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We have developed a new microarray technology for quantitative gene-expression profiling on the basis of randomly
assembled arrays of beads. Each bead carries a gene-specific probe sequence. There are multiple copies of each
sequence-specific bead in an array, which contributes to measurement precision and reliability. We optimized the
system for specific and sensitive analysis of mammalian RNA, and using RNA controls of defined concentration,
obtained the following estimates of system performance: specificity of 1:250,000 in mammalian poly(A+) mRNA;
limit of detection 0.13 pM; dynamic range 3.2 logs; and sufficient precision to detect 1.3-fold differences with 95%
confidence within the dynamic range. Measurements of expression differences between human brain and liver were
validated by concordance with quantitative real-time PCR (R2 = 0.98 for log-transformed ratios, and slope of the
best-fit line = 1.04, for 20 genes). Quantitative performance was further verified using a mouse B- and T-cell model
system. We found published reports of B- or T-cell-specific expression for 42 of 59 genes that showed the greatest
differential expression between B- and T-cells in our system. All of the literature observations were concordant with
our results. Our experiments were carried out on a 96-array matrix system that requires only 100 ng of input RNA
and uses standard microtiter plates to process samples in parallel. Our technology has advantages for analyzing
multiple samples, is scalable to all known genes in a genome, and is flexible, allowing the use of standard or custom
probes in an array.

Microarray technology has allowed the abundance of thousands
of different mRNAs to be measured simultaneously and effi-
ciently from a single biological sample (Schena et al. 1995; Lock-
hart et al. 1996; Lockhart and Winzeler 2000). As a result, the
analysis of individual genes has given way to the analysis of large
sets of genes and the discovery of patterns and relationships in
their expression. This has spawned a myriad of exciting new ap-
plications that are helping to shape the emerging field of systems
biology (Marton et al. 1998; Golub et al. 1999; Hughes et al.
2000; Ideker et al. 2001; van’t Veer et al. 2002; Yvert et al. 2003).
The microarrays that have spurred these advances can be manu-
factured by a variety of techniques, including spotting (Schena et
al. 1995), photolithographic synthesis (Fodor et al. 1991), and
inkjet synthesis (Blanchard 1998). In each case, individual probes
are placed or synthesized at predefined locations on the sub-
strate. However, conventional arrays can suffer from one or more
limitations, including poor data quality, as a result of high intra-
and interarray variability, often associated with spotted arrays.

We describe here a powerful and intrinsically robust alter-
native that substantially overcomes these limitations. Our gene-
expression profiling system is based on randomly assembled ar-
rays of beads in wells (Michael et al. 1998). Following random
assembly, the location and identity of each bead, bearing an oli-
gonucleotide probe, is determined via a sequential decoding pro-
cess (Gunderson et al. 2004). An advantage of this approach is
that dense packing can be achieved using simple and efficient

bulk processes. Furthermore, the technology is intrinsically scal-
able; the arrays described in this study use beads with diameters
of three microns, producing a packing density ∼400 times that of
a conventional spotted microarray. Elsewhere, packing densities
∼40,000 times that of a conventional array have been achieved
through the assembly of 300-nm beads (Michael et al. 1998).

The BeadArray technology has previously been shown to be
a robust readout platform for single nucleotide polymorphism
(SNP) genotyping, where it has demonstrated very high accuracy,
call rate, and reproducibility at high multiplexing levels (Fan et
al. 2003). It is being used to generate over half the genotyping
data for the International HapMap Project (www.hapmap.org),
which will derive a detailed map of common genetic variation
across the human genome (The International HapMap Consor-
tium 2003). In addition, the BeadArray platform has been effec-
tive for gene-expression profiling using PCR-based assays in com-
bination with universal arrays (Yeakley et al. 2002; Fan et al.
2004). Both of these applications made use of universal arrays
containing up to 1536 usable capture sequences.

Despite these successes, the use of the BeadArray technology
for quantitative gene-expression profiling from complex samples
by hybridization to gene-specific probes has not previously been
demonstrated. Although some preliminary data suggested that
the platform is capable of high sensitivity (Epstein et al. 2002), a
number of significant challenges had to be overcome in order to
create a robust, quantitative, high-performance system suitable
for use with biological samples such as mammalian poly(A+)
mRNA. We have now developed such a system. We show that it
is capable of accurately and robustly reporting mRNA abundance
for hundreds of genes. Our methods can be applied to many
thousands of samples, a scale of experimentation that has been
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impractical with other technologies, and can be extended to de-
velop arrays designed to analyze all known genes in a genome.
The technology is also compatible with our SNP genotyping sys-
tem, enabling genotyping and gene-expression profiling on the
same platform.

Results

Design of a gene-expression probe array based on random
assembly of beads in wells

The arrays used in the experiments reported here are described in
Figure 1. Typically, each array has up to 1536 different bead
types, each represented on average by ∼30 copies in any array.
Each bead type has ∼700,000 copies of a particular oligonucleo-
tide probe covalently attached to it (Fig. 1). Because the popula-
tion of beads in an array is a random sampling of a starting bead
pool containing 1536 bead types, the representation of the bead
types in the array is effectively Poisson. That is, there is a variable
number of each of the 1536 bead types both within and between
arrays (Gunderson et al. 2004). Thus, two important issues must
be addressed to ensure that the random arrays can be used for
quantitative measurements of mRNA abundance.

Firstly, because each array is unique, how can we compare
results from array to array? By virtue of the ∼30-fold oversam-
pling (50,000 beads/1536 bead types), we can ensure that de-
coded arrays have greater than or equal to five beads of each type
in the array, so that all sequences are represented (Gunderson et
al. 2004). Furthermore, the randomness and redundancy provide
us with considerable advantages; randomness minimizes the ef-
fects of spatially localized artifacts, and redundancy increases
measurement precision and robustness. These factors combine to
increase measurement accuracy.

Secondly, because each probe has associated with it an iden-
tifier sequence (Fig. 1), how do we ensure that this sequence
doesn’t interfere with the analysis of the target mRNA? This is
done in two ways. The identifier sequences are computationally
screened to avoid similarity to the human and mouse genomes.
The probability of cross-hybridization to other genomes is also
low, and for the analysis of any particular genome, it is simple to
omit a small number of identifier sequences if needed. Also, the
identifier sequences are only half the length of the gene-specific
probes and have correspondingly lower Tm’s (52.0 � 2.3°C vs.
70.7 � 1.7°C). By hybridizing labeled total mammalian poly(A+)
mRNA samples to arrays containing the identifier sequences but
lacking the gene-specific probe sequences, we estimated that the
identifier sequences contribute an average of up to five counts
over background, with only a few sequences giving higher signals
(data not shown). This is a small amount of signal relative to the
gene-specific probes and is not expected to have any significant
effect on the analysis.

Array formats designed for a variety
of gene-expression applications

The experiments described in this study all make use of the Sen-
trix array matrix format shown in Figure 1. However, the basic
concept of placing beads in wells to form a randomly ordered
array can be used to create a variety of array formats suitable for
a range of applications. In addition to the format shown in Figure
1, which is read using a custom high-resolution reader (Barker et
al. 2003), we have developed silicon substrates that have the
dimensions of a 2.5 � 7.5-cm microscope slide and can be read
on a 5-µm resolution Axon GenePix scanner by virtue of larger
well spacing (T. Dickinson, G. Smith, H. Bennett, and R. Barrett,
unpubl.). Yet other silicon substrates have been used to develop
two designs of whole-genome array, with probes for ∼24,000 and
∼48,000 gene sequences (G. Wang, G. Smith, S. Barnard, and D.
Che, unpubl.; further information is available on www.illumina.
com). These higher density arrays can be read on a BeadArray
scanner. All of these formats make use of 3-µm silica beads; the
same bead pools can be loaded into the different substrates, and
give similar quantitative performance. Therefore, substantially
similar results to those obtained below can be obtained using a
variety of bead-based array formats suitable for a range of experi-
mental designs and detection systems.

Dose-response study using spiked mRNAs
of known concentration

We designed a dose-response study to estimate the limit of de-
tection, dynamic range, and precision of the 96-array matrix
gene-specific probe system for the analysis of a mammalian
mRNA sample. We prepared a series of samples that consisted of
labeled human liver cell line RNA spiked with known quantities
of individually labeled mRNAs synthesized in vitro. This ap-
proach has been described previously for microarray perfor-
mance characterization (Lockhart et al. 1996). We used as spikes
nine mRNAs, produced by in vitro transcription (IVT) of cloned
bacterial and viral genes whose sequences are absent from the
human genome. Twelve samples, representing 12 concentra-
tions, were each replicated eight times to give a total of 96
samples. Each sample contained all nine spikes at a given con-
centration ranging from zero to 200 pM. (Fig. 2).

Each sample was hybridized to eight different arrays in a
96-array matrix. This provided eight technical replicates, suffi-

Figure 1. Design of a randomly assembled gene-specific probe array.
(A) Representation of an individual bead lodged in a well. Attached to the
bead by its 5� end is a chimeric oligonucleotide ∼75 nucleotides in length,
comprising an ∼25-nucleotide identifier sequence and a 50-nucleotide
gene-specific probe. The bead identifier sequence is decoded using an
algorithm described previously (Gunderson et al. 2004). We tested gene-
specific probes of 25 and 50 bp in length and found that the 50 mers
showed superior performance, consistent with prior findings (Hughes et
al. 2001). The drawing is not to scale; the relative size of the oligonucleo-
tide has been vastly exaggerated to show its features. (B) There are
∼50,000 beads in an ∼1.4-mm diameter optical fiber bundle, each bead
lodged in a well at the end of an individual fiber in the bundle. (C) The
bundles are arranged in a 96-array matrix matching the format of a
standard microtiter plate.
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cient data to allow a statistical analysis of noise in the quantita-
tive readout step. The dose response curves and the resolvable
fold change across the tested concentration range, generated for
each of the nine genes, are shown in Figure 3.

Reproducibility of quantitative
measurements and dependence
on sample input

The dose-response results were reproducible
across different manufacturing lots of array
matrices and hybridization days. We ob-
tained similar results from 15 independent
trials of the experiment, hybridized on five
separate days using a total of 720 arrays
manufactured on seven different dates (Fig.
4). The quantitative performance of the sys-
tem based on this significant amount of
replication is summarized in Table 1.

In addition to the probes used to mea-
sure the dose responses, the arrays used in the experiments sum-
marized in Figure 4 contained probes for 587 human genes. We
analyzed the data generated by these experiments to assess array-

Figure 2. Arrangement of spiked samples for hybridization. Each sample was produced by adding
labeled spike controls to labeled complex RNA derived from human HepG2 poly(A+) RNA. The
spike controls were added at the pM concentrations indicated in the figure. All nine spiked mRNAs
were present at the same concentration within a given sample (e.g., 200 pM in sample a1).
Samples were arranged in a staggered fashion to avoid the possibility of row/column positional
bias. Hybridization was performed using 1 µg of each sample at a final concentration of 25 ng/µL.

Figure 3. Dose-response curves. Data points represent the mean of eight arrays. Signal intensities are plotted in blue vs. target concentration. Error
bars represent the two-sided symmetric 90% confidence intervals for a single reading, calculated on the basis of the spread of eight separate readings.
All points contain error bars, but some are too small to be resolved at the plotted scale. The resolvable fold change is plotted in red and green vs. target
concentration. Each data point estimates the ability to distinguish concentration fold change for a single reading. Concentration levels are defined as
resolved when estimated one-sided 95% confidence intervals do not overlap. Values below twofold are colored green, whereas those greater than
twofold are colored red.
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to-array hybridization signal variation and how it is influenced
by gene intensity. We selected the 380 genes that were reproduc-
ibly expressed at detectable levels and plotted their coefficient of
variation (standard deviation divided by intensity, abbreviated as
CV) as a function of hybridization signal. As shown in Figure 5,
and consistent with expectations, the CV increases inversely as
gene signals approach the limit of detection. The median CV for

background-subtracted, un-normalized intensity across 48 arrays
in a representative experiment was 6.5%.

Additional performance measurements of a microarray plat-
form include (1) reproducibility across multiple sample labeling
reactions, and (2) sensitivity to sample input variation. To test
these aspects of our system’s reproducibility, we performed 20
sample labeling reactions, four each, using 10, 20, 50, 150, or 500
ng of total RNA derived from mouse spleen. For the 10- and
20-ng inputs, only three of the four replicates produced adequate
material for array hybridization. One microgram of biotinylated
cRNA from each successful reaction was hybridized to a separate
array in an array matrix. Each array in the matrix contained
probes to 540 mouse genes. Each cRNA sample was present at a
final concentration of 25 ng/µL.

To obtain a quantitative estimate of reproducibility, linear
correlations were calculated for all pairwise combinations of the
replicates at each input concentration. The means and ranges of
these correlations are plotted in Figure 6A. All correlations (R2)
exceeded 0.99. As further evidence of robustness, the scatter plot
in Figure 6B shows the correlation for signals between sample
labeling replicates using 50 and 500 ng of starting material; the
high correlation (R2 > 0.99) demonstrates the reproducibility of
the assay even with input material concentrations differing by
10-fold.

Concordance with real-time quantitative PCR

The experiments described above measured the quantitative per-
formance of the system and demonstrated that we could obtain
quantitative data in a reproducible way. We next wanted to per-
form measurements on a true biological sample and to evaluate
these results by comparison with a different technology. Concor-
dance with measurements obtained using a different technology
is a strong indicator that measurements are correct. Therefore, we
performed an experiment that compared differential expression
patterns obtained on the randomly assembled arrays with those
obtained from TaqMan quantitative real-time PCR (qPCR).

The genes selected for this analysis came from a comparison

Table 1. Performance metrics

Metrica Value Confidence

Input Requirement (Total RNA) 100 ng n/a
Limit of Detectionb ∼0.13 pM 99%
Specificityc ∼1:250,000 99%
Precisiond ∼1.3-fold 95%
Dynamic Rangee ∼3.2 Logs n/a
Array-to-Array %CVf <10% n/a

aThe median value of nine spike controls is given for each performance
metric. All metrics listed derive from measurements made using two
probe sequences per gene.
bLimit of detection is determined by a negative control detection model
(see Methods).
cSpecificity is determined by dividing the number of molecules detected
at the limit of detection by the number of molecules present in 1 µg of
sample background. The average mammalian transcript length is esti-
mated at 2000 nt.
dPrecision is the smallest change in concentration that can be detected
with 95% confidence. Value given is the median across the dynamic
range.
eDynamic range is defined by the ability to detect twofold changes in
target concentration across the specified concentration range (see Meth-
ods).
fArray-to-array %CV is determined using a common population of all
detectable bead-types across the 96 arrays of an array matrix.

Figure 4. Dynamic range, detectable fold change, and limit of detec-
tion for 15 array matrices. The array matrices, manufactured on five sepa-
rate days, were used to perform dose-response experiments identical to
that described above, except in these experiments, we used four repli-
cates per concentration instead of eight. Dynamic range corresponds to
the concentration range over which twofold concentration changes can
be distinguished with 95% confidence (represented by the green por-
tions of the lines in Fig. 3); the values plotted in the graph (blue dia-
monds, left axis) are determined by dividing the upper concentration
limit of this range by the lower limit for the given experiment. Precision
(orange squares, left axis) corresponds to the distinguishable fold change
across the determined dynamic range. Limit of detection (green triangles,
right axis) corresponds to 0.99 detection p-value generated using normal
model of intensities of 20 negative control probes that have no corre-
sponding target in the sample. All performance values given represent
the median value for the nine spike targets used in the experiment.

Figure 5. Array signal variation as a function of gene hybridization in-
tensity. Each blue dot represents a gene and the red line represents a
smoothed function for the data on the basis of a robust best-fit function
for standard deviation vs. intensity. All values are based on background-
subtracted raw data from 48 replicate hybridizations. The data shown are
from one experiment of the 15 described in the legend to Figure 4. This
experiment was chosen to represent the others on the basis of its mea-
surement precision, which is the median of measurement precisions for
all 15 experiments.
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of human liver with human brain. Labeled cRNA from both tis-
sues was hybridized to separate arrays containing probes for 633
human genes. From the hybridization results, we selected a panel
of 21 genes for the comparison, using the following criteria: (1)
the genes showed a range of liver/brain expression ratios ranging
from 0.005 to 175; and (2) every gene was expressed significantly
over background, even in the tissue showing the lower amount
of expression. This second criterion was necessary to avoid inac-
curate expression ratios resulting from the influence of system
noise.

For each of these 21 genes, we performed qPCR assays on
aliquots of the same starting material. Twenty of the 21 primer
pairs gave products and the log-transformed expression ratios
obtained for each of the 20 genes were plotted against the cor-
responding values obtained on the randomly assembled arrays
(Fig. 7). The measurements determined by the two systems
showed good correlation (R2 = 0.98 for log-transformed ratios).
Furthermore, the slope of the best-fit line was 1.04, indicating
that the ratios obtained by the two methods are similar in mag-
nitude. For highly expressed genes, the array produced somewhat
compressed fold-change ratios compared with those produced by
qPCR. For the five genes whose array intensities exceeded 10,000

counts in either tissue, the array-measured ratio was 0.77 � 0.24
versus 1.04 � 0.35 for all genes. This compression is likely due to
probe saturation of highly expressed targets, a predicted feature,
as the array platform has a dynamic range of ∼3 logs compared
with ∼5 logs for qPCR. (Heid et al. 1996) This overall high level of
concordance with qPCR validated the performance of the ran-
domly assembled array system.

Validation of results in a model biological system

Finally, we assessed the ability of the random arrays to generate
data consistent with results previously published for a well-
characterized biological system. The model system we selected
was mouse B and T cells, both of which contain large numbers of
cell-type specific transcripts documented in the biological litera-
ture. Our experimental design was to make a series of seven
samples containing different ratios of R1.1 (T cell lymphoma)
and A20 (B cell lymphoma) mRNA mixed together. This series
ranged from 100% B/0% T to 0% B/100% T. Each of the seven
samples was independently labeled six times, and the resulting
42 cRNA samples were hybridized to separate arrays of an array
matrix, each containing probes to 540 different mouse genes.
After hybridization and analysis, we identified 59 genes that were
determined as detected in the 100% B cell sample, but not in the
100% T cell sample or vice versa (Fig. 8). Upon generating this list
of 59 genes, we performed literature searches to establish
whether there was prior evidence of T- or B-specific expression.
Forty three of the 59 genes had prior literature support for their
tissue specificity. We found no genes miscategorized by our ar-
ray. Table 2 shows a list of all tissue-specific genes identified in
our analysis.

Discussion
We developed a powerful and robust new microarray technology
for gene-expression profiling on the basis of randomly assembled
arrays of beads in wells. The high information density of these
arrays (∼50,000 beads/∼1.4-mm diameter array) reduces sample
consumption and makes them well suited for integration into
sophisticated systems such as the array matrix device described
herein. Each probe is replicated a minimum of five times and on
average ∼30 times on every array. This built-in redundancy in-
creases measurement precision and makes for an intrinsically ro-
bust measurement platform. We optimized the system for hy-
bridization specificity and sensitivity, integrated the various
components into a scalable system for gene-expression quantita-
tion, and showed that accurate and reproducible data are gener-
ated from complex biological samples.

The 96-array matrix format and associated protocols make it
straightforward to analyze many samples with relatively little
labor and high reproducibility. We consider this a significant
advance because sources of noise and error, such as intra- and
interarray variability, process variability, and biological sample
variability, can confound microarray experiments (Brody et al.
2002). An effective way of identifying, characterizing, and mini-
mizing variation is to apply well-known statistical tools. Unfor-
tunately, the ease-of-handling, and in many cases, the reproduc-
ibility of current microarray technologies makes it difficult to
replicate experiments adequately. This has severely limited the
ability to generate and analyze large data sets. As a consequence,
the use of microarrays in applications requiring the analysis of
large numbers of samples, such as epidemiological, toxicological,

Figure 6. Sample labeling reproducibility. (A) Twenty sample labeling
reactions were processed using our standard conditions with 10, 20, 50,
150, or 500 ng of total mouse spleen RNA as input material (four repli-
cates each). For each input amount, correlation values (R2) of gene sig-
nals were determined for all pairwise comparisons of all successful repli-
cates. The median R2 values, with ranges, are plotted. (B) Representative
scatter plot of the intensity values for all genes measured in one of the
50-ng samples vs. those in the 500-ng sample. Whereas initial sample
input varied for each labeling reaction, final array hybridization was per-
formed using 1 µg of each labeled sample at a final concentration of 25
ng/µL.
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and pharmacological screening, has been limited mostly to
proof-of-concept studies. Meaningful application of high-
throughput microarray technology to large sample sets is now
more practical as a result of the system described here.

Samples can be processed in standard micro-plate formats,
either manually or robotically. The entire system is designed for
compatibility with automation and LIMS tracking, and hence, is
suitable for use in applications that require a highly reproducible
process with accurate sample tracking throughout. The technol-
ogy is flexible. It can be used to analyze the expression of hun-
dreds of genes, as described in this study, as well as whole-
genome sets of many thousands of genes, which will be described
elsewhere. The ability to assemble large numbers of arrays from a
single bead pool on the basis of a common chemistry helps to
minimize interarray variability. Flexibility in array design is pro-
vided by the ability to supplement standard bead pools with
sequences of the user’s choosing or to make custom bead pools.3

We also developed software for array imaging and gene-
expression data analysis (E. Chudin and I. Mikouliteh, unpubl.).

Because of the robustness of the system, the user has to pay less
attention to the data extraction process than typical with spotted
arrays, and can instead focus on analysis of results. AnEx, a gene-
expression data analysis program that organizes sample data and
incorporates statistical and visualization tools, is commercially
available as part of the gene-expression analysis system. AnEx is
MIAME-compliant (www.mged.org) and generates a flat-file for-
mat that is accepted by many third-party analysis software ap-
plications.

Finally, an advantage of the system we have developed is
that it uses the same technology platform as our SNP genotyping
system (Fan et al. 2003) and our PCR-based gene-expression assay
system (Fan et al. 2004). As a result, SNP genotyping and gene-
expression profiling can now be carried out on a single microar-
ray platform, scalable from the analysis of hundreds of genes to
all known genes in a genome.

Methods

Samples
Human brain and liver total RNA were purchased from Ambion
(Cat. #7962, Brain; 7960, Liver). Human HepG2 Poly(A+) mRNA
was purchased from Ambion (Cat. #7849). Mouse spleen total
RNA was purchased from Ambion (Cat. #7920). A20 and R1.1 cell
lines were purchased from the American Type Culture Collection
(ATCC; A20, Cat. #TIB-208, R1.1, Cat. #TIB-42, R1.1) and were
grown according to supplier’s recommendations. A20 cells were
grown in RPMI 1640 medium with 2 mM L-glutamine, and
supplemented with 1.5 g/L NaHCO3, 1.0 mM Na pyruvate, 10
mM HEPES, and 10% fetal bovine serum (Hyclone). R1.1 cells
were grown in DMEM high-glucose medium with glutamate
supplemented with 1.5 g/L NaHCO3 and 10% horse serum. Total
RNA was harvested from ∼108 cells using the RNeasy Midi kit
(QIAGEN) according to the manufacturer’s instructions.

Labeling
Although our platform is amenable to a number of standard
sample labeling techniques, our preferred approach is based on
the modified Eberwine protocol (Eberwine et al. 1992), by which
messenger RNA is converted to cDNA, followed by an amplifica-
tion/labeling step mediated by T7 DNA polymerase. The linear
amplification step reduces the amount of starting material
needed. We adapted the protocol to a microtiter plate format in
order to match the array matrix format, which permits 96 array
hybridizations to be performed in parallel. Labeling and ampli-
fication of the total RNA samples were performed according to
the MessageAmp aRNA kit (Ambion Cat. #1750) with the follow-
ing modifications. Because the hybridization requirements are so
modest (1 µg labeled cRNA), the standard reaction was cut down
to 1/4 size and total RNA inputs were generally limited to 100 ng.
The use of smaller reactions allowed us to perform 80 reactions
per kit as opposed to the standard 20 reactions. This necessitated
the use of additional cleanup columns for both the RT and IVT
steps. QIAquick PCR Purification and RNeasy 96 well kits (QIAGEN)
were used according to the manufacturer’s instructions for RT
and IVT cleanup, respectively. Additionally, all components of
the first-strand cDNA synthesis were combined in a single step,

3Standard, semicustom and fully custom bead sets are provided commercially
by Illumina. Semicustom bead sets are made by supplementing standard sets
with sequences of the customer’s choosing. Fully custom bead sets can be
made from any desired set of sequences.

Figure 7. Correlation of array matrix data to quantitative real-time
PCR. Labeled RNA samples were made from human and brain total RNA.
These were hybridized to separate array matrices containing 633 human
genes. Six technical replicates were included for each sample. Twenty-
one genes from this list were selected for analysis by TaqMan quantitative
real-time PCR. A scatter plot of hybridization intensities of the liver and
brain samples on the array matrix is shown in A. Genes selected for further
analysis are shaded orange. A scatter plot of log-transformed hybridiza-
tion signal ratios as determined by the two methods is shown in B.
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because a separate annealing of the T7 oligo(dT) primer was
found to be unnecessary (data not shown). During the IVT reac-
tion, a 1:1 ratio of labeled bio-16-UTP (Roche Cat. #1388908) to
unlabeled UTP was used with a final combined concentration of
7.5 mM.

Preparation of labeled spikes

Nine bacterial and viral genes were used to prepare RNA controls
as follows: bla (pBluescriptSK+; Stratagene) cat (pCAT3-control;
Promega), cre (Escherichia coli DH10B-Zip; Life Technologies), e1a
(Homo sapiens HEK-293; ATCC), gfp (pEGFP; Clontech), gst
(pGEX-5x-3; Amersham-Pharmacia), gus (E. coli GM48), lux (E.
coli GM48), and neo (pGT-N28; New England Biolabs). The genes
were cloned into the PCRII cloning vector using the TA Cloning
kit (Invitrogen, Cat. #K205001-TA). Full-length sense transcripts
were generated using the MEGA-script T3 kit from Ambion (Cat.
#1338). Labeled antisense targets were then generated using the
MessageAmp aRNA kit and were spiked into labeled Human
HepG2 cRNA at the 12 concentrations shown in Figure 2.

Hybridization/washing/signal detection
All steps of hybridization, washing, block-
ing, and signal generation were performed
by sequential transfer of a Sentrix array ma-
trix from one 384-well plate (ThermoLab
Systems; Cat. #95040000) to the next with
the wells of each step containing 40 µL of
the appropriate solution. All incubations
were carried out without agitation and,
with the exception of the hybridization, at
room temperature. Amplified, biotin-
labeled human or mouse RNA samples were
prepared in a solution of Hyb E1 buffer (Il-
lumina, Part #11166381) and 25% (v/v) for-
mamide at a final concentration of 25 ng/
µL. An array matrix was then mated to the
hybridization plate using a sealed align-
ment fixture. Hybridization proceeded at
55°C, for 16 to 20 h. After hybridization, the
array matrix was washed by a 5-min incu-
bation in Illumina Wash E1 buffer, followed
by a 10-min wash in fresh Wash E1 buffer
(Illumina, Part #11165898). Arrays were then
blocked for 5 min in 1% (w/v) casein-PBS,
Hammerstein grade (Pierce, Cat. #37528). Ar-
ray signal was developed by a 10-min incu-
bation in a 1-µg/mL solution of Streptavi-
din-Cy3 (Amersham; Cat. #PA43001) in 1%
casein-PBS blocking solution. The array ma-
trix was washed a final time for 5 min in
Wash E1 buffer. Each array was then dried
with an air gun.

Imaging and signal extraction
Arrays were scanned on the BeadArray
Reader, a confocal-type imaging system
with ∼0.8 µm resolution and 532 and 635
nm laser illumination (Barker et al. 2003).
Scans were performed in the 532-nm chan-
nel. The total scan time per array matrix
(i.e., 96 arrays) was 1.5 h, roughly 1 min per
array. Image analysis and data extraction
software were as described previously (Fan
et al. 2003). Briefly, each sequence type is

represented by an average of 30 beads on the array. Bead signals
were computed with weighted averages of pixel intensities, and
local background was subtracted. Array images are registered by a
previously described algorithm (Galinsky 2003). This algorithm
supplies the position of a bead center that serves as a center for a
virtual pixel. To compute bead signal, we use four real pixels
covering the virtual one and combine their signals in the follow-
ing way: S = A1S1+A2S2+A3S3+A4S4, where S is bead signal, Ai is
area of overlap between ith pixel and the virtual pixel, and Si is
3 � 3 average taken around ith pixel after sharpening with fol-
lowing Laplacian:

Ix,y
sharp = Ix,y + 0.5(4Ix,y � Ix,y +1 � Ix,y�1 � Ix+1,y � Ix�1,y).

Here x,y are pixel coordinates and Ix,y are pixel intensities. The
choice of coefficient in front of Laplacian was made after opti-
mization of data obtained with calibrated set of Spherotech 3-mi-
cron rainbow beads (Cat. #RCP-30-5, Spherotech, Inc.). Finally,
we subtract local background as average of five dimmest pixels in
the 17 � 17 box centered in the pixel having maximum overlap
with the virtual pixel. Sequence-type signal was calculated by

Figure 8. B Cell/T Cell experimental results. Seven RNA samples were prepared containing
mixtures of B- and T-cell lymphoma cell-line mRNA. The samples contained 0%, 5%, 25%, 50%,
95%, and 100% B-cell RNA, with the balance in all cases being T-cell RNA. These samples were
labeled by our standard protocol and hybridized to six separate arrays each. (A) The hybridization
intensities of the 59 most tissue-specific genes are plotted. Each vertical stripe represents a sample
and each horizontal row a gene. Boxes represent the mean hybridization intensities measured in six
replicate array hybridizations. The intensity scale is shown in the legend at the bottom. Genes are
labeled according to their RefSeq or UniGene ID numbers. The colors of these labels indicate prior
evidence in the literature of B- or T-cell-specific expression (red refers to B-cell-specific expression;
blue refers to T-cell-specific; see Table 2 for references). (B) The dose responses of two represen-
tative genes identified in this experiment are plotted. Points represent the mean intensities for each
concentration. Error bars represent 90% two-sided confidence intervals calculated from six repli-
cate hybridizations.
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Table 2. Array-based determination of tissue-specific gene expression

Gene RefSeq or
UniGene ID

HUGO
Gene Symbol Gene Name

T/B Cell Ratio
by arraya

B or T-specific
by literatureb Refc

NM_010545 Ii Ia-associated invariant chain 0.003 B 1
NM_152839 Igj immunoglobulin joining chain 0.004 B 1
NM_008339 Cd79b CD79B antigen 0.006 B 1
Mm.780 Igl-V1 immunoglobulin � chain, variable 1 0.007 B 1
NM_010381 H2-Ea histocompatibility 2, class II antigen E � 0.008 B 1
NM_008860 Prkcz protein kinase C, � 0.010 —
NM_010379 H2-Ab1 histocompatibility 2, class II antigen A, � 1 0.010 B 1
NM_008528 Blnk B-cell linker 0.010 B 1
NM_025282 Mef2c myocyte enhancer factor 2C 0.011 B 2
NM_010389 H2-Ob histocompatibility 2, O region � locus 0.011 B 1
NM_009844 Cd19 CD19 antigen 0.011 B 1
NM_007643 Cd36 CD36 antigen 0.015 —
NM_010387 H2-DMb1 histocompatibility 2, class II, locus Mb1 0.024 B 1
NM_010388 H2-DMb2 histocompatibility 2, class II, locus Mb2 0.037 B 1
NM_007549 Blk B lymphoid kinase 0.038 B 1
NM_029494 Rsb30 RAB30, member RAS oncogene family 0.041 —
NM_009845 Cd22 CD22 antigen 0.051 B 1
NM_011611 Tnfrsf5 tumor necrosis factor receptor superfamily, member 5 0.062 B 1
NM_010747 Lyn Yamaguchi sarcoma viral (v-yes-1) oncogene homolog 0.065 B 3
NM_007575 C2ta class II transactivator 0.088 B 1
NM_008533 Ly78 lymphocyte antigen 78 0.088 B 1
NM_009744 Bcl6 B-cell leukemia/lymphoma 6 0.106 —
NM_007758 Cr2 complement receptor 2 0.107 B 4
XM_354702 none similar to immunoglobulin � 0.110 B 1
NM_021893 Pdcd1lg1 programmed cell death 1 ligand 1 0.126 —
NM_010557 Il4ra interleukin 4 receptor, � 0.142 —
NM_007778 Csf1 colony stimulating factor 1 (macrophage) 0.226 —
NM_009852 Cd6 CD6 antigen 4.70 —
NM_013653 Ccl5 chemokine (C-C motif) ligand 5 7.72 T 5
XM_284241 Tnfrsf7 tumor necrosis factor receptor superfamily, member 7 10.35 T 1
NM_008453 Klf3 Kruppel-like factor 3 (basic) 10.70 —
NM_009400 Tnfrsf18 tumor necrosis factor receptor superfamily, member 18 14.82 T 6
NM_009192 Sla src-like adaptor 16.72 —
NM_008353 Il12rb1 interleukin 12 receptor, � 1 20.91 T 1
NM_019436 Sit SHP2 interacting transmembrane adaptor 26.66 T 1
NM_008859 Prkcq protein kinase C, � 27.05 T 7
NM_010742 Ly6d lymphocyte antigen 6 complex, locus D 31.17 —
Mm.123831 Tcrb-V8.2 T-cell receptor �, variable 8.2 35.75 T 1
NM_008091 Gata3 GATA binding protein 3 40.45 T 1
NM_010693 Lck lymphocyte protein tyrosine kinase 40.51 T 1
NM_010278 Gfi1 growth factor independent 1 42.67 T 8
NM_011487 Stat4 signal transducer and activator of transcription 4 49.24 T 1
NM_011701 Vim Vimentin 52.19 —
NM_009122 Satb1 special AT-rich sequence binding protein 1 56.90 T 9
NM_009850 Cd3g CD3 antigen, � polypeptide 59.09 T 1
NM_009344 Phlda1 pleckstrin homology-like domain, family A, member 1 63.57 T 10
NM_007642 Cd28 CD28 antigen 67.64 T 1
NM_011346 Sell selectin, lymphocyte 72.79 —
NM_007648 Cd3e CD3 antigen, � polypeptide 93.03 T 1
NM_008979 Ptpn8 protein tyrosine phosphatase, non-receptor type 8 113.63 —
NM_009345 Dntt deoxynucleotidyltransferase, terminal 118.86 —
NM_010583 Itk IL2-inducible T-cell kinase 120.75 T 11
NM_011609 Tnfrsf1a tumor necrosis factor receptor superfamily, member 1a 132.72 —
Mm.123831 Tcrb-V13 T-cell receptor �, variable 167.67 T 1
NM_010689 Lat linker for activation of T cells 168.24 T 12
NM_009382 Thy1 thymus cell antigen 1, � 171.82 T 1
NM_009829 Ccnd2 cyclin D2 242.81 —
Mm.210785 T cell receptor � chain 424.47 T 1
NM_013487 Cd3d CD3 antigen, � polypeptide 1532.15 T 1

aT/B Ratio is the array hybridization signal measured in the 100% R1.1 sample divided by that of the 100% A20 sample. Each measurement is the mean
of four separate arrays.
bAccording to literature. Blanks indicate that we could not find literature-based evidence for T- or B-cell-specific expression. For 14 of the 17 genes for
which there was no literature support for the expression pattern, the same samples have been examined by a reverse transcription-based RNA
quantitation assay (Fan et al. 2004); in all cases examined, the results from this orthogonal assay agreed with the results determined in this array
experiment (J. Yeakley, J.-B. Fan, and E. Chudin, unpubl.).
cReferences: Abbas et al. (2003); Hermanson et al. (1988); Yamanashi et al. (1991); Fingeroth (1990); Schall et al. (1988); Nocentini et al. (1997); Isakov
and Altman (2002); Scheijen et al. (1997); Dickinson et al. (1992); Park et al. (1996); Siliciano et al. (1992); Zhang et al. (1998).
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averaging corresponding bead signals with outliers removed (us-
ing median absolute deviation).

Data analysis
We developed a suite of algorithms for analysis of gene expres-
sion data from microarrays (E. Chudin and I. Mikoulitch, pers.
comm.). These have been incorporated into AnEx, a commercial
software package for gene-expression data analysis. Array data
were normalized using quantiles to fit a cubic spline. The ap-
proach is similar to a previously reported method (Workman et
al. 2002). Alternatively, a robust least-squares fit (iteratively re-
weighted least squares using Tukey’s biweight functions) of in-
tensities of a rank invariant set of probes (relative rank change of
<0.05) was used. Detection p-values were computed using a dy-
namically constructed normal model based on intensities of 20
negative controls. To determine minimal resolvable fold change,
we used piecewise linear approximation of intensity versus con-
centration. Concentration levels were considered resolvable if
corresponding one-sided 95th percent confidence intervals, as
computed from t-distribution did not overlap. Piecewise linear
interpolation was used for both intensities and standard devia-
tions.

Array design
Probes were designed by a custom-built pipeline that will be de-
scribed in detail elsewhere (P. Rigault, in prep.). Each gene se-
quence for which probes were to be synthesized was subjected to
a filtering process that masked regions unsuitable for probe de-
sign, based on complexity and cross-homology thresholds, as
determined by DUST (D. Lipman, National Center for Biotech-
nology Information, pers. comm.) and BLAST (Altschul et al.
1990) algorithms, respectively. All possible 50-mer probes were
identified within unmasked regions, and these were ranked by a
formula that takes into account distance from the 3� end of the
transcript, melting temperature, and self-complementarity. The
two highest scoring probes were then linked to 23-nt identifier
sequences by use of a sequence-matching program that mini-
mizes the probability of interactions between the probe and iden-
tifier sequence and prevents the creation of junction sequences
with cross-homology to the genome in question.

Our use of two probes per gene was based on the results of
pilot experiments, in which five informatically chosen probes
were synthesized for each of 10 in vitro-synthesized genes. Dose
response was determined for each synthetic gene using all five
probes or four, three, two, or one arbitrarily selected probes. We
found that we could reach our targeted performance metrics
(Table 1) with two or more probes per gene, but not one (data not
shown). The results of recent functional screening suggests that
one probe per gene is sufficient if the probes are selected with a
functional screen (T. McDaniel, B. Kermani, S. Baker, S. Oeser,
and S. Kruglyak, unpubl.).

Quantitative PCR
Assays-on-Demand quantitative gene expression primers and
TaqMan universal PCR master mix (Cat. #4304437) were pur-
chased from Applied Biosystems. All PCR reactions were per-
formed following the manufacturer’s instructions.
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