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Abstract

Background: Clustering DNA sequences into functional groups is an important problem in bioinformatics. We

propose a new alignment-free algorithm, mBKM, based on a new distance measure, DMk, for clustering gene

sequences. This method transforms DNA sequences into the feature vectors which contain the occurrence, location

and order relation of k-tuples in DNA sequence. Afterwards, a hierarchical procedure is applied to clustering DNA

sequences based on the feature vectors.

Results: The proposed distance measure and clustering method are evaluated by clustering functionally related

genes and by phylogenetic analysis. This method is also compared with BlastClust, CD-HIT-EST and some others.

The experimental results show our method is effective in classifying DNA sequences with similar biological

characteristics and in discovering the underlying relationship among the sequences.

Conclusions: We introduced a novel clustering algorithm which is based on a new sequence similarity measure. It

is effective in classifying DNA sequences with similar biological characteristics and in discovering the relationship

among the sequences.

Background
With the development of advanced biotechnology,

more and more biological sequence information has

been generated. The amount of genetic data is growing

faster than the rate at which it can be analyzed.

Clustering techniques provide a viable solution for

handling and analyzing such rapidly growing genetic

data. Clustering algorithms partition sequences into

different biologically meaningful groups, facilitating

therefore the prediction of functions of genes [1].

When a new gene is assigned to a cluster, the bio-

logical function of this cluster can be attributed to this

gene with high confidence. On the other hand, cluster-

ing gene sequences into groups may also help with

analyzing evolutionary relationships among the

sequences in a cluster [2].

Clustering of gene sequences requires calculation of

similarity between sequences. There are two cluster-

ing approaches according to the similarity measure

used in a clustering method. One is based on

sequence alignment. The similarity between two gene

sequences is measured by the scores obtained from

an alignment algorithm such as BLAST [3] or FASTA

[4]. Although sequence alignment gives good solu-

tions, it is relatively difficult to cluster a large number

of sequences because of its computational complexity.

Moreover, if the sequences in the set vary in length, a

satisfactory alignment is hard to achieve, resulting in

a low accuracy of clustering.

The other approach for similarity measure is to use

alignment-free methods [5-10]. In recent years, several

alignment-free measures have been proposed. The word-

based measure is one of the most widely used methods

[11-14]. This method chooses a short word length k,

maps each sequence onto an n-dimensional vector

according to its k-length tuple (also called k-tuple or k-

word) properties, and then assesses the similarity of any

two vectors by measures such as Euclidean distance [15],

Mahalanobis distance [16], Kullback–Leibler discrepancy

[17], cosine distance [18] or Pearson’s correlation coeffi-

cient [19]. In recent years, several novel alignment-free

measures [20,21] have been designed for DNA sequences

analysis. Yang et al. [22] extended the k-tuple distance,

which is based on the difference in tuple frequencies, to
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clustering gene sequences. Their tuple-based method

determines the similarity of sequences by considering only

tuple frequencies and ignoring the positional information

within a sequence.

Major algorithms used in gene sequence clustering

can be divided into two categories according to the re-

sult format: hierarchical clustering algorithms and parti-

tional clustering algorithms [23]. Hierarchical clustering

is widely used for detecting clusters in genomic data. It

generates a set of partitions forming a cluster hierarchy.

According to linkage criteria, there are three hierarchical

clustering methods including single-linkage clustering

(SL), complete-linkage clustering (CL) and average-

linkage clustering (AL) [24]. With SL, clusters may be

merged together due to single sequences being close to

each other, even though many of the sequences in each

cluster may be very distant to each other [25]. CL tends

to find compact clusters of approximately equal dia-

meters [25]. With CL, all objects in a cluster are similar

to each other. AL can be seen as an intermediate be-

tween single and complete linkage clustering, resulting

in more homogeneous clusters than those obtained by

the single-linkage method [26]. For instance, BlastClust

[27] and GeneRage [28] employ single linkage clustering

approach; SWORDS [29] is based on word frequencies

as profiles to merge clusters hierarchically; and

Uchiyama [30] use average linkage clustering algo-

rithm to classify genes. Hierarchical approaches may

yield fairly good results, but they require the similarity

of all pairs of sequences and quickly arrive at a

bottleneck in terms of computational time and mem-

ory usage for large-scale data sets [31].

Partitioning algorithms have also been used. Parti-

tional clustering obtains a partition of data objects by

optimizing some clustering criterion. Partitional cluster-

ing algorithms are simple and well-suited for clustering

large datasets [32]. K-means (KM) [33,34] is a commonly

used method of partitional clustering methods. KM has

a lower order of computational complexity and demands

less physical memory than the hierarchical method. It is

suitable for clustering large gene data. Some KM-based

algorithms, such as those introduced by Wan et al. [33],

Kelarev et al. [34], Tseng et al. [35] and Ashlock et al.

[36], have been developed to group DNA sequences.

The major drawback of KM compared to hierarchical

clustering algorithms is the lack of hierarchical relation-

ships in its results. To remedy the problem, bisecting K-

means (BKM), a hierarchical variation of KM, was pro-

posed to build a tree of clusters in a top-down fashion

by splitting the least homogeneous cluster into two more

homogeneous ones. BKM can produce either a flat clus-

tering or a hierarchical clustering by recursively applying

KM. It has a linear complexity and is relatively efficient and

scalable. Recent study [37] concluded that BKM

outperforms KM and performs equally well or better than

hierarchical methods when it partitions the dataset based

on a homogeneity criteria. The bisecting approach is very

attractive for genomic studies [38].

Hierarchical clustering produces a nested series of par-

titions, where the results are usually depicted as a den-

drogram while partitional clustering produces a flat

partition. BlastClust [27] is a hierarchical clustering

method based on BLAST scores as the measure of se-

quence similarity. BlastClust computes pairwise similar-

ity of all sequences by BLAST alignment and then

clusters sequences by the single linkage clustering

method which produces clusters of linear topology. The

performance of BlastClust is limited by the size of the

input data. CD-HIT-EST [39], a partitional approach, is

also widely used to cluster DNA sequences. CD-HIT-

EST uses an incremental clustering process and avoids

the unnecessary alignments by a short word filtering

mechanism, which detects similar sequences by counting

the number of identical short words between them. The

purpose of filters is to decide whether the identity be-

tween two sequences is above or below a threshold with-

out aligning them, therefore speeding up the clustering

process. Though CD-HIT-EST is based on alignment, it

can avoid too many pairwise alignments by using a filter,

thus it is faster than BlastClust, and can handle larger

datasets.

Recent studies reveal also that BlastClust is less effective

for clustering divergent sequences [40], and its perform-

ance strongly depends on the choice of optimal BLAST

parameters including similarity threshold, percent identity,

and alignment length [41]. CD-HIT-EST, on the other

hand, does not provide hierarchical relationships between

clusters of sequences. In many situations both CD-HIT-

EST and BlastClust yield clusters with only one sequence

[41]. All the traditional clustering methods based on se-

quence alignment encounter computational difficulties in

dealing with large biological databases.

The approach presented in this paper involves a new

alignment-free distance measure based on k-tuples,

DMk (Distance Measure based on k-tuples) [42], and a

modified bisecting K-means clustering algorithm,

mBKM (modified Bisecting K-Means algorithm). mBKM

aims to speed up the clustering process by using

the alignment-free similarity measure, and is able to pro-

duce either a hierarchical clustering or a partition clus-

tering result. We have applied mBKM with DMk in

clustering gene sequences and performing phylogenetic

analysis. DMk shows better performance than the

k-tuple distance in our experiments, and mBKM outper-

forms SL, CL, AL, BKM and KM when tested on public

gene sequence datasets. Furthermore, the proposed

method also outperforms alignment-based methods such

as BlastClust and CD-HIT-EST.
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Methods
A gene is a stretch of DNA that codes for a single poly-

peptide chain [43]. A gene sequence is a succession of

four symbols {A, C, G, T}. Because the similarity be-

tween the genes of two species indicates their evolution-

ary relationship, it is used in many clustering algorithms.

The goal of sequence clustering is to partition biological

sequences into meaningful/functional groups according

to the similarity information, which is calculated using

either an alignment-based method or an alignment-free

method.

The traditional approach for clustering DNA

sequences requires all-by-all comparisons from align-

ment [44-46]. Given two sequences: S1=AGCACACA

and S2=ACACAGTA, S1
P and S2

P are used to represent

the pth characters in S1 and S2, respectively. The align-

ment score [45] for (S1, S2) is given by

SimScoreðS1;S2Þ ¼
X

l

p¼1

EðSp1 ; S
p
2Þ

where E is the cost of an alignment operation: dele-

tion, substitution, or insertion. However this distance

measure relies on sequence alignment. Since se-

quence alignment suffers in computational aspect

with regard to large biological databases, clustering

methods relying on sequence alignment have

difficulties in dealing with the large gene data. An

alignment-free similarity measure helps avoid the

computational complexity of multiple sequence align-

ment for similarity computation. In this paper we

propose a new alignment-free similarity measure,

DMk, based on which we developed mBKM to clus-

ter gene sequences.

In the follows, we will present DMk first, and then de-

scribe mBKM algorithms.

A new similarity measure: DMk

In this section, we introduce a new similarity measure

which takes into account the occurrence, location and

order relation of k-tuple in a DNA sequence.

Sequences are numerically transformed to feature vec-

tors that can be processed by data mining algorithms.

Let Σ be the alphabet set of nucleotides (Σ = {A, C, G,

T}). A sequence of length s, S, is defined as a linear suc-

cession of s symbols from Σ. A segment of k consecutive

symbols in sequence S (k≤ s) is designated as a k-tuple.

There is a set of 4k possible k-tuples, Wk. The number of

occurrences of a k-tuple w, Nw, is counted by moving a

sliding window of length k over the sequence with k -

1 bp overlapping step size.

To explore the correlation properties of DNA, Nair

et al. [47] provided a presentation of genomic data using

the inter-nucleotide distance sequence. Based on a

similar idea, we utilize the gaps between the locations

where k-tuple occur in the sequence to explore the se-

quence structure. For a DNA sequence S, pr is the loca-

tion of the rth occurrence of k-tuple w, where p0= 0.

And αr is given as,

αr ¼
1

pr � pr�1
; 1≤r≤m ð1Þ

in which m stands for the number of occurrences of

w. αr reflects the density of w and is closely related

to the location where w occurs in the sequence. Each

w begins at the 1/α1 position, and {α1,α2,. . .,αm} for

repetition of w forms an array whose rth element

indicates the relative position of two neighboring w

in the sequence. This array allows us to find all sub-

sequent repeats of w.

To characterize the order of αr, we define βj as a par-

tial sum of {αr}. βj is calculated by the following formula:

βj ¼
X

j

r¼1

αr; 1≤j≤m ð2Þ

{αr} is a list of non-negative real numbers, and βj is to-

tally ordered by ≤, so β1, β2, . . ., βm is also an ordered

set. {α1, α2,. . ., αm} and {β1, β2,. . ., βm} determine each

other uniquely. βj is only dependent of the number and

positions of w and independent on other k-tuples. Given

the set of {β1, β2,. . ., βm}, one can obtain where w occurs

and how many times w occurs in the sequence.

Shannon’s entropy [48], which illuminates the total

information measure of source on the average, is a

measure of order/disorder. According to [49], when

using the totally ordered set {β1, β2,. . ., βm} to

calculate the probabilities, the Shannon entropy

reflects the degree of importance of position in a se-

quence. We construct a discrete probability distribu-

tion Q ¼ ðq1; q2; . . . ; qmÞ , where qi ¼ βi=
P

m

i¼1
βi , and

P

m

i¼1
qi ¼ 1. The Shannon entropy of the discrete prob-

ability distribution is calculated by

H ¼ �
X

m

i¼1

qi log2qi ð3Þ

For each k-tuple w in the sequence, not only the infor-

mation of tuple numbers but also the information of

tuple positions is involved in the definition of H. We

take H as the feature of w in the sequence, and then

construct a vector consisted of H of all possible k-tuples

in the given sequence.

For a fixed k, there are 4k distinct k-tuples to be con-

sidered. These k-tuples in a fixed 4k-dimension feature

vector are denoted by ðH1;H2; . . . ;H4k Þ, where Hi means
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the feature representation of the ith k-tuple. This feature

vector based on H can be regarded as an index for its

corresponding sequence.

Cluster analysis algorithms partition objects into

groups based on the distances between objects. Euclid-

ean distance is the square root of the summation of the

squares of the differences between all pairs of corre-

sponding objects. The k-tuple distance is the sum of the

differences in frequency over all possible k-tuples; on the

other hand, we use Euclidean distance between Shannon

entropy of k-tuples in sequences to measure the similar-

ity. This distance measure method is referred as DMk.

For any two sequences X and Y, DMk can be calculated

as:

dDMkðX;Y Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

4k

i¼1

ðhXwi
� hYwi

Þ2

v

u

u

t ð4Þ

where hXwi
and hYwi

represent the Shannon entropy values

of the ith k-tuple in sequences X and Y, respectively.

DMk can be calculated from following algorithm:

Algorithm Name: DMk for similarity measure

Input: sequences {S1, S2,. . ., SN}.

Output: similarity matrix, (d(X,Y))N*N.

Steps:

1. For each sequence, search and locate each k-tuple;

1.1 For each k-tuple, use Equation (1) to calculate

αrð1≤r≤mÞ
1.2 For each k-tuple, use Equation (2) to calculate

βjð1≤j≤mÞ;
1.3 For each k-tuple, use Equation (3) to calculate H;

2. For each sequence, construct 4k -component vector

by H of all k-tuples.

3. For any two sequences, use Equation (4) to calculate

the distance between the two sequences.

4. Return {d}.

A new clustering algorithm: mBKM

KM can be used to obtain a hierarchical clustering solu-

tion using a repeated bisecting approach [50,51]. BKM is

such an algorithm and it can produce either a partitional

or a hierarchical clustering.

BKM has a linear time complexity in each bisecting

step. Recent study [51] concludes BKM outperforms KM

as well as the agglomerative approach in terms of accur-

acy and efficiency. Consequently, the bisecting approach

is very attractive in many applications for clustering and

genomic data analysis.

BKM initially regards the whole data set as a cluster,

and splits one cluster into two subclusters at each

bisecting step using KM until singleton clusters are

obtained at the leafs or until K clusters are obtained.

The outcome is structured as a binary tree. There are

two key steps in a typical BKM. The first one is the se-

lection of initial centroids. Generally the initial centroids

are chosen randomly in BKM. The second key step is

the rule, ζ, for selection of a existing cluster to be split

in each bisecting step. ζ is typically given by the follow-

ing three approaches [50]:

1) Choosing the cluster with largest size;

2) Selecting the cluster with the overall similarity

1

Cj j2

X

s 2 C

s0 2 C

dðs; s0Þ ð5Þ

The overall similarity is either minimized or

maximize, depending on the definition of d(s, s’). C

is a cluster;

3) Using a criterion based on both size and overall

similarity.

Because the differences between these methods are

small in terms of the final clustering result, the way of

splitting the largest remaining cluster is recommended

[50].

There are two problems in BKM algorithm:

1. Randomly choosing the initial centroids in BKM

may result in too adjacent elements selected. If the

initial centroids are too close, the algorithm will

reach a local optimization. Moreover, different sets

of initial cluster centroids can lead to different final

clustering results.

2. The algorithm for choosing one existing cluster to

split in each bisecting step usually selects the cluster

with the largest size. Although this leads to

reasonably good and balanced clustering solution, it

cannot gracefully work for datasets where the

natural clusters are of different sizes, as it will tend

to partition larger clusters first. In real biological

data, the number of elements in every cluster may

not always be similar.

To address the above two problems and obtain more

natural hierarchical solutions, we develop a modified

bisecting K-means, mBKM, which choose the initial cen-

troids by the maximum and minimum principle and select

the cluster to split based on the compactness of clusters.

1) Selecting Initial Cluster Centroids

In order to achieve stable and reliable clustering

results, we use the maximum distance, which can
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avoid obtaining adjacent elements, to select the

initial centroids. For a set of sequences,

{s1, s2, . . ., sN}, let d(si, sj)(i, j= 1, 2, . . .N) be the

distance between any two sequences in the dataset.

We choose the sequence sc1 and sc2 as the cluster

centroid according the following rule:

dc1;c2 ¼ max
i;j¼1;2;...;N

dðsi; sjÞ ð6Þ

2) Selecting the Cluster to Split

BKM algorithm usually partitions the largest size

cluster into two smaller ones and yields clusters with

similar size. However, a cluster with large number is

not always the loose one. If one existing cluster is a

loose one, in which its members are not closely

related to each other, the cluster will be selected to

be split.

Variance is a measure of how far a set of numbers are

spread out from each other, and it can measure the com-

pactness of the clusters. So we select the cluster to split

on the basis of the compactness of clusters measured by

variance. The variance of cluster Cj is defined as follow-

ing:

σ j ¼

P

si2Cj
d2ðsi; μjÞ

nj
; 1≤i; j≤N ð7Þ

where μj is the centroid of sequences in Cj, d (si, μj) is

the distance between si and μj, and nj is the number of

sequences in the cluster.

A small variance of a cluster indicates that the mem-

bers in the cluster tend to be closely related to the mean.

In other words, the smaller the variance is, the more

compact the cluster is, and vice versa.

Based on the above idea, we outline mBKM algorithm

as follows.

Algorithm Name: mBKM for clustering sequences

Input: sequences {s1, s2, . . ., sN}, a distance function d

between sequences, the number of clusters K.

Output: Set of K clusters.

Steps:

1. Initialization: Regard the whole dataset {s1, s2, . . .,

sN} as a single cluster.

2. Pick a cluster to split.

3. Find two sub-clusters:

3.1 Select two initial centroids using Equation (6);

3.2 Assign the sequences to the closest centroid;

3.3 Recalculate two centroids based on the

sequences assigned to the cluster;

3.4 Repeat steps 3.2 and 3.3 until no change in

cluster centroid calculation.

4. Calculate the variance of each cluster according

Equation (7) and take the split that produces the

clustering result with the highest variance.

5. Repeat steps 2, 3 and 4 until the desired number K

is reached.

This algorithm outputs a binary tree of sequences,

where each leaf represents a sequences and each node

represents a sequence collection.

Results and discussion
The proposed method is evaluated by clustering func-

tionally related gene sequences and by phylogenetic ana-

lysis. We present our evaluation results in two parts.

The first one aims at testing the efficiency of our similar-

ity measure, DMk. The second one is to illustrate the ef-

ficiency of the proposed clustering method, mBKM.

To measure the quality of the clustering results, our

experiments adopt F-measure [52] to evaluate the clus-

tering performance. For cluster j and class i, F (i, j) is

defined as:

Fði; jÞ ¼
2� precisionði; jÞ� recallði; jÞ

precisionði; jÞ þ recallði; jÞ
ð8Þ

where i=1, 2, . . ., e, j= 1, 2, . . ., f, precision(i, j) = nij/nj, re-

call(i, j) = nij/ni, e is the number of classes, and f is the

number of clusters. nij is the number of the sequences of

class i in cluster j, ni is the number of the sequences of

class i, and nj is the number of the sequences of cluster

j.

The F-measure of the whole clustering result is

defined as:

F ¼
X

i

ni

N
maxðFði; jÞÞ ð9Þ

where N is the total number of sequences in the data

set. Clearly, an F-measure has a value between 0 and 1.

The larger the F-measure is, the better the clustering re-

sult is.

Evaluation of similarity measure

To evaluate the proposed similarity measure, we test

DMk on gene sequence data sets and compare it with

the k-tuple distance. We also verify the effectiveness of

DMk by assessing how well it performs on phylogenetic

analysis.
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Gene sequences clustering

Genes of the same family usually share similar

sequences, functional domains, and even interacting

partners. When a new gene is assigned to a cluster, the

biological function of this cluster can be attributed to

this gene with high confidence.

Four data sets are extracted from different gene re-

positories as shown in Table 1. The sequences of DS1

are downloaded from NCBI (http://www.ncbi.nlm.nih.

gov). The other three datasets, DS2, DS3 and DS4, are

taken from PBIL (http://pbil.univ-lyon1.fr/). DS2 is taken

from HOVERGEN of PBIL, a database of homologous

vertebrate genes. DS3 is taken from HOGENOM, which

contains homologous gene families from microbial

organisms. DS4 is randomly selected from HOMOLENS,

a database of homologous genes from Ensembl organ-

isms and Ensembl families.

Four widely used clustering algorithms, including KM,

single-linkage clustering (SL), complete-linkage cluster-

ing (CL) and average-linkage clustering (AL), have been

Table 1 Description for the Data Sets

Data Name Number Average length (bp) Description

DS1 beta-globin 176 1531 Cytochrome P450

beta-Hemoglobin 89 448 Hemoglobin subunit

integrin_alpha 142 3360 Integrin, alpha

ketoacyl-synt1 43 754 Estradiol 17-beta-dehydrogenase 8

myoglobin 55 478 Cytoglobin Myoglobin

RWD 93 825 RWD domain-containing protein

VCL 92 2746 Vinculin

Histone 81 668 Histone

DS2 HBG106679 22 446 Copper uptake protein 2

HBG108349 49 718 Prolactin

HBG079775 26 3152 Transcription elongation factor SPT5

HBG058842 34 1351 TNFR superfamily member 1A

HBG002834 92 951 Calumenin/Reticulocalbin

HBG050441 58 1899 ATP-binding cassette sub-family G member

DS3 HBG093787 32 1769 Hypothetical membrane proteins

HBG099893 34 430 Putative membrane protein precursor

HBG415481 65 557 Phasin like/family protein

HBG423057 32 236 Hypothetical proteins

HBG050644 99 3129 Beta galactosidase, beta glucuronidase,
Evolved beta-D-galactosidase

alpha subunit

HBG364776 48 1069 Formate dehydrogenase gamma
subunit precursor

DS4 HBG000080 29 674 BWK-1,CG6617-PA , Zgc:73100 C20orf11
homolog , RH01588p

HBG060165 28 163 ATP synthase, H + transporting
mitochondrial F1 complex/epsilon subunit

HBG010471 48 1802 Hypothetical Glycosyl transferase,
family 25/Endoplasmic reticulum

targeting sequence containing protein

HBG000013 70 318 60 S ribosomal protein L36a-like,
60 S ribosomal protein L42,

L44, IP15820p, RPL

HBG000026 18 3157 Eukaryotic translation initiation factor
2-alpha kinase 3 precursor, Eukaryotic

translation initiati

HBG065748 48 1238 AT20832p,AT27361p,
CG10513-PA, CG10514-PA, CG10550-PA,

isoform A, CG10553-PA,CG10559-PA,CG10560-P
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chosen in the experiments. For comparison, we perform

the clustering tests on all data sets using the k-tuple dis-

tance and DMk distance. In this paper, we set k value to

3. For protein coding genes, a tuple size of 3 is a good

choice according to reference [22]. We also tested the

clustering performance on different k values, and the re-

sult confirms that a small k value is preferred, see Add-

itional file 1: Table S1. For larger k values, there are

more tuples with zero frequencies and less information

is captured by the algorithm.

KM algorithm would yield different results during

multiple executions due to its stochastic feature for

initialization. We examine KM in ten runs and report

the average performance. The AL, CL and SL hierarch-

ical algorithms generate one solution for each of them.

We obtain the result of hierarchical clustering algo-

rithms by analyzing the hierarchical tree using the

expected number of cluster as input parameters.

According to Table 2, the F-measure values for each of

the data sets using DMk are clearly higher than those

obtained with the k-tuple distance. In our experiments,

on average, the value of the F-measure given by DMk is

18% better than by the k-tuple distance (p = 0.0165, one-

sided paired t-test) in KM, 49.7% better in SL

(p = 0.0028), 24.9% better in CL (p = 0.016), and 35.8%

better in AL (p = 0.01885). Clearly, DMk provides a sig-

nificant improvement in clustering sequences. On the

four data sets, the F-measure of DMk is improved more

than 20% compared with that of the k-tuple distance

during the same clustering process in most cases. DMk

outperforms the k-tuple distance in the experiments.

This is because DMk considers the occurrence, location

and order relation of tuples in sequence and can capture

more information in the sequence, while the k-tuple dis-

tance considers frequency alone and ignore the position

of tuples in a sequence. In addition, we have tested DMk

and k-tuple measures on protein sequences with a k

value of 2, and the results indicate that DMk performs

better than k-tuple distance (data not shown). Thus in

practical DMk measure can also be applied in clustering

protein sequences after tuning current algorithm.

Phylogenetic analysis

In this experiment, the proposed similarity measure

DMk is further tested by phylogenetic analysis. In order

to evaluate the similarity measures, we use UPGMA in

the PHYLIP package, a widely used clustering algorithm

in phylogenetic analysis. The tree is drawn by TREE-

VIEW program [53].

The selected data set includes the full β-globin gene

sequences of 10 species reported by Feng et al. [54],

which are downloaded from NCBI (http://www.ncbi.

nlm.nih.gov). Their names, accession numbers, locations

and lengths are listed in the Additional file 1: Table S2.

The similarity/dissimilarity matrices for the full

sequences of β-globin gene of the 10 species using DMk

are shown in Table 3, respectively. The smaller the dis-

tance is, the more similar the two sequences are.

In Table 3, the most similar species pairs are human-

gorilla, human-chimpanzee and gorilla-chimpanzee,

which are expected from their evolutionary relationship.

Table 2 The F-measures of the Data Sets

Method DS1 DS2 DS3 DS4

KM with k-tuple 0.5738 0.7828 0.5543 0.6532

SL with k-tuple 0.3544 0.4148 0.3307 0.3244

CL with k-tuple 0.5153 0.7253 0.5588 0.516

AL with k-tuple 0.5113 0.6956 0.5578 0.3185

BKM with k-tuple 0.5725 0.7876 0.5498 0.6551

mBKM with k-tuple 0.5882 0.7913 0.5691 0.6722

KM with DMk 0.7 0.8261 0.7716 0.8284

SL with DMk 0.601 0.7948 0.8188 0.6535

CL with DMk 0.7172 0.9295 0.6868 0.7468

AL with DMk 0.7898 0.9365 0.6963 0.8498

BKM with DMk 0.7346 0.8511 0.8044 0.8813

mBKM with DMk 0.808 0.9645 0.9143 0.9587

Table 3 The similarity/dissimilarity matrix for the 10 full β-globin gene sequences based on DMk

Species Human Goat Opossum Gallus Lemur Mouse Rat Gorilla Bovine Chimpanzee

Human 0 22.95 37.65 111.47 14.02 35.21 20.68 3.42 25.07 3.54

Goat 0 41.22 65.70 18.80 35.05 33.93 32.36 6.04 33.05

Opossum 0 42.54 33.29 64.03 51.64 46.35 40.41 49.73

Gallus 0 90.93 80.07 95.26 121.09 61.69 122.65

Lemur 0 21.39 18.50 17.19 18.12 18.74

Mouse 0 16.04 33.64 27.60 37.59

Rat 0 17.69 30.53 20.58

Gorilla 0 33.66 0.80

Bovine 0 35.46

Chimpanzee 0
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A slightly less similar species pair is goat-bovine. On the

other hand, gallus is separated from the rest, this coin-

cides with the fact that gallus is the only nonmammalian

species among these 10 species. We can also find that

opossum is far away from the remaining mammals.

These results are consistent with biological morphology.

The quality of the constructed tree shows the quality

of the distance matrix and the method of abstracting in-

formation from DNA sequences. In Figure 1(b), we show

the phylogenetic tree of 10 β-globin gene sequences

based on DMk, generated by UPGMA. For comparison,

the phylogenetic tree of the k-tuple distance is shown in

Figure 1(a).

The tree in Figure 1 (a) has some consistencies with

biological morphology. Although it supports the separ-

ation of gallus relative to other species, its obvious draw-

back is that it fails to separate (mouse, rat) and (goat,

bovine) from opossum. From Figure 1 (b), gallus is sepa-

rated from the rest and opossum is far away from the

other species. This topology is in good agreement with

that presented by Feng et al. [54] and Cao et al. [55] ex-

cept for the relative position of rodents.

DMk measures the similarity between DNA sequences

more effective than the k-tuple distance. This is because

DMk measures the distance between DNA sequences

based on sequence structure and composition. Through

evaluation on gene families and constructing phylogen-

etic trees of full gene sequences of 10 species, we find

that DMk gives more competitive results compared to

the k-tuple distance.

Evaluation of clustering methods

To evaluate the effectiveness of the proposed clustering

algorithm, mBKM, we apply mBKM in clustering gene

sequences and compare it with several clustering

algorithms. Moreover, we use our method, mBKM with

similarity measure DMk, in phylogenetic analysis to

show how well the genes are grouped together and how

well the resulting trees agree with existing phylogenies.

Performance comparison of clustering methods

In order to illustrate the efficiency of mBKM in gene se-

quence clustering, we ran mBKM with the k-tuple dis-

tance and DMk on real data sets listed in Table 1. The

clustering results are compared with those of KM, SL,

CL, AL and BKM algorithms. For BKM, the number of

iterations for each bisecting step is set to 5. We ran

BKM 10 times to obtain the average F-measure. By

combing the six clustering algorithms with two similarity

measures, we have 12 combinations of clustering algo-

rithm for performance assessment. The combinations

are KM with k-tuple, SL with k-tuple, CL with k-tuple,

AL with k-tuple, BKM with k-tuple, mBKM with k-tuple,

KM with DMk, SL with DMk, CL with DMk, AL with

DMk, BKM with DMk and mBKM with DMk.

The clustering performance of different clustering

methods is the result of a combination of factors, includ-

ing the types of sequence distances used for clustering

and the choice of clustering algorithms. Table 2 shows

the clustering performance on the data sets for all 12

clustering methods. For each data set, we set the number

of cluster as the real number of class during the cluster-

ing run. For example, the real number of cluster is 8 in

DS1 and 6 in DS2.

From Table 2, we observe that mBKM using DMk

achieves best result and clearly outperforms other meth-

ods for the four data sets. The average F-measure of

mBKM with k-tuple is about 2.2% higher than KM with

k-tuple (p = 0.036), 45% higher than SL with k-tuple

(p = 0.00195), 11.4% higher than CL with k-tuple

Figure 1 The phylogenetic trees for 10 species using the full DNA sequences of β-globin.

Wei et al. BMC Bioinformatics 2012, 13:174 Page 8 of 15

http://www.biomedcentral.com/1471-2105/13/174



(p = 0.0424), 19% higher than AL with k-tuple

(p = 0.08615) and 2.3% higher than BKM (p= 0.0141).

For mBKM with DMk, F-measures for DS1, DS2, DS3,

and DS4 are 0.808, 0.9645, 0.9143, and 0.9587 respect-

ively. On average, the value of F-measure given by

mBKM is 14.2% better than KM (p = 0.00025), 21.3%

better than SL (p = 0.0105), 15.4% better than CL

(p = 0.02835), 10.1% better in AL (p = 0.0686), and 2.3%

higher than BKM (p = 0.0015) respectively. These results

show that our method, combining mBKM with DMk, is

able to achieve high quality results on all the data sets.

Because the clustering methods listed in Table 2 use

the numbers of cluster as input parameters, we analyze

the effects of varying the number of clusters on the clus-

tering performance. This analysis is applied to DS1, DS2,

DS3 and DS4 datasets and all 12 combinations. Figures 2

and 3 show the results of these runs based on the

k-tuple distance and DMk, respectively. The data used

for generating these figures are included in Additional

file 1: Tables S3-S10.

Figure 2 illustrates the results of the six clustering

algorithms with the k-tuple distance. From Figure 2 and

Additional file 1: Tables S3-S6, mBKM achieves better F-

measures than other five clustering algorithms for the

real number of clusters on all the data sets. Although

the other clustering algorithms give slightly better results

in terms of F-measure in some cases, mBKM performs

better than the other clustering algorithms in terms of

the average of the F-measures values (average values are

shown in Additional file 1: Tables S3-S6). This result

shows that on average, mBKM performs better than

other clustering algorithms for a range of cluster num-

bers, in the vicinity of real number of clusters. It also

implies that varying the number of clusters as input for

these clustering algorithms does not affect the

performance.

Figure 3 shows the results of clustering algorithms

with DMk. mBKM obtains the highest F-measure values

among the six clustering algorithms at the real number

of clusters. On average, mBKM achieves better results

than the other clustering algorithms for DS2, DS3, and

DS4. For DS1, the average value of mBKM is very close

to that of AL and higher than those of the other cluster-

ing algorithms. Overall mBKM produces consistently

high quality clusters in the neighborhood of the real

number of cluster (data shown in Additional file 1:

Tables S7-S10). The F-measures given by mBKM are

higher than those of other clustering methods at the cor-

responding number of clusters in most cases.

From Figures 2 and 3, we can see that DMk achieves

better cluster quantity than the k-tuple distance in terms

of F-measure. Using same clustering algorithm on the

same data set, DMk achieves higher average of the F-

measure values than the k-tuple distance, and DMk also

obtains higher F-measures at corresponding number of

clusters (data shown in Additional file 1: Tables S3-S10).

Figure 2 The distribution of F-measure as a function of the number of clusters based on the k-tuple distance (The real numbers of

DS1, DS2, DS3 and DS4 are 8, 6, 6, and 6, respectively).
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From both Figures, we find that F-measure changes as

the number of cluster changes. As it is known, F-

measure is a balanced measure of precision and recall. It

is an ideal condition when the number of cluster is equal

to the real number. When the number of cluster is

greater than or less than the real number, the F-measure

will be affected.

With regard to clustering algorithms, SL performs

poorly in many cases, and this may be because that SL

uses the nearest pair of sequences and may lead to bad

splits of one cluster if two or more clusters show differ-

ent pattern densities. For KM and BKM, the results of

many runs are lower than those of mBKM. On the

whole, mBKM achieves better results than other cluster-

ing algorithms, and mBKM combining with DMk

achieves best results among these clustering methods in

our experiments.

The task of sequence clustering is to group given

sequences into clusters. The similarity measure, DMk,

measures the similarity between DNA sequences based

solely on the k-tuple. It is more effective than the k-tuple

distance, which is one of the most widely used methods.

The clustering algorithm, mBKM, can obtain better clus-

tering results and can reveal the relationships among

clusters in hierarchical manner. In the next experiments,

we combine mBKM with DMk to clustering DNA

sequences.

In order to further illustrate the efficiency of our

method, combining mBKM and DMk, we compare

mBKM with DMk to two other clustering programs:

BlastClust [27] and CD-HIT-EST [39]. BlastClust is an

alignment-dependent clustering algorithm. BlastClust is

from NCBI Blast package. BlastClust accepts a number

of parameters that can be used to control the clustering

stringency including thresholds for score density (−S

parameter), and alignment length (−L parameter). CD-

HIT-EST is a popular DNA clustering program based on

greedy incremental clustering method. CD-HIT-EST

groups DNA sequences into clusters that meet a user-

defined similarity threshold (−c parameter) and uses

short-word filters to rapidly determine that if two

sequences are similar, which reduces the number of full

alignments necessary.

We perform tests using BlastClust and CD-HIT-EST

on the data sets listed in Table 1. In order to obtain the

best possible performance of BlastClust, we set -p as F

(input type is nucleotide sequence) and vary the input

parameters, -S and –L, to evaluate the results. The score

density, –S parameter, varies between 10 and 90 with

step size 10, and the alignment length, –L parameter,

varies between 0.1 and 0.9 with step size 0.1. Other para-

meters are kept default. For CD-HIT-EST, because the

sequence identity threshold, -c parameter, should be

greater than or equal to 0.8 in the program, we vary -c

parameter between 0.8 and 1 with step size 0.02, and set

the word length as default value. The best results from

different parameter combination are recorded. For

mBKM with DMk, we set the size of k-tuple as 3 and

Figure 3 The distribution of F-measure as a function of the number of clusters based on DMk (The real numbers of DS1, DS2, DS3 and

DS4 are 8, 6, 6, and 6, respectively).
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use the real number of clusters as input. As BlastClust

and CD-HIT-EST do not use the number of clusters as

input, we choose the resulting class i, which has the max

F(i,j) for cluster j, to calculate the F-measures. The

results, which contain the corresponding F-measures

and the execution time, are summarized in Table 4.

Table 4 demonstrates that mBKM with DMk produces

good results relative to each original cluster set in terms

of F-measure. Every F-measure of mBKM with DMk is

higher than 0.8 and the highest is 0.9645. It is also seen

in the table that mBKM with DMk outperforms Blas-

tClust and CD-HIT-EST on all the data sets. BlastClust

and CD-HIT-EST tend to give more clusters than the

real numbers of classes, therefore, BlastClust and CD-

HIT-EST give high precision and low recall value. But

neither of these two performs well in terms of F-

measure. The execution times reported in Table 4 for al-

gorithm comparison show mBKM with DMk is faster

than BlastClust and CD-HIT-EST.

For the cases that the real number of clusters is un-

known, the performance of our algorithm will be

affected. In order to compare with BlastClust and CD-

HIT-EST on a relatively fair ground, we can vary the

number of clusters and take the average of the F-

measure values over the different numbers of clusters.

For instance, we run mBKM with DMk with the range

of 3–20 numbers and the average values of F-measure

are 0.7065, 0.8533, 0.8205 and 0.8429 for DS1, DS2, DS3

and DS4, respectively. As shown in Additional file 1:

Tables S7-S10, these values are also higher than the cor-

responding F-measure of BlastClust and CD-HIT-EST.

Phylogenetic analysis

In this experiment, we used mBKM with DMk to con-

struct phylogenetic trees.

1) The clustering result of 10 species

We apply mBKM with DMk to the 10 DNA

sequences of β-globin gene in Table 4. The

clustering result is shown in Figure 4(a). Using the

same data set, we also build the phylogenetic tree

using CLUSTALW [56] and MUSCLE [57] for

alignment, and UPGMA and Maximum

Likelihood (ML) method (in the PHYLIP

package) for presenting the tree. Figure 4(b) and

4(c) shows the tree built by CLUSTALW with

UPGMA and MUSCLE with ML respectively.

The trees built by MUSCLE with UPGMA and

CLUSTALW with ML are provided in Figure 1 of

Additional file 1.

In Figure 4(a), human, gorilla, chimpanzee and

lemur are closer to bovine and goat than to mouse

and rat, this topology is in complete agreement with

Feng et al. [54] and Cao et al. [55] confirming the

outgroup status of rodents relative to ferungulates

and primates. Moreover, the tree in Figure 4(a) is

identical to the tree in Figure 4(b), 4(c) and the tree

built MUSCLE with UPGMA. In experiment, the

branch (bovine, goat) is not classified well by

CLUSTALW with ML. Furthermore, it took about

0.1 second for our method. However, UPGMA with

CLUSTALW and MUSCLE for the same data set

took 5.1 and 1.2 seconds to build the tree,

respectively, and ML with CLUSTALW and

MUSCLE took 8 and 4.1 seconds to build the tree,

respectively.

2) The Clustering result of 60 H1N1 viruses

H1N1 is subtype of the influenza A virus which can

cause illness in humans and many other animal

Table 4 Clustering results on the data sets listed in Table

1

mBKM with DMk BlastClust CD-HIT-EST

Data F-measure Time(s) F-measure Time(s) F-measure Time(s)

DS1 0.8080 6.875 0.4525 48 0.2713 39.8

DS2 0.9645 1.844 0.7515 13.6 0.5924 6.4

DS3 0.9143 2.375 0.3693 12.7 0.3157 17.1

DS4 0.9587 1.328 0.5224 9.3 0.4007 6.8

(Time contains the time of similarity measuring and clustering)

Figure 4 The phylogenetic trees for 10 species using the full DNA sequences of β-globin.
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species. Analysis of H1N1 is critical for preparing a

strategy to prevent and to control influenza

epidemics and pandemics. The H1N1 avian

influenza is characterized by its continuous antigen

variation, which is mainly caused by the HA and NA

proteins in which HA protein has highest rate of

mutation. HA protein plays a critical role in

identifying and adsorbing the host cell receptor in

the infection process, and it is the decisive factor of

host specific. We use our method to verify the

phylogenetic relationships of H1N1, and the result is

included in Additional file 1. The clustering result

using mBKM with DMk is shown in Figure 5(a). As

a comparison, we also use CLUSTALW with

UPGMA and MUSCLE with ML to construct the

phylogenetic tree and they are presented in Figure 5

(b) and 5(c).

As is seen from Figure 5(a), 60 H1N1 viruses are dis-

tinctly divided into four main groups using our method.

The four groups, include European swine older than

2009 (G1), the avian older than 2009 (G2), American

swine older than 2009 (G3) and the new 2009 viruses

from human, swine and avian (G4). The result shows

that the new 2009 human H1N1 viruses have closer rela-

tionship with old American swine than old avian and

European swine. This grouping result is generally con-

sistent with the topology given by CLUSTALW with

UPGMA, which is shown in Figure 5(b), and the one

presented by MUSCLE with UPGMA, which is provided

in the Additional file 1, as well as the result suggested by

zhao et al. [58]. Figure 5(c), built by MUSCLE using ML

method, also shows the new 2009 human H1N1 viruses

have close relationship with old American swine except

the position of the group (old avian swine, European

swine) is different from the positions in Figure 5(a) and

5(b). CLUSTALW with ML (in Additional file 1) also

classifies the 60 H1N1 viruses into four groups except

that swine/Wisconsin/1961 and swine/Wisconsin/1961

are not classified well.

Our method analyzed the 60 H1N1 viruses within 1

second, while UPGMA with CLUSTALW and MUSCLE

Figure 5 The phylogenetic trees for 60 H1N1 viruses.
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of the same data set took 460 and 60.1 seconds to build

the tree, and ML with CLUSTALW and MUSCLE took

571 and 188.1 seconds to build the tree, respectively.

Our method, mBKM with DMk, performs well when

clustering 10 species and 60 H1N1 viruses. It obtains

similar results to the alignment-based method. Further-

more, our method is much faster than the alignment-

based methods.

In order to compare the speed of our method with the

multiple sequence alignment based methods, CLUS-

TALW and MUSCLE, we performed the test on two sets

of sequences. The first set consists of six datasets. All

the six datasets include 100 sequences. The lengths of all

sequences in the six datasets are around 1000, 2000,

3000, 4000, 5000 and 6000 respectively. Another set also

consists of six datasets. The number of sequences in

each dataset is 20, 40, 60, 80, 100, 120 respectively; the

lengths of all the sequences are around 3000. Because

ML method is slower than UPGMA, we use UPGMA to

build the phylogenetic tree of the results from CLUS-

TALW and MUSCLE and record the time used for each

method. The results in Figure 6 show that our method is

much faster than the other two methods. The actual

time differences are much higher than the visual differ-

ences in the figure since we are using the log(time) as

the label of y-axis.

Scalability test

For DMk, the time complexity of transforming the gene

sequence s1⋯sl to a vector is O (l4K), thus the time com-

plexity of generating the vectors for the whole sequence

database is OðN�l4kÞ, where �l is the average length of the

sequences and N is the number of sequences. The value

of k set to 3 yields good results in our experiments, and

we fix k to 3 as the size of k-tuple. DMk have linear time

complexity with respect to both �l and N.

The time consumed for mBKM calculation is primarily

determined by choosing the initial cluster centroids. For

N sequences, this step has a time complexity of O (N2).

The time complexity of clustering step in mBKM is O (N

logK). The following scalability test on our method,

mBKM with DMk, confirms that our method has linear

time complexity with respect to the average length of

the sequences. The scalability test uses theoretical model

sequences composed of the four symbols ‘A’, ‘C’, ’G’ and

‘T’. The method is implemented in Java and on a com-

puter with 3.00 GHz CPU and 2 GB RAM.

Figure 7(a) illustrates the relationships between the

runtime and the number of sequences (implemented on

a computer with 8 GB RAM). To test the scalability with

respect to the number of sequences, we use five data

sets which consist of 5000, 10000, 15000, 20000, 25000,

30000, 35000 and 40000 sequences. Each data set

Figure 6 The time comparison of three methods.

Figure 7 The relationship between the runtime and different numbers of sequences and length of sequences.
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contains 10 clusters and all the sequences have the same

length, 100. The curve in Figure 7(a) is primarily consist-

ent with the time complexity of mBKM with O (N2). The

scalability with respect to the length of sequences was

tested on five datasets with five different sequence lengths:

10000, 20000, 30000, 40000, 50000 and each set consists

of 4 clusters and 100 sequences. The sensitivity with re-

spect to the length of the sequence is illustrated in Figure 7

(b), from which we can see that the time of our method

increases linearly when the length of sequences increases.

Conclusions
In this paper, we presented a novel approach for DNA se-

quence clustering, mBKM, based on a new sequence simi-

larity measure, DMk, which is extracted from DNA

sequences based on the position and composition of oligo-

nucleotide pattern. The experimental results show the

method of combining mBKM with DMk is effective in

classifying DNA sequences with similar biological charac-

teristics and in discovering the underlying relationship

among the sequences. In addition, DMk can achieve com-

parable or better accuracy than the frequency-based dis-

tance measure. Our proposed method can be applied to

study gene families and it can also help with the prediction

of novel genes. Furthermore, mBKM with DMk can gener-

ate cluster trees that are useful to understand the processes

governing the gene evolution. In addition, our method may

be extended for protein sequence analysis and metage-

nomics of identifying source organisms of metagenmic

data. Our method has limitations too. For example, the

method did not consider edge length, and has not address

problems with long repeated sequences or long insertions.

In future we will try to address these problems.
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