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ABSTRACT In intelligent unmanned warehouse goods-to-man systems, the allocation of tasks has an

important influence on the efficiency because of the dynamic performance of AGV robots and orders.

The paper presents a hierarchical Soft Actor-Critic algorithm to solve the dynamic scheduling problem of

orders picking. The method proposed is based on the classic Soft Actor-Critic and hierarchical reinforcement

learning algorithm. In this paper, the model is trained at different time scales by introducing sub-goals, with

the top-level learning a policy and the bottom level learning a policy to achieve the sub-goals. The actor of the

controller aims to maximize expected intrinsic reward while also maximizing entropy. That is, to succeed at

the sub-goals while moving as randomly as possible. Finally, experimental results for simulation experiments

in different scenes show that the method can make multi-logistics AGV robots work together and improves

the reward in sparse environments about 2.61 times compared to the SAC algorithm.

INDEX TERMS Multi-logistics robot, task allocation, deep reinforcement learning, actor-critic, hierarchical

reinforcement learning.

I. INTRODUCTION

The logistics industry has entered the era of intelligent logis-

tics [1] which is highly informative, automated, intelligent

and networked. The efficient operation of each part of the

intelligent logistics system requires the support of the intelli-

gent storage system. The intelligent storage system [2], [3]

uses the Internet of things technology to sense the storage

status in real-time, and applies artificial intelligence tech-

nology for data processing and analysis. Compared with the

traditional storage system, the intelligent storage system has

higher efficiency, higher fault tolerance rate, lower labor cost,

and strong robustness. A large amount of information will

be generated during the operation of the intelligent storage

system, which is characterized by the dynamic nature of

order information, goods information and storage informa-

tion. Therefore, a large number of warehousing logistics

robots and artificial intelligence technologies are needed to

The associate editor coordinating the review of this manuscript and
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optimize decision-making [4]–[6]. The dynamic task allo-

cation [7] problem of orders belongs to a part of picking

work, which includes the process of orders batch, orders

task allocation, path planning, picking, packing and shipping.

In the storage system, orders information usually has dynamic

problems such as multiple and miscellaneous categories of

goods, high frequency and large batch, etc. Therefore, the

most important thing to study the intelligent storage system

is to orders dynamic task allocation.

Currently, the intelligent storage system has a large scale,

which requires the cooperation of multiple storage logis-

tics robots in the actual work process. The storage logistics

robots mainly use AGVs, represented by amazon’s KIVA

robot [8]–[10], etc. How to make multiple robots complete

multiple tasks in collaboration are still the key point and dif-

ficulty in realizing the intelligent storage system of multiple

mobile robots. Many logistics robot dynamic task allocation

problem is to point to in a state known storage environment,

using real-time environmental condition, according to the

task allocation results of optimum distribution of tasks to
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logistics robot, and combined with a path planning algorithm,

produced from starting point to the shelves and shelves to

choose no static obstacles and dynamic collision conflict of

the optimal path, in the process, as far as possible little system

of time cost.

How to perform a collaborative dynamic task assignment

for multi-logistics robots is the primary content of this paper.

The traditional approach treats task assignment as a path

planning problem for single or multiple robots. It is assumed

that the AGV robot plans the trajectory from the current

location to the target location in the warehouse environment.

Although useful in many situations, traditional task assign-

ment algorithms are limited by their flexibility in practice.

The complexity and dynamic obstacles of the environment

can increase the instability of the system and reduce the com-

putational efficiency. Besides, most traditional algorithms

do not consider dynamic task assignment and can only be

solved based on the static order information. Thus, this paper

proposed a hierarchical Actor-Critic algorithm to address the

core problem of multi-logistics robot task allocation.

In recent years, with the great success ofAlphaGo [11]–[13]

in the field of go, deep reinforcement learning algorithms

have been greatly applied in various fields of study. Deep

reinforcement learning algorithm combines the feature that

reinforcement learning can realize the interaction between

agent and environment through reward mechanism and the

advantage that deep learning can extract features of high-

dimensional data. It directly extracts the features from the

massive environmental data of complex dynamics by using

deep neural network, and finally learns the optimal strategy

of the agent. Soft Actor-Critic(SAC) [14] is a state-of-the-

art deep reinforcement learning algorithm that solves both

discrete and continuous control problems. Compared with the

traditional Deep Deterministic Policy Gradient(DDPG) [15]

algorithm, SAC uses a stochastic policy. Compared with

deterministic policy, stochastic policy have more advantages

in practical robot control. Therefore, our research focuses on

the SAC.

When we extend the task assignment to multi-robot sys-

tems, feature quantification and conflict resolution among

robots in multi-robot systems become more complex, and

traditional deep reinforcement learning methods face the

dimensional disaster problem. This is because the state space

of an agent increases in a complex dynamic environment, and

therefore the parameters and the memory required for the

training process increase dramatically. To solve the dimen-

sional catastrophe of traditional deep reinforcement learn-

ing, this paper combines hierarchical reinforcement learn-

ing(HRL) with the SAC algorithm. Hierarchical reinforce-

ment learning algorithms layer the learning process to reduce

the complexity of the algorithm. the HRL approach has mul-

tiple layers of learning strategies, each layer being able to be

controlled at different time levels. In this paper, task assign-

ment is decided centrally by the assigned robots, and multiple

logistics robots interact sparsely in completing the task and

planning the actual path. The learning policies of the logistics

robots do not communicate in the neural network and the

logistics robots make autonomous decisions based on their

observed information. In this paper, a deep reinforcement

learning-based task assignment method for multiple logistics

robots is proposed. By sharing parameters and models, the

robots can learn the policies of other robots.

This paper has some contributions onmulti-logistics robots

task allocation algorithms as follows:

1. The Hierarchical Soft Actor-Critic is proposed based on

soft actor-critic, an off-policy DRL algorithm based on maxi-

mum entropy reinforcement learning framework, the actor of

controller aims to maximize expected intrinsic reward while

also maximizing entropy.

2. By combiningmaximum entropy reinforcement learning

with hierarchical structure by introducing the intrinsic reward

mechanism, the model is trained at different time scales.

Thus, the method can solve the multi-logistics robot task

allocation problem.

This paper is organized as follows: Section 2 describes

the Actor-Critic algorithms and their applications in multi-

robot task allocation problems. In Section 3, the proposed

algorithm is summarized, and a novel Hierarchical soft

Actor-Critic algorithm is introduced. Section 4 presents the

design of the multi-logistics robots task assignment simula-

tion experiment with the proposed algorithm and analyzes the

experiment results. Section 5 summarizes this work.

II. RELATED WORK

Benefiting from the development of the deep reinforcement

learning, deep reinforcement learning has shown great poten-

tial to solve the problem of task allocation in the large-scale

unmanned warehouse. Agents learn to optimize policy for

complex problems by deep reinforcement learning, which

can extract features of high-dimensional state spaces through

deep neural networks.

A. ACTOR-CRITIC ALGORITHMS

Deep reinforcement learning can be divided into value-

based RL(Reinforcement Learning) and policy-based

RL [16]–[18], and combining the algorithm the two results

in a series of Actor-Critic (AC) algorithms. The basic idea

of Actor-Critic is as follows: the actor selects the policy

based on the state and the policy selection function. The critic

evaluates the actor’s policy based on the value function and

guides the actor to improve the policy. Mnih et al. [19] first

proposed the Asynchronous Advantage Actor-Critic(A3C)

and obtained some good results. Also, Advantage Actor-

Critic(A2C), another optimization algorithm proposed by

Konda and Tsitsiklis [20] also achieved good results.

DeepMind also proposed the Deep Deterministic Policy

Gradient (DDPG) [15], which successfully solved the prob-

lem of learning in continuous action space. To solve the

overestimation problem, Fujimoto et al. [21] also proposed

the Twin Delayed Deep Deterministic policy gradient algo-

rithm(TD3). Also, Haarnoja et al. [14] proposed an off-policy

Soft Actor-Critic algorithm (SAC) for maximum entropy
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reinforcement learning. Compared with DDPG, SAC uses

a stochastic policy and has achieved very good results on

the open benchmark, which could be directly applied to real

robots.

B. MULTI-AGENT ACTOR-CRITIC ALGORITHMS

Deep reinforcement learning and multi-agent systems

[22], [23] have complementary advantages. Peng et al. [24]

proposed an AC-based multi-agent bi-directional collab-

oration network. Both actor and critic networks use a

bi-directional Long Short-Term Memory(LSTM) [25] archi-

tecture to connect agents in series. Mao et al. [26] proposed

a general cooperative actor-critic network and the AC-Cnet

architecture. In a partially observed environment, the com-

munication protocol between agents was learned from zero.

Yang et al. [27] proposed mean-field reinforcement learning

to approximate inter-agent interactions used the mean inter-

action between the global or neighboring agents, designed

mean-field Q learning and mean-field Actor-Critic algo-

rithms for multiple agents, and analyzed the convergence.

Lowe et al. [28] extended the DDPG method to multi-agent

learning, modeled the opponent by observing the opponent’s

past behavior, constructed a global critic function to evaluate

the global state-autonomous action, and trained a set of agent

policies to improve the robustness of the algorithm. Foerster

et al. [29] proposed an actor-critic counterfactual multi-agent

(COMA) policy gradient method, which uses a centralized

critic function to evaluate joint actions. Each agent uses its

actor policy network to make decisions.

C. ALGORITHMS FOR TASK ALLOCATION

The achievements of the research on multi-agent dynamic

task allocation [30]–[32] are mainly based on heuristic

intelligent algorithms. Intelligent algorithms mainly use

environmental learning or heuristic search, such as A* algo-

rithms [33], evolutionary algorithms [34]–[36], and neu-

ral network-based methods, etc. Evolutionary algorithms

based on simulated organisms mainly include ant colony

algorithm(ACO), genetic algorithm or algorithms combining

the two. Existing ACO has a high calculational time com-

plexity and is prone to fall into the local minimum when

solving high-dimensional space problems. The genetic algo-

rithm [37] can only approximate the global optimal solu-

tion, and is not fast enough to be combined with other

intelligent algorithms. Besides, there are related researches

based on the search algorithms, which compute large amounts

when performing global searches, while local searchmethods

require heuristic rules. Recently, the Deep Reinforcement

Learning algorithms are applied to the scheduling problems.

Wang et al. [38] apply a DQN [39] to guide the scheduling

problems. Zeng [40] and others used reinforcement learning

Q-Learning algorithm to consider the overall system state for

scheduling. Shahrabi et al. [41] used reinforcement learning

with a Q-factor algorithm to the scheduling method which

considers random job arrivals and machine breakdowns.

III. PRELIMINARIES

In this section, we first describe the problem ofmulti-logistics

robot task allocation. Then, we describe hierarchical soft

actor-critic(HSAC) method for task scheduling.

A. PROBLEM FORMULATION

Logistics Robots Dynamic Task Assignment (LRDTA) is a

dynamic scheduling problem for cargo-to-person mode order

picking using AGV carts in an unmanned warehouse. After

the order arrives at the system, first, the order is assigned

to the picking table using an intelligent algorithm. Second,

the shelves needed in the order are assigned to the logistics

robots, which assign the location information of the shelves,

perform path planning, and move the shelves from the current

position to the target position. After that, the shelves are

transported to the designated picking table, and the shelves

are transported back to the original position after the picking

is completed. Finally, the logistics robots move from the

current position to the target shelf position, and so on. Finally,

the logistics robot moves from the current position to the

target shelf position, and so on until it reaches the termination

state, i.e., all orders have been picked.

Input parameters include warehouse layout and order lists.

The order lists are collected from real warehouse procedure.

The objective function of LRDTA is the shortest total out-

bound time:

minmax ITC(Ri, SRi ) (1)

ITC =

k∑

P=1

SRi∑

j=1

[(
cRiSj × xPsηRisj

)
+ IC

]
(2)

IC =




m∑

j=1

xPsηRisj


× tpick − cRisj × xPsηRi sj (3)

where R denotes the robot, P denotes the picking table, SRi is

the set of tasks for the robot, cRiSj is the cost of the robot to

complete the task, and tpick denotes the time for order picking

and packing as a constant. xPsηRisj indicates whether the shelf

j carried by AGV robot i is picked at picking table s.

The constrains are as followings. Equations 4 and 5 con-

strain a task to be assigned to only one picking table and robot,

respectively.

Pl∑

P1

xPsηRisj = 1 · · ·Ri = R1,R2, . . . ,Rm (4)

Rm∑

R1

ηRisj = 1 (5)

Deep reinforcement learning(DRL) is an important area of

machine learning and artificial intelligence. DRL focus on

the problem of how agents can learn policies by interacting

directly with their environment to maximize long-term

returns. Traditional DRL is based on the Markov Decision

Process (MDP), which can be expressed as a five-tuple

<S,A,P,R, γ>. S is a finite set of states, a state s in the set
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belongs to S. A is a finite set of actions, an action a in the set

belongs to A, and A is a set of actions that can be performed

in the state s. P is a state transition equation, which means

that the agent will jump to state s′ with probability p after

performing an action a in the state s, R is the reward function.

γ is the discount factor, and γ belongs to [0,1].MDP indicates

that the next state of the environment is only related to the

current state and not to the previous state. However, in a

complex environment or difficult task, too large state space of

the agent can lead to a rapid increase in learning parameters

and storage space. Facing of dimensional disaster, DRL has

a hard time achieving the desired results, so hierarchical

reinforcement learning(HRL) is proposed.

HRL breaks down a complex problem into several sub-

problems, which can be solved separately with better results

than solving the whole problem directly. HRL needs to be

performed on a semi-Markov decision process(SMDP). In the

SMDP, the number of steps from the current state to the next

state is a random variable τ , i.e., after selecting an action a in a

state s, it will transition to the next state s′ with the probability

after the τ step. The probability of state transition P(s′, τ |s, a)

is the joint probability of s and τ .

This paper aims to provide a task allocation method with

the deep reinforcement learning algorithm for the multi-

logistic robot system. We try to find such a learnable policy

module π :S × A → [0, 1], which can guide the agent to

choose the action. Given a policy π and a states, the action-

value function represents the expected cumulative reward that

can be obtained by performing the action a in the state s of

a given policy π . Standard reinforcement learning requires

maximizing the expected value of the sum of rewards.

Q(st , at ) = E[

∞∑

t=0

γ tr(st , at )] (6)

B. SOFT ACTOR-CRITIC ALGORITHM

In the multi-logistics robot task allocation problem, the rela-

tionship between the environment state inputs and the output

control law can be very complex. In our work, we consider

some modification of the Soft Actor-Critic(SAC) as the basic

framework.

SAC is a remarkable deep reinforcement learning algo-

rithm to address the discrete and continuous control prob-

lems. Compared with the classic DDPG, SAC uses a stochas-

tic policy, which has certain advantages over deterministic

policy in actual robot control. Stochastic policy is achieved

through maximum entropy. The idea of maximum entropy

keeps any useful action or trajectory from being overlooked.

To obtain good policies to achieve dynamic task assignment,

logistic robots need to learn stable rules between perception

and decision-making, and avoid collisions and collaborate in

some cases. This method uses maximum entropy goal to learn

policy for more complex tasks:

J (π ) =

T∑

t=0

E(st ,at )∼ρπ [r(st , at )+ αH (π (·|st ))] (7)

α is a hyper-parameter of the temperature coefficient, used

to adjust the focus of entropy value. The state value function

V (st ) and action-state value function Q(st , at ) of the max-

imum entropy reinforcement learning can be expressed as

Equation(3) and Equation(4):

Q(st , at ) = r(st , at )+ γEst+1∼p(st+1,τ |st ,at )[V (st+1)] (8)

V (st ) = Eat∼π [Q(st , at )− α logπ (at |st )] (9)

There are a number of conceptual and practical advantages

to using maximum entropy. First, the policy learned can be

used as an initialization for more complex tasks, while inte-

grating with hierarchical architecture. Second, the policy can

capture near-optimal action and allow for greater exploration.

Lastly, the maximum entropy provides a stronger robustness

and generalization.

This algorithm constructs neural networks Qθ (st , at ) and

πφ(at |st )to represent action-state value functionQ(st , at ) and

policy π . At each time step, the actor-network and the critic-

network are updated by uniformly sampling minibatch from

the memory buffer. The algorithm also creates a target net-

work of Q(st , at ) and policy π for soft updates through the

learned network, which can greatly improve the stability of

learning.

The loss function for the critic-networks can be formulated

as Equation(5):

JQ(θ ) = E
(st ,at )∼D)

[
1

2

(
Qθ (st , at)− Q̂(st , at )

)2
]

(10)

with

Q̂(st , at ) = r(st , at )+ γEst−1∼p[Vψ (st+1)] (11)

The loss function for the actor-networks when training

policy πφ can be formulated as Equation(7):

Jπ (φ)= E
st∼D,at∼πφ

[
logπφ (at |st)−

1

α
Qθ (st , at)+logZ (st)

]

(12)

IV. HIERARCHICAL SOFT ACTOR-CRITIC

Prior methods have proposed the off-policy actor-critic

method in the maximum entropy RL framework. The

method proposed incorporates three key ingredients: an actor-

critic architecture with policy and value function networks,

an entropy maximization to enable stability and exploration

and a hierarchical framework combined with an intrinsic

motivation learning mechanism.

In this section, we will add the hierarchical frame-

work [42], [43] to the SAC as the hierarchical soft actor-

critic(HSAC). In a multi-logistics robot system, the observa-

tion of each robot contains information about the other robots.

If other robots are regarded only as dynamic obstacles without

considering how to collaborate with others, the efficiency

of task allocation for unmanned warehouse selection will be

greatly reduced.
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FIGURE 1. The structure of the HSAC.

A. META-CONTROLLER/CONTROLLER FRAMEWORK

To address the aforementioned issues, we proposed a hier-

archical soft actor-critic(HSAC). Compared with the classic

soft actor critic for multi-logistic task allocation, the HSAC

algorithm has a two-layer structure, namely Meta-controller

and Controller. The Meta-controller takes the state st as input

and selects a new subgoal gt . The Controller uses state and

selected subgoal to select the action until the subgoal is

reached or the episode is terminated. Two models are used

in the controller to approximate the output action and action-

value function respectively. In this paper, we only construct

a two-level hierarchical structure, but the proposed approach

can be extended to a greater depth of hierarchy.

As is shown in Figure 1, the Meta-controller provides sub-

goal gt for the Controller. At each time step t , the controller’s

actor model outputs action at and policy based on state st and

subgoal gt . The action at , along with the state st and subgoal

gt serves as the input to the controller’s critic model, which

ultimately outputs value Q (st , at ; gt). When the controller

implements a subgoal gt , the meta-controller receives a state

st from the environment and select a subgoal from the set of

subgoals.

The environment provides the state st and extrinsic reward

rt+1. Meta-controller and controller use separate networks

inside, and the controller has both actor and critic models

inside. The meta controller gets the subgoal gt , and gener-

ates policies by estimating the value function Q(st ; gt ). The

controller uses the state st and gt as inputs, and generates

the policies by estimating Q (st , at ; gt) and the action atby

estimating π (at |st , gt ). The environment receives the action

at and generates a new state st+1 and extrinsic reward rt+1.

The controller’s critic judges whether the internal goal gt
has been completed according to the new state st+1. If the

episode ends or the subgoal is complete, the meta-controller

will select a new subgoal. If the subgoal is not complete,

the controller’s critic will provide the intrinsic reward r̃t+1.

if it is completed, a new subgoal is generated, and if it is not

completed, it gives internal feedback r.

The objective function of the controller is to maximize the

future accumulated intrinsic reward

G̃t =

t+T∑

t ′=t

γ t
′−t r̃t (gt ) (13)

where T is the time to complete the subgoal gt . The objective

function of the meta-controller is to maximize the future

cumulative extrinsic reward

Gt =

τ∑

t ′=t

γ t
′−trt (14)

where τ is the time of the final step in a episode. We can

use two different value functions to learn policy for meta-

controller and controller’s critic models as Equation(10) and

Equation(11):

Q(st ) = E(st ,at )∼πg [

τ∑

t ′=t

γ t
′−t (r(st )− α logπg(·|st ))] (15)

where πg is the policy over the meta-controller.

Q(st , at ; gt ) = E(st ,at )∼πag [

T∑

t ′=t

γ t
′−t r̃(st , at ; gt )

−α logπag(at |st , gt ))] (16)

where πag is the policy over the controller.

In other words, we update the policy in terms of the

Kullback-Leibler divergence according to Equation(12):

πnew = arg min
π ′∈5ag

DKL(π
′(gt |st )||

exp(Qπold (st ; gt ))

Zπold (st )
) (17)

The partition function Zπold (st ) normalizes the distribution,

which is constant for the policy π (gt |st) and can be directly

ignored in the actual calculation. The controller’s experience

replay buffer D1 consists of a set of (st , at , gt , r̃t , st+1). The

meta-controller’s experience replay buffer D2 consists of a

set of (st , gt ,Gt:t+T , gt+T ).

We use the V network, policy network and Q network

to approximate the value of meta-controller, the policy of

the controller’s actor model and the value of the controller’s

critic model. We will consider a parameterized value function

Qψ (st ; gt ),Qθ (st , at ; gt ) and policy πφ(at |st , gt ). To train the

meta-controller value function, weminimize the loss function

based on the extrinsic reward from the environment:

JQ(ψ) = E(st ,gt ,Gt:t+T ,gt+T )∼D2
[
1

2
(Qψ (st ; gt)

−Eat∼πφ [Qθ (st , at ; gt)− logπφ (at |st , gt)])
2]

(18)

Theminimized loss function for updating parameters of the

controller’s critic is Equation(14).

JQ(θ ) = E
(st ,at ,gt ,)∼D1

[
1

2

(
Qθ (st , at ; gt)− Q̂ (st , at ; gt)

)2]

(19)
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FIGURE 2. The network structure of the Soft Actor-Critic for task allocation.

with

Q̂ (st , at ; gt) = r̃ (st , at ; gt)+ γEst+1∼p[Vψ (st+1)] (20)

Policy parameters can be learned by minimizing the

Kullback-Leibler divergence in Equation(16).

Jπag (φ) = E(st ,at ,gt )∼D1
[logπφ (at |st , gt)

−
1

α
Qθ (st , at ; gt)+ logZ (st , gt)] (21)

The algorithm achieves the goal of unmanned warehouse

order picking by sharing experience replay memory and poli-

cies. The robots use the same policy to plan the path from the

start to the destination, and the robot’s trajectory is stored in

a shared experience buffer. The HSAC algorithm is given in

Algorithm 1.

B. NETWORK STRUCTURE

In this section, we overview the network structure, and the

perception information of the policy module includes the

information about the unmanned warehouse environment and

the information about the robot. Some parameters related to

task allocation are added to the framework, such as the set of

shelves allocated to the robot and the set of orders allocated to

the picking station. It enables the policy module to consider

both the picking station state and the robot state, which is

essential for task assignment.

There are three types of neural networks in our module,

namely V network, Policy network and Q network. As shown

in Figure 2, they all use perceptual information as input.

V network passes data through a fully connected layer and

outputs state value. Policy network passes the data through

the fully connected layer and then through a Gaussian dis-

tribution layer, and outputs the sampled actions and policies.

The sampled actions output from the Policy network and the

perception information are used as input to the Q network,

and finally Q network output the state-action value.

C. REWARD SHAPING

Intrinsic reward is the core idea behind the learning of value

functions in the meta-controller and the controller. There

is sparse delayed feedback in task scheduling. Thus, logis-

tics robots cannot effectively explore the environment and

achieve the task. By specifying and quantifying the task

goals, it is determined whether the robot can learn the desired

policy. When logistics robots complete tasks in unmanned

warehouses, rewards are scarce, and it is hard to learn

appropriate policies to achieve goals. To solve this problem,

we use subgoals to help logistics robots complete a series

of scheduling tasks. In the method proposed in this paper,

the unmanned warehouse scheduling is divided into three

stages. First, a group of robots are assigned tasks and arrive

at the location of the shelf that needs to be moved from their

starting positions. Then, the logistics robot carries the shelves

to the picking table. Finally, when the task of order picking

is complete, the robot returns the shelves. There are different

parts of the reward function: a reward for completing tasks,

a collision penalty, and a reward for approaching. Except for

the positive reward for completing the task, the other settings
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Algorithm 1 Hierarchical Soft Actor-Critic

Input: θ1, θ2, ψ, φ

1: Specify Subgoals space G

2: Initialize parameter vectors θ, ψ, φ

3: Initialize experience memories D1 and D2

4: for each episode do

5: Initialize state s0 ∈ S, s← s0
6: G← 0

7: for each step do

8: at ∼ πφ(at |st )

9: st+1 ∼ p(st+1|st , at )

10: D1← D1

⋃
(st , at , gt , r̃t , st+1)

11: Sample from D1 and compute ∇JQ(θ ),∇Jπ (φ)

12: Update controller’s parameters, θi ← θi −

λQ∇θiJQ(θi)

13: Update controller’s parameters, φ ← φ −

λπ∇φJπ (φ)

14: Sample from D2 and compute ∇JQ(ψ)

15: Update meta-controller’s parameters, ψ ← ψ −

λQ∇ψJQ(ψ)

16: ψ̄ ← τψ + (1− τ )ψ̄

17: s← s′,G← G+ r

18: end for

19: until s is terminal or subgoal is attained

20: D2← D2

⋃
(s0, g,G, s

′)

21: end for

Output: θ1, θ2, ψ, φ

are negative rewards.

r (st , at)=





∑n

1
−k (distt+1−distt) at each time step t

rcollision if the robot collide

rtask if achieves the task

(22)

where (distt+1 − distt ) represents the degree of change

between the robot’s position and the target’s position, from

time step t to t+1. The distance is calculated usingManhattan

distance. k is the weight of the reward robot’s approach to the

target position during the path planning process. The reward

for completing the subgoals is the intrinsic reward:

r̃ (st , at ; gt) =

{
min (r (st , at) ,−1) if st+1 achieves gt

rsubgoal if st+1 achieves gt

(23)

The rewards for each logistics robot are aggregated into a

set of rewards. When any of the robots collide, the environ-

ment will be reset and the episode will end.

V. EXPERIMENTS

To evaluate the performance of the HSAC algorithm, suffi-

cient experiments were conducted in an unmannedwarehouse

simulation environment which is implemented by Python.

To build an unmanned warehouse environment for logistics

TABLE 1. The parameters of the warehouse environment.

robots, an SMDP was used to model the problem of the

unmanned warehouse scheduling. The proposed method is

implemented on a PC with 16G RAM, i7-8750H proces-

sor, and Geforce GTX1060Ti under Windows 10 operating

system.

A. MULTI-AGV UNMANNED WAREHOUSE

Our experimental environment and experimental environ-

ment parameter settings are derived from the research results

of Christianos F. et al[44]. The experiment simulates the

unmanned warehouse scenes. The size of the warehouse is

set to either tiny(10× 11), small(10× 20),medium(16× 20),

and large(20 × 29). At each epoch, orders were randomly

generated and distributed over N shelves. And there are H

AGV robots in the environment. The experimental unmanned

warehouse parameter settings are shown in Table 1. The

environment requires AGV robots to move requested shelves

to the picking stations and back to the shelve’s original loca-

tion. For a logistics robot, other robots can be regarded as

obstacles. In the experiment, the robots were randomly set in

different initial positions.

The action space for each AGV robots is A={Forward,

Turn Left, Turn Right, Load/Unload Shelf}. The AGV robots

can move beneath shelves when they do not carry a shelf, but

when carrying a shelf, robots must use the corridors visible.

The environment is partially-observable with a very sparse

reward since robots have a limited view area and are rewarded

onlywhen shelves are delivered successfully. The observation

of an AGV robot consists of a 3 × 3 square centered on the

robot. It contains information about the surrounding robots

and shelves.

The environment used in our experiment is shown in Figure

3, the necessary modules of an unmanned warehouse such as

shelves, picking stations, and robots are built in the simula-

tion. The position of the blue square represents the distribu-

tion of the shelves in the unmanned warehouse. The yellow

pentagon represents the AGV robots with a random initial

position. The black square represents the picking station.

B. MULTI-LOGISTIC ROBOT TASK ALLOCATION

EXPERIMENT

The flow chart of HSAC algorithm to solve the dynamic task

assignment of multi-logistics robots is shown in Figure 4.

First, at each iteration, the task list of the environment is

obtained. Then, the tasks are assigned to the AGV robots. For

each AGV robot, first, the state and tasks of the environment

are obtained. Then, the Meta-Controller generates the robot’s
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FIGURE 3. The road layout of unmanned warehouse.

FIGURE 4. The flow chart of experiment.

subgoals. Finally, the Controller generates the robot’s actions

and calculates the intrinsic rewards. Next, the robot’s actions

are united to interact with the environment and obtain the next

state and extrinsic reward. The previous steps are cycled until

all tasks of the environment are completed.

We present the Hierarchical Soft Actor-Critic algo-

rithm(HSAC), which builds on the Soft Actor-Critic

algorithm by applying the modifications describes in the

last section to solve dimensional disaster problem with

consideration of hierarchical architecture. The framework

of Controller maintains a pair of critics along with a single

actor. Our hyperparameter adjustments were referenced from

the SAC [14] and fine-tuned during the experiment.Below,

Table 2 shows the hyper-parameters of the HSAC.

The goal of our experiment is to understand how the

sample complexity and stability of our method compares

with the following baseline deep reinforcement learning

algorithms.
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FIGURE 5. The results of metrics.

FIGURE 6. The average reward of different algorithms.Description of the average returns of algorithms in episodes of different 5 random seeds.

• Soft Actor-Critic(SAC): SAC is an off-policy actor-

critic deep reinforcement learning algorithm based

on the maximum entropy reinforcement learning

framework. By combining off-policy updates with a

stable stochastic actor-critic formulation, SAC achieves

state-of-the-art performance.
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FIGURE 7. The Gantt charts of the HSAC with different warehouse environments.

TABLE 2. Hyperparameters used for HSAC results.

• Shared Network Actor-Critic(SNAC): SNAC trains a

single shared policy among all agents. During training,

the policy and value loss gradients are summed and used

to optimize the shared parameters. Importance sampling

is not required since all trajectories are on-policy.

• Independent Actor-Critic(IAC): Each agent has its

policy network and it’s trained separately only using

its own experience. IAC uses an actor-critic algorithm

for each agent and treating other agents as part of

the environment. Arguably, independent learning is one

of the most straightforward approaches to MARL and

serves as a reasonable baseline due to its simplicity.

• Independent Q-Learning(IQL): Each agent has a

decentralized state-action value function that is condi-

tioned only on the local history of observations and

actions of each agent. Each agent receives its local

history of observations and updates the parameters of

the Q-value network using the standard Q-learning

optimization.

• Central-V: Central-V is an actor-critic algorithm in

which the actor approximates the individual policy and

the critic learns a joint state value function. It extends

existing on-policy actor-critic algorithms, such as A2C

or PPO, by applying centralized critics conditioned on

the state of the environment rather than the individual

history of observations.

In order to better evaluate the performance of the algo-

rithm in scheduling tasks, two metrics are proposed: aver-

age distance traveled by the robot per task(ADT) and

average task accomplished per epoch(ACP). The results

of metrics in three different experiments as shown in

Figure 5.
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TABLE 3. Max average return over 5 trials of 1 million time steps.

A comparative analysis of the above results leads to the

following conclusions.

Since the SAC algorithm does not introduce subgoals and

internal rewards, it is difficult to learn the best strategy for

completing the task in a sparsely rewarded experimental envi-

ronment, resulting in the robot wasting a lot of time explor-

ing the environment, whereas with HSAC, which introduces

subgoals and internal rewards, the robot is better able to

find paths that are closer to the subgoals through internal

reward feedback, thus achieving the better results. For six

different experimental contexts, the larger the map size, the

more sparse the feedback from the environment, and the

more difficult it was for the method to learn strategies for

completing the task.

In terms of the average path the robot takes to complete

each task, we expect the robot to complete the task in a shorter

distance, and HSAC achieves the best results with a larger

improvement. When the number of robots is constant and

the number of assignable tasks increases, the average path

required to complete each task decreases. When the map

is larger, the average path required to complete each task

increases.

In terms of the idle rate of the robot, the smaller the idle rate

of the robot, the better. From the experimental results, it can

be seen that the best results were achieved for the idle rate of

HSAC in each context. When the number of robots remained

constant and the number of assignable tasks increased, the

idle rate of the robots decreased.

In terms of the number of tasks completed per episodes,

we expected the bot to complete more tasks in an episodes.

However, the robot does not complete more number of tasks

when the map is maximal. Our proposed algorithm achieves

better results.

In practical applications, unmanned warehouses generally

take the number of order picks completed per hour as an

evaluation index, and with each time step as 1 second, it is

possible to obtain an average of 61.73 time steps per order

in the F scenario, which would result in 58.318 completed

orders per hour.

The goal of our experiment is to understand how the sample

complexity and stability of our method compares with prior

deep reinforcement learning algorithms. For scheduling tasks

with high decision space, the HSAC technique with a hierar-

chical structure can improve scheduling efficiency. As shown

in Table 3 and Figure 6 are the learning curves and maximum

average feedback of the robot under 6 experimental scenarios.

The experiments were run under 5 random seeds for more

FIGURE 8. The road layout of unmanned warehouse in supplementary
experiments.

than 1 million time steps and the parameters were updated

every 5000 steps for a total of 1024 episodes performed. The

algorithms do not use the intrinsic reward function proposed

in this paper except for the HSAC algorithm.

From the learning curve in Figure 6, it can be seen that the

HSAC algorithm reward value changes less when the Agent’s

task size andmap size change, and can better adapt to changes

in the Agent’s task size, i.e., it can better adapt to the dynamic

external environment. The HSAC algorithm works best and

converges efficiently.

During the order picking process of task assignment and

path planning, the robot’s state can be divided into three

types: Phase 1, Phase 2, and Phase 3. Phase 1 is the process

of the robot finding the location of the shelf from its own

position when it receives the task. Phase 2 is the process of

the robot picking up the shelves to locate the picking table

after it has found the location of the shelves. Phase 3 is the

process of the robot returning the shelf to its original location

after the order picking is complete. Figure 7 shows a Gantt

chart of the robot working at different stages in different

test scenarios with a maximum number of 500 steps. For the

robot, the length of Phase 2 and Phase 3 should be similar,

while the length of Phase 1 is different due to the different

starting position of the robot at each time it receives the task.

We want the algorithm to be able to spend close time in

Phase 2 and Phase 3. Therefore, it can be seen that the robots
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FIGURE 9. The results of supplementary experiment.

TABLE 4. The parameters of the supplementary environment.

with the HSAC algorithm have a lower idle rate and stable

performance.

Through quantitative and qualitative analysis of various

evaluation metrics, this paper designs a hierarchical struc-

ture based on the SAC algorithm and performs simulation

experiments. The experimental results show that the internal

reward mechanism based on subgoals can effectively learn

the behavioral strategies of complex task assignments at dif-

ferent stages of order assignment and path planning, and the

maximum entropy algorithm can effectively enhance robust-

ness and exploration of the environment. Therefore, com-

paring the simulation results, the proposed HSAC algorithm

improves significantly, which further verifies the superiority

of the algorithm and proves that the HSAC algorithm is more

robust and stable in performance.

C. SUPPLEMENTARY EXPERIMENTS

To verify the performance of the method proposed in this

paper, we performed additional experiments in the simulation

environment. In addition, we added experimental results for

PPO [45], an off-policy RL algorithm for state-of-the-art

performance. The road network layout of the experiment is

shown in Figure 9 and Figure 10, and it can be seen that

the size of the map is close to the size of the actual scene.

The supplementary experiments was carried out under the

warehouse layout as shown in Figure 8. As shown in Table

4, we have conducted experiments for the cases of 12, 15, 18,

and 20 number of robots.

From the experimental results, it can be seen that HSAC

achieves optimal results for both. For both ADT and ACP,

HSAC reduced the average robot walking distance per task

and the time required to complete the task compared to SAC.

Because the HSAC algorithm uses a hierarchical mechanism

to divide the path planning process of the task into three

phases, where the intrinsic reward-based directed exploration

is performed in each phase. The average robot distance trav-

eled per task and the time required to complete the task

were less effective in the SAC algorithm before improvement

because the SAC algorithm trained independent policies for

each robot in reward-sparse dynamic environment explo-

ration, and the optimal action selection policy could not be

learned in a limited amount of time.

The time required for each task completion was slightly

higher than the average robot walking distance due to the

fact that the robot’s actions in completing the task included

turning left, turning right, and load/unload shelves in addition

to moving forward. For ACP, the algorithm is most effective
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FIGURE 10. The results of supplementary experiment.

TABLE 5. The results of HSAC in the supplementary environment.

when the number of robots is 15. This is because when the

number of robots increases, the probability of congestion of

robots at the target location also increases, so it is not the case

that the algorithm ismore effectivewhen the number of robots

is higher.

Table 5 shows the performance of the HSAC algorithm for

ADT and ACP with different number of robots and number

of tasks. It can be seen that the effectiveness of the algorithm

improves as the number of robots increases, but not infinitely.

And the effectiveness of the algorithm starts to decrease after

the number of robots 15, because too many robots will make

the warehouse crowded, which is in line with the expected

result. Although adding robots can improve efficiency to

some extent, the performance of the algorithm remains stable

within a certain range.

Based on the experimental results, we can conclude that,

first, the HSAC algorithm is optimal even in a large map

environment with sparse rewards. Second, the average num-

ber of tasks completed by the HSAC algorithm per robot per

iteration, 7.49, 8.02, 8.42, 9.02, 7.26, 7.33, 6.59 and 6.804,

respectively, basically maintained relatively stable results and

verified the stability of the algorithm.

VI. CONCLUSION

This work proposed a hierarchical soft actor-critic, an off-

policy maximum entropy hierarchical deep reinforcement

learning algorithm and applied the method to multi-logistic

robot task allocation. The method retains the benefits of

soft actor-critic and hierarchical reinforcement learning. The

proposed HSAC algorithm takes robot environment obser-

vations as input of neural network to directly control AGV

robots to shuttle between shelves and picking stations in a

dynamic environment. The performance of the method with

other algorithms in a multi-robot environment is evaluated in

a simulation environment. The experimental results show that

the method can teach multi-logistics robots to work together

to complete order picking tasks with high efficiency.

However, this paper only considers AGV systems for

multi-robot picking work in unmanned warehouses. If we

want to apply it to other AGV robot systems, it remains to

be further investigated whether the task assignment system

needs to be modified and whether it will produce a different

assignment effect. In addition, the data set for the training

model in this paper is from the simulation environment,

we did not collect data in the real AGV robot system in order

to save the research cost, and the subsequent research can

consider to train and modify the neural network of the model

by collecting data from the real AGV robot system.
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