICE algo-

rithm over SUnSAL and CSUnSAL algorithms is that all un-

known parameters are directly inferred from the data. Besides

that, BI-ICE bears interesting byproducts such as: (a) estimates

of all model parameters; a useful parameter in many applica-

tions is the noise variance; (b) estimates for the variances of the

estimated parameters, which may serve as confidence intervals;

and (c) approximate posterior distributions for the estimated pa-

rameters. In contrast, all other algorithms considered are itera-

tive algorithms that return point estimates of the parameters of

interest.

A quick view of Fig. 3 also reveals that the OMP and QP al-

gorithms attain the worst performance, in terms of MSE. OMP

adds one endmember to its active set in each iteration, and sub-

tracts its contribution from the residual signal, until the corre-

lation coefficient of the remaining signal vector drops below a

certain threshold, or the maximum of 20 selected endmembers

is reached. However, due to its greedy nature and the high con-

ditioning of , OMP fails to detect the correct endmembers

that compose the pixel. This is the reason for the algorithm’s

poor performance, shown in Fig. 3. Note also that, in the cases

of high sparsity, the QP algorithm fails to detect the correct sup-

port of the sparse vector , resulting in poor MSE performance.

This may not come as a surprise, since the QP algorithm is not

specifically designed for sparse regression problems.

In Fig. 4 the MSE values of the various sparse unmixing al-

gorithms versus the SNR are displayed. For this experiment, the

spectral libraries and were used to simulate two different



THEMELIS et al.: NOVEL HIERARCHICAL BAYESIAN APPROACH 593

Fig. 4. MSE as a function of the SNR obtained by different sparse unmixing methods when applied to simulated data with white additive noise and using different
spectral libraries for sparsity level � � �.

Fig. 5. MSE as a function of the level of sparsity obtained by different unmixing methods when applied to simulated data with colored additive noise (SNR = 20
dB) and using two different spectral libraries.

hyperspectral scenes, each having 100 pixels. The level of spar-

sity for the abundance vectors of all pixels is held fixed and

equal to five. As expected, the MSE values of all algorithms

decrease as the SNR increases. This is not the case for the QP

algorithm though, which completely fails to retrieve the correct

support of the sparse abundance vector , and its MSE is al-

most constant. Again, the performance of SUnSAL and BI-ICE

is comparable, with BI-ICE having slightly better performance

in the case of the i.i.d. mixing matrix . In Figs. 5 and 6 the

same experimental results are provided in the scenario where

the simulated pixels are contaminated with colored noise. We

observe that the performance pattern of the various algorithms

is not affected by the presence of colored noise, apart form the

fact that the MSE values are now slightly increased. Although

our hierarchical Bayesian model assumes i.i.d. noise, these fig-

ures provide us with enough evidence to conclude that the pro-

posed BI-ICE algorithm can also provide reliable results in col-

ored noise environments.

Finally, in Fig. 7 the MSE performance of the proposed

BI-ICE algorithm is shown, when the sum-to-one constraint is

incorporated to the regression problem, as explained earlier in

Section IV-C, with . It can be seen that the performance

of the algorithm is particularly enhanced in the case of high

sparsity, i.e., when the image pixel is either pure or it

is composed of a few endmembers. As verified by ex-

periments, the BI-ICE with the sum-to-one constraint correctly

detects the support of the sparse signal with a probability close

to one, which accounts for a significant decrease of the MSE.

The experiment has been conducted for both spectral libraries

and . The higher MSE improvement is observed for the

case of i.i.d. spectral data.

B. Simulation Results on Real Data

This section describes the application of the proposed BI-ICE

algorithm to real hyperspectral image data. The real data were
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Fig. 6. MSE as a function of the SNR obtained by different sparse unmixing methods when applied to simulated data with colored additive noise and using
different spectral libraries for sparsity level � � �.

Fig. 7. MSE as a function of the level of sparsity obtained by different unmixing methods when applied to simulated data with white additive noise (SNR = 20
dB) and using two different spectral libraries. The sum-to-one constraint is incorporated to the BI-ICE algorithm, as explained in Section IV-C.

collected by the airborne visible/infrared imaging spectrom-

eter (AVIRIS) flight over the Cuprite mining site, Nevada,

in 1997, [42]. The AVIRIS sensor is a 224-channel imaging

spectrometer with approximately 10-nm spectral resolution

covering wavelengths ranging from 0.4 to . The spatial

resolution is 20 m. This data set has been widely used for

remote sensing experiments [6], [43]–[45]. The spectral bands

1–2, 104–113, 148–167, and 221–224 were removed due to

low SNR and water-vapor absorption. Hence, a total of 188

bands were considered in this experiment. The subimage of the

150th band, including 200 vertical lines with 200 samples per

line (200 200) is shown in Fig. 8.

The VCA algorithm was used to extract 14 endmembers

present in the image, as in [6]. Using these spectral signatures,

three algorithms are tested to estimate the abundances, namely

the LS algorithm, the QP method, and the proposed BI-ICE

algorithm. The unmixing process generates an output image

for each endmember, depicting the endmember’s estimated

abundance fraction for each pixel. The darker the pixel, the

smaller the contribution of this endmember in the pixel is. On

the other hand, a light pixel indicates that the proportion of

Fig. 8. Band 150 of a subimage of the Cuprite Aviris hyperspectral data set.

the endmember in the specific pixel is high. The abundance

fractions of four endmembers, estimated using the LS, QP, and
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Fig. 9. Estimated abundance values of four endmembers using: (a) the LS algorithm; (b) the QP algorithm; (c) the proposed BI-ICE algorithm.

BI-ICE algorithms, are shown in Fig. 9(a)–(c), respectively.

Note that, for the sake of comparison, a necessary linear scaling

in the range has been performed for the LS abundance

images. By simple inspection, it can be observed that the

images taken using the LS algorithm clearly deviate from the

images of the other two methods. The LS algorithm imposes no

constraints on the estimated abundances, and hence the scaling

has a major impact on the abundance fractions, resulting in

performance degradation. On the contrary, the images obtained

by QP and BI-ICE share a high degree of similarity and are in

full agreement with previous results concerning the selected

abundances and reported in [6], [45], as well as with the con-

clusions derived in Section V-A.
VI. CONCLUSION

A novel perspective for sparse semisupervised hyperspectral

unmixing has been presented in this paper. The unmixing

problem has been expressed in the form of a hierarchical

Bayesian model, where the problem constraints and the pa-

rameters’ properties were incorporated by suitably selecting

the priors’ and hyperpriors’ distributions of the model. Then,

a new Bayesian inference iterative scheme has been developed

for estimating the model parameters. The proposed algorithm

is computationally efficient, converges very fast and exhibits

enhanced estimation performance compared to other related

methods. Moreover, it provides sparse solutions, without ne-

cessitating the tuning of any parameters, which are naturally

estimated from the algorithm. As it is also the case for other

Bayesian inference methods, the theoretical proof of conver-

gence of the proposed algorithm turns out to be a cumbersome

task. Such a theoretical analysis is currently under investigation.

APPENDIX A

DERIVATION OF THE TRUNCATED GAUSSIAN PRIOR

DISTRIBUTION OF

Assuming that all ’s are i.i.d., the prior of the abundance

vector can be analytically expressed as

(39)

where is the set of nonnegative real numbers and is the

nonnegative orthant of , stands for the -variate

truncated normal distribution in according to Definition 1,

is the vector containing the hy-

perparameters, and is the

diagonal matrix, with .

APPENDIX B

THE NON-NEGATIVITY CONSTRAINED

BAYESIAN ADAPTIVE LASSO

The MAP estimator of is defined as

(40)
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From Bayes’ theorem, the MAP estimator can be expressed as

(41)

Then, substituting in (41) the likelihood function from (4) and

the truncated Laplace prior from (16), the MAP estimator can be

expressed as shown in (42) at the bottom of the page. Note that

, for and

, for , i.e., this term severely penalizes ’s with neg-

ative elements. Thus, it is established that the MAP estimation

of , given the truncated Laplace prior of (16), is equivalent to

solving the adaptive Lasso criterion of (17), for

, subject to being nonnegative, i.e., .

APPENDIX C

THE CONDITIONAL POSTERIOR DISTRIBUTION

AND ITS MEAN

Using (9) and (13) the posterior conditional distribution

for can be computed as

(43)

where we used [46, eq. 3.471.15] to compute the integral. The

mean of (43) is computed as

(44)

where we used [46, eq. 3.471.9] for the integral computation.

Finally, we set , for . Note that

this does not affect the BI-ICE algorithm, since ’s are guar-

anteed to be nonnegative (the fact is impossible by the

formulation of the problem).

APPENDIX D

FAST COMPUTATION OF (31) AND (32)

Let us define . In [36], the formula

, has been utilized for

computing all matrices from ,

where and are related to in the same way

and are related to . It has been seen in simulations that

this rank-one downdate formula is numerically susceptible. In

the following, an alternative method is proposed, which avoids

direct computation of and has exhibited numerical

robustness in all simulations performed. Let be an

permutation matrix, which when it premultiplies a matrix,

moves its th row to the th position, after upshifting rows

. Then, by defining , it is easily

verified that

(45)

Moreover, due to the orthogonality of ,

, i.e., all ,

are obtained from by simple permutations. From [47, p.

54] and (45), we get

(46)

Let

(42)
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(47)

Then, by rearranging (47) the term can be written

as

(48)

and from (32)

(49)

Define and

(50)

Then, solving for , we get

(51)

and (31) becomes

(52)

In summary, after obtaining from , , and are com-

puted from the first equations in (47) and (50), respectively.

Then, are efficiently computed from

(49) and (52), respectively.

APPENDIX E

RELATION TO VARIATIONAL BAYESIAN

INFERENCE AND OTHER METHODS

In this Appendix, we highlight the relation of the pro-

posed BI-ICE algorithm with other known Bayesian inference

methods and primarily with variational Bayesian inference,

[23]–[25], [48]. To this end, we first apply the variational

inference method to the proposed Bayesian model described in

Section II. In variational inference, the joint posterior distribu-

tion of the model parameters is approximated

by a variational distribution . Assuming posterior

independence among the model parameters, this variational

distribution factorizes as follows

(53)

According to the variational Bayes methodology, [48, pp.

466], the factors in (53) can be computed by minimizing the

Kullback—Leibler divergence between the approximate distri-

bution and the target distribution .

After some straightforward algebraic manipulations, it turns out

that is expressed as

(54)

with

(55)

where denotes the mean value of with respect to the

distribution . For the rest factors, we have (56)–(57) shown

at the bottom of the page, and

(58)

Equations (54)–(58) do not provide an explicit solution, since

they depend on each other’s factors. However, in principle, a

solution may be reached iteratively, by initializing the required

moments and then cycling through the model parameters, up-

dating each distribution in turn. It may come as a surprise, but,

although a different approach is used, the derived expressions

resemble the conditional posterior distributions (21), (25), (26),

and (28) employed in the iterative scheme of BI-ICE. Notice

that both approaches share (a) the same type of distributions and

(b) the updating of the same form of parameters. The only dif-

ference is that, in a variational Bayesian framework, the com-

putation of the mean values of the model parameters require a

blend of their first and second moments with respect to the ap-

proximate posterior distributions given in (54), (56)–(58), while

this is not the case with BI-ICE (see (33), (34), (35) and (36)).

As a result, the proposed BI-ICE can be considered as a first

moments approximation of the variational Bayesian inference

scheme, which is based on the factorization given in (53).

(56)

(57)
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To elaborate further on the relation of BI-ICE to variational

Bayes approximation, let us assume that in the variational

framework is factorized as . Then, it

can be shown that the posterior approximate distributions ,

and of the variational Bayes scheme remain exactly

the same as in (57), (58) and (56), respectively, while is

expressed as

(59)

(60)

(61)

where is the matrix resulting from after removing its th

column. By superimposing (59)–(61) and (30)–(32) reveals that

the posterior independence of ’s assumed in the variational

framework leads to a different updating mechanism compared

to BI-ICE, in which such an assumption is not made. This means

that the proposed scheme in (33) cannot result from a factorized

approximation of the form .

It is also worth noting that the motivation for the deriva-

tion of the BI-ICE algorithm has been the so-called Rao-Black-

wellized Gibbs sampling scheme [49], [50]. In a Rao-Black-

wellized Gibbs sampler with two random variables , , the

sequences and are generated first by sam-

pling the conditional distributions and , respec-

tively, as in the conventional Gibbs sampler. Then, the condi-

tional expectations and are computed and

the sample means and for

large are obtained. According to the Rao-Blackwell theorem

[51], these estimates improve upon the original Gibbs sampler

estimates and , [32], [49]. Note that in

the proposed iterative scheme, the conditional expectations of

all involved parameters are computed as well. However, each

one of them is now evaluated directly in each iteration, condi-

tioned on the current values of the remaining conditional expec-

tations.

Finally, it should be mentioned that the proposed BI-ICE al-

gorithm resembles the iterative conditional modes (ICM) algo-

rithm presented in [26]. As noted in [48, pp. 546], the ICM

algorithm can be viewed as a “greedy” approximation to the

Gibbs sampler, where instead of drawing a sample from each

conditional distribution, the maximum of the conditional distri-

bution is selected. The difference with the ICM method is that in

BI-ICE the first order moment of the conditional posterior dis-

tributions is used instead of the maximum.
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