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Abstract: In this paper, a novel fault-tolerant control tactic for robot manipulator systems using only
position measurements is proposed. The proposed algorithm is constructed based on a combination
of a nonsingular fast terminal sliding mode control (NFTSMC) and a novel high-speed third-order
sliding mode observer (TOSMO). In the first step, the high-speed TOSMO is proposed for the
first time to approximate both the system velocity and the lumped unknown input with a faster
convergence time compared to the TOSMO. The faster convergence speed is obtained thanks to the
linear characteristic of the added elements. In the second step, the NFTSMC is designed based on a
nonsingular fast terminal sliding (NFTS) surface and the information obtained from the proposed
high-speed TOSMO. Thanks to the combination, the proposed controller–observer tactic provides
excellent features, such as a fast convergence time, high tracking precision, chattering phenomenon
reduction, robustness against the effects of the lumped unknown input and velocity requirement
elimination. Especially, the proposed observer does not only improve the convergence speed of the
estimated signals, but also increases the system dynamic response. The system’s finite-time stability
is proved using the Lyapunov theory. Finally, to validate the efficiency of the proposed strategy,
simulations on a PUMA560 robot manipulator are performed.

Keywords: high-speed third-order sliding mode observer; nonsingular fast terminal sliding mode
control; controller–observer strategy; faster convergence; fault-tolerant control

1. Introduction

In the industry, robot manipulators are employed widely in various applications, such
as material handling, milling, painting, welding and roughing. Along with the growth
of robot manipulator applications, interest in robotic control has been increased [1–4]. In
some research, the robot’s end-effector position is required to track the desired trajectory.
For this purpose, the kinematics control approach is preferred [5,6]. Another approach
is to use the dynamics control when joint angles are preferred [7,8]. Generally, robot
manipulators are difficult to control in both theoretical and practical aspects due to some of
their characteristics. First, robot manipulator systems have a highly nonlinear and very
complex dynamic in coupling terms. Additionally, payload changes, friction, external
disturbances, etc., lead to robot dynamic uncertainty. Therefore, obtaining the robot’s
correct dynamics is arduous or even impossible. In some special cases, in long-term
operation, unknown faults can occur when the robot is operating, which includes actuator
faults or sensor faults. Further, to reduce the weight/size and save costs, in some cases,
manufacturers remove the velocity sensors in the robot. These are big problems that have
been challenged by many researchers. To simplify the presentation and avoid duplication,
in this article, the dynamic uncertainty and the unknown fault are treated and abbreviated
as a lumped unknown input.
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To deal with the aforementioned lumped unknown input, many control methods have
been developed, such as proportional–integral–derivative (PID) control [9,10], adaptive
control [11], fuzzy control [12], neural network (NN) control [13] and sliding mode control
(SMC) [14,15]. PID control is well-known as a simple and monotonic controller, which does
not require the dynamic model of the robot system. However, this controller cannot achieve
high tracking performance. Adaptive control is an effective method to deal with matched
uncertainties; however, it is not appropriate for the problem of mismatched uncertainties.
Intelligent control schemes are widely employed, such as NN control and fuzzy control. The
learning ability and good approximation of nonlinear function with the arbitrary accuracy
of NN controllers make them a good choice for modelling complex processes and compen-
sating for mismatched uncertainties. However, transient performance in the presence of a
disturbance can be degraded due to the required online learning procedure. The fuzzy logic
control method was developed based on expert knowledge and experience; however, its
main disadvantages are difficulties in the stability analysis and comprehensive knowledge
of the requirements of a system. SMC is one of the most powerful robust controllers that
has been widely utilized in the fault-tolerant control problem of robot manipulators due to
its effectiveness in rejecting the effects of the lumped unknown input [16–18]. Moreover,
the design procedure of SMC is not complex and quite popular in the literature [19–21].
Unfortunately, conventional SMC uses a linear sliding surface that means the finite-time
convergence cannot be guaranteed. In order to achieve a finite-time convergence, a nonlin-
ear sliding surface is utilized instead of a linear one in the design process of the controller;
this technique is well-known as terminal SMC (TSMC) [22,23]. Compared to conventional
SMC, TSMC extends two outstanding properties, which are finite-time convergence and
achieving higher accuracy when parameters are carefully designed. Unfortunately, TSMC
only obtains a faster convergence when system states are near the equilibrium point, but
slower when the system states are far from the equilibrium point. In addition, TSMC suffers
from the singularity problem. The two problems have been handled separately using fast
TSMC (FTSMC) [24,25] and nonsingular TSMC (NTSMC) [26–28]. In order to solve both
problems at the same time, nonsingular fast TSMC (NFTSMC) was developed [29–31]. Due
to its excellent control features, such as providing finite-time convergence, eliminating the
singularity problem, achieving high-position tracking precision and robustness against the
lumped unknown input, NFTSMC has been applied widely in the literature. However,
same as SMC and TSMC, utilizing a discontinuous switching element with a big and fixed
sliding gain to handle the effects of the lumped unknown input in the designing process
of NFTSMC is the root of high-frequency oscillations, the so-called chattering [32]. This
phenomenon harms the system; therefore, it decreases the practical applicability of SMC.
In addition, the design procedure of NFTSMC involves real velocity information, which is
sometimes unavailable in practical systems.

To resolve the chattering problem, the elementary idea is to reduce the sliding gain
in the switching control component. In this approach, the lumped unknown input is first
completely or partially estimated. After that, the estimated unknown input is applied in a
controller design as a compensator to reduce the lumped unknown input effects. Therefore,
the switching control component is now utilized to carry out the impacts of the estimation
error instead of the lumped unknown input as in the original controller. As a result, the
sliding gain is chosen with a smaller value, thus, the chattering phenomenon can be reduced.
In the literature, various techniques for fault diagnosis have been proposed to approximate
the lumped unknown input, such as the NN observer [33,34], adaptive observer [35,36], time-
delay estimation [37,38], linear extended state observer (LESO) [39,40], second-order sliding
mode observer (SOSMO) [41] and third-order sliding mode observer (TOSMO) [42,43].
Among them, the SOSMO and the TOSMO stand out with the capability to estimate not only
the lumped unknown input, but also the velocity information; therefore, the requirement of
the tachometer is eliminated without the need of an additional state observer. Concerning
the comparison of the above two observers, the main advantage of the SOSMO is its
ability to provide a faster approximation speed. In contrast, the TOSMO can provide
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estimation signals with a higher estimation accuracy and less chattering, without any
filtration. Unfortunately, as a trade-off, its convergence speed becomes slower than that of
the SOSMO. Therefore, it is necessary to design an observer that can combine the wonderful
properties of both the SOSMO and the TOSMO.

Motivated by all the above discussions, this paper first proposes a novel high-speed
TOSMO for the robot manipulator system by adding additional terms to the original
TOSMO. This observer can not only maintain the remarkable benefits of the original
TOSMO, but also obtain a faster convergence time. The estimated velocity and unknown
input are then applied to design a fault-tolerant control based on NFTSMC. The major
contributions of this paper are summarized as follows:

1. The proposal of a novel high-speed TOSMO that can obtain a faster convergence
speed while maintaining the high estimation accuracy of the TOSMO;

2. The proposal of a fault-tolerant control law based on NFTSMC and the proposed
high-speed TOSMO that handles the effects of the lumped unknown input to achieve
a higher tracking accuracy and low chattering phenomenon;

3. The provision of proof of the system finite-time stability when combining a controller
and observer.

This paper is organized into six parts. Following the introduction, the mathematical
dynamics model of robot manipulators and problem formulation are presented in Section 2.
In Section 3, the design of the high-speed TOSMO is presented, followed by the design
procedure of the fault-tolerant control law based on NFTSMC for the robot manipulators
shown in Section 4. To confirm the efficiency of the proposed method, computer simulations
on a PUMA560 robot manipulator are shown in Section 5. Finally, Section 6 gives some
conclusions.

2. Mathematical Dynamics Model of Robot Manipulators and Problem Formulation
2.1. Robot Dynamics

Let us consider a serial n-link robot manipulator under the effects of dynamic uncer-
tainty and unknown fault as follows:

..
q = M(q)−1[τ(t)− C

(
q,

.
q
) .
q− G(q)− Fr

( .
q
)
− τd(t)

]
+ Ω

(
q,

.
q, t
)

(1)

where q,
.
q,

..
q ∈ <n correspondingly represent the robot’s joint positions, velocity and ac-

celeration vectors; M(q) ∈ <n×n represents the inertia matrix, which is symmetric and
positively definite, making it invertible; C

(
q,

.
q
)
∈ <n×n, G(q) ∈ <n and Fr

( .
q
)
∈ <n

denote the Coriolis and centripetal forces, gravitational vector and friction vector, re-
spectively; τd(t) ∈ <n denotes the disturbance vector; τ(t) ∈ <n denotes the control
input signal; and Ω

(
q,

.
q, t
)
= ω

(
t− Tf

)
Φ
(
q,

.
q
)

denotes the unknown but bounded fault

with the time profile ω
(

t− Tf

)
= diag

{
ω1

(
t− Tf

)
, ω2

(
t− Tf

)
, . . . , ωn

(
t− Tf

)}
, where

ωi

(
t− Tf

)
=

{
0 i f t ≤ Tf

1− e−ζi(t−Tf ) i f t ≥ Tf
. The unknown fault function Φ

(
q,

.
q
)

occurs at

time Tf with evolution rate ζi > 0 , (i = 1, 2, . . . , n).

By defining u = τ(t) and x =
[
x1

T x2
T]T with x1 = q, x2 =

.
q, we could transfer

system (1) into the state space form as

.
x1 = x2
.
x2 = Ψ(x) + M(x1)

−1u + ∆(x, t)
(2)

where Ψ(x) = M(q)−1[−C
(
q,

.
q
)
− G(q)

]
represents the nominal model of robot manipu-

lators and ∆(x, t) = M(q)−1[−Fr
( .
q
)
− τd

]
+ Ω

(
q,

.
q, t
)

denotes the lumped unknown but
bounded dynamic uncertainty and unknown fault.
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Remark 1. In this paper, the unknown fault was considered as an additional dynamic uncertainty;
therefore, their total effects on the system were carried out. We simply named them the lumped
unknown input.

2.2. Problem Formulation

Let xd ∈ <n be an expected trajectory of a robot’s joint, where the tracking error is
defined as

e = x1 − xd (3)

The central purpose of this paper was divided into two parts. First, a novel high-
speed TOSMO was proposed for the first time to estimate both a system’s states and the
lumped unknown input with high precision and a fast response time. Second, based on
the achieved information from the proposed observer, a fault-tolerant control approach
using NFTSMC was then designed for system (2) to ensure that the joint position x1 could
track the desired trajectory xd with high accuracy, even in the presence of the lumped
unknown input and the absence of the velocity measurement. In addition, the controller
further demonstrated the effectiveness of the proposed high-speed TOSMO. The proposed
algorithm was constructed based on assumptions as follows:

Assumption 1. The desired trajectory xd was a twice continuously differentiable function in respect
to time t.

Assumption 2. The lumped unknown input ∆(x, t) was bounded by a positive constant ∆D as

|∆(x, t)| ≤ ∆D (4)

Assumption 3. The derivative of the lumped unknown input ∆(x, t) in respect to time existed and
was bounded by a positive constant ∆ .

D
as∣∣∣∣ d
dt

∆(x, t)
∣∣∣∣ ≤ ∆ .

D
(5)

Note that Assumption 3 is realistic and has been used in much research [44–46].

3. Design of Observer
3.1. High-Speed Third-Order Sliding Mode Observer

In this section, a novel high-speed TOSMO was proposed by adding additional terms
to the original TOSMO. Thanks to the linear characteristic of these terms, which can strongly
deal with perturbations that are very far away from the origin, the slow convergence
problem of the TOSMO was improved.

Based on system (2), the novel high-speed TOSMO was proposed as follows:
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x k x sign x x
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k x sign x x
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δ
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Letting ˆ ( , ) ( , ) ( , )Δ = Δ − +x t x t x x Lδ , the system (9) became 

( )
( )

( )1

2/3

1/3
2

1 1 1 1

1 1

3

ˆ ˆ( , )

ˆ

= − +

= − + Δ +

= −

  

  
 

x k x sign x x

x k x sign x x t z

z k sign x

 (10) 

where 2= −ΓL x  with the assumptions were that ≤ ΔLL  and ≤ Δ L

d L
dt

. 

(6)

where x̂ is the estimation of x, ki(i = 1, 2, 3) denotes the sliding gains and Γ is a positive
constant. In the proposed observer, the additional terms were bolded to distinguish them
from the original TOSMO.

Theorem 1. For the robot manipulator system given in (2) with the high-speed TOSMO (6), if the
sliding gains of the observer were chosen as Remark 3, then the proposed observer was stable and the
estimation states (x̂1, x̂2) would achieve the real states (x1, x2) in finite time.
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Proof of Theorem 1. By subtracting (6) from (2), we obtained the estimation errors as

.
x̃1 = −k1|x̃1|2/3sign(x̃1) + x̃2 − Γx̃1.
x̃2 = −k2|x̃1|1/3sign(x̃1)− Γ

( .
x̂1 − x̂2

)
+ ∆(x, t)− δ(x, x̃) + ẑ

.
ẑ = −k3sign(x̃1)

(7)

where x̃1 = x1 − x̂1 and x̃2 = x2 − x̂2 represent the position and velocity estimation errors,
respectively. The estimation error δ(x, x̃) = Ψ(x̂) − Ψ(x). To facilitate the next design
approach, in this phase, we assumed that |δ(x, x̃)| ≤ ∆δ and

∣∣∣ .
δ(x, x̃)

∣∣∣ ≤ ∆ .
δ
, where ∆δ and

∆ .
δ
, were positive constants. Note that this assumption was the same as Assumption 3; thus,

it could be supported in both theoretical and practical applications.
Substituting the first term of (6) into (7), we obtained

.
x̃1 = −k1|x̃1|2/3sign(x̃1) + x̃2 − Γx̃1.
x̃2 = −k2|x̃1|1/3sign(x̃1) + ∆(x, t)− δ(x, x̃) + ẑ− Γk1|x̃1|2/3sign(x̃1)− Γ2 x̃1.
ẑ = −k3sign(x̃1)

(8)

By defining the new variable x = x̃2− Γx̃1, the estimation errors in (8) were rewritten as

.
x̃1 = −k1|x̃1|2/3sign(x̃1) + x
.
x = −k2|x̃1|1/3sign(x̃1) + ∆(x, t)− δ(x, x̃) + ẑ
−Γk1|x̃1|2/3sign(x̃1)− Γ2 x̃1

+Γk1|x̃1|2/3sign(x̃1) + Γ2 x̃1 − Γx̃2︸ ︷︷ ︸
−Γ

.
x̃1.

ẑ = −k3sign(x̃1)

(9)

Letting ∆̂(x, t) = ∆(x, t)− δ(x, x̃) + L, the system (9) became

.
x̃1 = −k1|x̃1|2/3sign(x̃1) + x
.
x = −k2|x̃1|1/3sign(x̃1) + ∆̂(x, t) + ẑ
.
ẑ = −k3sign(x̃1)

(10)

where L = −Γx̃2 with the assumptions were that |L| ≤ ∆L and
∣∣∣ d

dt L
∣∣∣ ≤ ∆ .

L
.

By defining x̃3 = ẑ + ∆̂(x, t), the system in (10) could be rewritten in the same form of
the second-order sliding mode differentiator [47] as

.
x̃1 = −k1|x̃1|2/3sign(x̃1) + x
.
x = −k2|x̃1|1/3sign(x̃1) + x̃3
.
x̃3 = −k3sign(x̃1) +

.
∆̂(x, t)

(11)

Equation (11) is also as well-known as the TOSMO [48]. By selecting the candidate
Lyapunov function V0 and using the same demonstrating process as in [48], it could be
concluded that system (11) was stable and the differentiators x̃1, x and x̃3 converged to
zero in finite time. Thus, system (7) was stable and the estimation errors x̃1, x̃2 converged
to zero in finite time. �

Remark 2. The proposed high-speed TOSMO in (6) was designed based on the original TOSMO
in [42]. The linear characteristics of the added terms were utilized to increase the convergence speed
of the estimated signals.
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Remark 3. The observer gains of (6) were selected according to [47] as k1 = α1∆1/3, k2 = α2∆2/3

and k3 = α3∆, where α1 = 2, α2 = 2.12 and α3 = 1.1 with ∆ = ∆ .
D
+ ∆ .

δ
+ ∆ .

L
.

3.2. Unknown Input Identification

After the convergence time, the estimated velocity reached the real velocity, x̂2 = x2;
thus, the term L = −Γx̃2 converged to zero. The third term of system (11) then became

.
x̃3 = −k3sign(x̃1) +

.
∆̂(x, t) ≡ 0 (12)

Notably, because the velocity estimation error x̃2 converged to zero, the auxiliary
unknown input term ∆̂(x, t) = ∆(x, t)− δ(x, x̃) + L converged to ∆(x, t).

The lumped unknown input terms could be rebuilt as

∆̂(x, t) =
∫

k3sign(x̃1) (13)

Since the estimated unknown input in (13) included an integral operation, the lumped
unknown input terms could be rebuilt directly from the output injection term, and the
chattering of the obtained function was partially eliminated without the need for a lowpass
filter. In addition, the proposed observer in (6) not only maintained the advantages of the
conventional TOSMO such as the finite-time convergence and high estimation accuracy for
both velocity and the lumped unknown input, but also provided a faster convergence time
than that of the TOSMO. The outstanding features of the proposed high-speed TOSMO
were verified in the simulation part.

Remark 4. The obtained lumped unknown input could be used for fault detection and fault isolation
and could also be applied to the fault-tolerant control to eliminate its effect on the system. The esti-
mated velocity could be employed in the controller design process instead of the real measured velocity.

4. Design of Control Algorithm

In this section, a fault-tolerant control tactic using the NFTSMC algorithm was pro-
posed to carry out the effects of the lumped unknown input of system (2). In addition, in
some special cases, the tachometers in robots would be cut off by manufacturers to save cost
and reduce weight. For that reason, this paper assumed that the tachometers did not exist.
The estimated velocity, x̂2, which was obtained from the proposed observer in Section 3,
was utilized; therefore, the requirement of the real measured velocity was eliminated.

4.1. Design of Nonsingular Fast Terminal Sliding Surface

Let us define the estimated velocity error as

.̂
e = x̂2 −

.
xd (14)

where
.
xd describes the desired velocity.

A NFTS surface was selected as in [49]

ŝ =
.̂
e +

∫ [
β1|e|γ1 sign(e) + β2

∣∣∣ .̂
e
∣∣∣γ2

sign
( .̂

e
)
+ β3e + β4e3

]
dt (15)

where the parameters β1, β2, β3, β4 are positive constants and the parameters γ1, γ2
could be selected as 0 < γ1 < 1, γ2 = 2γ1/(1 + γ1).

According to the SMC theory, the following conditions were satisfied when the robot
system reached the sliding mode:

ŝ = 0
.
ŝ = 0

(16)
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Thus, the sliding mode dynamics could be acquired as

.̂
e = −

∫ [
β1|e|γ1 sign(e) + β2

∣∣∣ .̂
e
∣∣∣γ2

sign
( .̂

e
)
+ β3e + β4e3

]
dt (17)

Theorem 2. For the sliding mode dynamics in (17), the origin was defined as the stable equilibrium
point and the state trajectories converged to zero in finite time.

Proof of Theorem 2. Taking the derivative of the tracking error in (3) in respect to time
yielded

.
e =

.
x1 −

.
xd

= x2 −
.
xd

(18)

Based on the definition of the estimation errors in Section 3, the velocity error (14) was
rewritten as

.̂
e = x̂2 −

.
xd

= x2 −
.
xd − x̃2

(19)

After the convergence time of the estimation errors (7), the estimated velocity, x̂2,
reached the true velocity, x2. Hence, the velocity error (19) became

.̂
e = x2 −

.
xd =

.
e (20)

The sliding mode dynamics in (17) became

.
e = −

∫ [
β1|e|γ1 sign(e) + β2

∣∣ .
e
∣∣γ2 sign

( .
e
)
+ β3e + β4e3

]
dt (21)

Then, the following sliding mode dynamics could be obtained

..
e = −β1|e|γ1 sign(e)− β2

∣∣ .
e
∣∣γ2 sign

( .
e
)
− β3e− β4e3 (22)

A Lyapunov function candidate was selected as

V1 =
β1

γ1 + 1
|e|γ1+1 +

1
2

.
e2
+

β3

2
e2 +

β4

4
e4 (23)

Taking the time derivative of the Lyapunov function candidate (23) and substituting
the result from (22) yielded

.
V1 = β1|e|γ1 sign(e)

.
e +

.
e

..
e + β3e

.
e + β4e3 .

e
=

.
e
(
−β1|e|γ1 sign(e)− β2

∣∣ .
e
∣∣γ2 sign

( .
e
)
− β3e− β4e3

)
+β1|e|γ1 sign(e)

.
e + β3e

.
e + β4e3 .

e
= −β2

∣∣ .
e
∣∣γ2+1

(24)

From (23) and (24), it could be concluded that V1 > 0 and
.

V1 < 0, therefore, the origin
of the sliding mode dynamics (17) was a stable equilibrium point and the state trajectories
e and

.̂
e converged to zero in finite time. Thus, Theorem 2 was successfully proven. �

4.2. Observer-Based NFTSMC Design

To obtain the control law for the robot manipulator system (2), an observer-based
NFTSMC, as shown in Figure 1, was proposed. The control input signal was design
as follows:

u = −M(x1)
(
ueq + usw

)
(25)
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Figure 1. Overall structure of the proposed fault-tolerant control approach.

Here, the equivalent control law, ueq, played the role of holding the error state variables
on the sliding surface, and was designed as follows:

ueq = Ψ(x) + k2|x̃1|1/3sign(x̃1) + Γ
( .

x̂1 − x̂2

)
+
∫

k3sign(x̃1) + A− ..
xd (26)

where A = β1|e|γ1 sign(e) + β2

∣∣∣ .̂
e
∣∣∣γ2

sign
( .̂

e
)
+ β3e + β4e3.

The switching control law, usw, played the role of driving the state variables to the
sliding surface, and was designed as follows:

usw = (∆δ + µ)sign(ŝ) (27)

where µ is a small positive constant.
The proposed control input was presented in the following Theorem 3:

Theorem 3. Consider the robot manipulator system given by (2); if NFTSMC was designed as
(25)–(27), then system (2) was stable. Additionally, the finite-time convergence of the tracking errors
was guaranteed.

Proof of Theorem 3. Taking the derivative of both the sliding surface (15) and the tracking
velocity error (14) in respect to time, we obtained

.
ŝ =

d
dt

.̂
e + A (28)

d
dt

.̂
e =

.
x̂2 −

..
xd (29)

Substituting the second term of the proposed observer (6) into (29) yielded

d
dt

.̂
e = − ..

xd + Ψ(x̂) + M(x1)
−1u + k2|x̃1|1/3sign(x̃1) + Γ

( .
x̂1 − x̂2

)
+ ẑ

.
ẑ = k3sign(x̃1)

(30)

Substituting (30) into (28), we obtained

.
ŝ = − ..

xd + Ψ(x̂) + M(x1)
−1u + k2|x̃1|1/3sign(x̃1) + Γ

( .
x̂1 − x̂2

)
+ ẑ + A

= − ..
xd + Ψ(x) + δ(x, x̃) + M(x1)

−1u + k2|x̃1|1/3sign(x̃1) + Γ
( .

x̂1 − x̂2

)
+ ẑ + A

.
ẑ = k3sign(x̃1)

(31)

Applying control input in (25)–(27) to (31) gave

.
ŝ = −(∆δ + µ)sign(ŝ) + δ(x, x̃) (32)
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Let us define the Lyapunov function candidate as follows:

V2 =
1
2

ŝT ŝ (33)

With the result of (32), the time derivative of the Lyapunov function candidate (33)
yielded

.
V2 = ŝT

.
ŝ

= ŝT(−(∆δ + µ)sign(ŝ) + δ(x, x̃))

= −(∆δ + µ)
n
∑

i=1
|ŝi|+ δ(x, x̃)T ŝ ≤ −µ

n
∑

i=1
|ŝi|

≤ −µ‖ŝ‖ = −
√

2µV2
1/2 < 0, ∀ŝ 6= 0

(34)

From (33) and (34), it could be concluded that system (2) was stable, and the finite-time
convergence of the tracking errors was guaranteed. Thus, Theorem 3 was successfully
proven. �

Remark 5. In the equivalent control law (26), we could see that the estimated lumped unknown
input,

∫
k3sign(x̃1), which was obtained from the high-speed TOSMO in Equation (6), was included.

Consequently, the switching control law now was utilized to handle the effects of the estimation
errors; therefore, a small value of sliding gain could be chosen. By this way, the high-frequency
chattering phenomenon would be significantly decreased in the control input signal.

Remark 6. In combining the observer and controller, the convergence speed of the controller was
dependent on the convergence speed of the designed observer. Therefore, the proposed high-speed
TOSMO not only supported early fault detection, but also helped the controller to achieve a faster
convergence speed than when combined with the TOSMO.

Remark 7. Although the NFTS surface was selected according to [49], the proposed equivalent
control law in (26) was different. Therefore, it could be considered as a contribution of this paper.

5. Numerical Simulations

To validate the efficiency of the suggested algorithm, in this section, we used the
PUMA560 robot manipulator with the last three joints blocked for a computer simulation.
The structure of the PUMA560 robot is shown in Figure 2. The specific parameter values of
the PUMA560 robot dynamic model were provided in [50]. In the simulation analysis, the
MATLAB/Simulink program was used with a sampling time of 10−3 s.

In the simulation, the desired trajectories of the three were assumed as

qd =

qd1
qd2
qd3

 =

 cos(πt/5)− 1
sin(πt/5 + π/2)− 1
sin(πt/5 + π/2)− 1


The initial states of the robot were selected as q1(0) = q2(0) = q3(0) = −0.5 and

.
q1(0) =

.
q2(0) =

.
q3(0) = 0.

The friction vector and external disturbance vector were assumed as

Fr =

Fr1
Fr2
Fr3

 =

 1.9 sin
( .
q1
)

2.03 sin
( .
q2
)

1.76 sin
( .
q3
)
τd =

τd1
τd2
τd3

 =

 1.1
.
q1 + 1.2 sin(3q1)

1.65
.
q2 + 2.14 sin(2q2)

−3.01
.
q3 + 1.3 sin(q3)
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Figure 2. Structure of the PUMA560 robot manipulator.

The fault was assumed to occur at Tf = 10 s, with the fault signal as follows:

Φ =

Φ1
Φ2
Φ3

 =

10 sin(q1q2) + 3.7 cos
( .
q1q2

)
+ 5.2 cos

( .
q1

.
q2
)

15 sin(q1q2) + 3.6 cos
( .
q1q2

)
+ 2.7 cos

( .
q1

.
q2
)

0


The parameters of the controllers and observers were selected as follows: γ1 = 1/2,

γ2 = 2/3, β1 = diag(15, 15, 15), β2 = diag(10, 10, 10), β3 = diag(10, 10, 10), β4 = diag(5, 5, 5),
∆δ = 0.5, ∆ = 22, µ = 0.01 and Γ = 5.

The simulation consisted of two parts: First, the estimation results of the proposed
high-speed TOSMO were compared with that of the TOSMO and the SOSMO, which were
designed as in [42]. Second, the proposed fault-tolerant technique was compared with three
controllers: (1) NFTSMC without compensation; (2) NFTSMC with the SOSMO compensation
(NFTSMC-SOSMO); (3) NFTSMC with the TOSMO compensation (NFTSMC-TOSMO).

In the first part, the comparison results among three observers are shown in Figures 3–5.
The obtained velocity estimation errors are shown in Figure 3. As in the results, the SOSMO
(green solid line) provided a faster estimation of velocity compared to the TOSMO (blue
solid line). In contrast, the TOSMO provided a velocity estimation with higher precision and
less chattering compared to the SOSMO. The red solid line in the figure shows the estimation
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results of the high-speed TOSMO. It was easy to see that the estimated information of the
high-speed TOSMO maintained the higher precision and lesser chattering characteristic
of the TOSMO, while the convergence speed was significantly increased and matched
the speed of the SOSMO. The faster velocity estimation would help the controller reach
a faster convergence time. In terms of the lumped unknown input estimation, the results
are shown in Figures 4 and 5. As shown in the results, the SOSMO provided estimation
information with a lower accuracy compared to the TOSMO and the proposed high-speed
TOSMO due to the time delay when using a lowpass filter to reconstruct the estimation
signal. On the contrary, the TOSMO and the high-speed TOSMO could reconstruct the
lumped unknown input directly without any filtration. However, the convergence time of
the TOSMO was a little slower. The same applied to the velocity estimation results, where
the lumped unknown input estimation results of the high-speed TOSMO could maintain
the high estimation performance of the TOSMO and reached the convergence speed of
the SOSMO. It is worth mentioning that the faster estimation speed helped in early fault
detection, thus, reducing the robot’s failure rate.

Figure 3. Velocity estimation errors at (a) joint 1, (b) joint 2 and (c) joint 3.
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Figure 4. Lumped unknown input estimation at (a) joint 1, (b) joint 2 and (c) joint 3.

Figure 5. Lumped unknown input estimation errors at (a) joint 1, (b) joint 2 and (c) joint 3.
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In the second part, the comparison results among four controllers were shown in
Figures 6 and 7. Figure 6 shows the results of the tracking error at each joint. As in the
figure, in terms of the tracking performance, NFTSMC without compensation (green solid
line) and the NFTSMC-SOSMO (black dash line) provided quite good tracking precision.
However, with better approximation information, the NFTSMC-TOSMO (blue solid line)
and the proposed fault-tolerant control strategy (red solid line) provided higher control
performance. The two controllers provided almost the same tracking accuracy due to the
estimation accuracy of the TOSMO and the high-speed TOSMO being not much different.
In terms of the convergence speed, NFTSMC without compensation and the NFTSMC-
TOSMO converged simultaneously because they used the same velocity signal in the design
process. According to the effect of the velocity signal, the proposed fault-tolerant control
strategy converged faster compared to the above two controllers, and almost the same
as the NFTSMC-SOSMO. Therefore, it could be concluded that the proposed high-speed
TOSMO not only obtained estimation information faster, but also helped the designed
controller achieve better control performance. The comparison of control input torque is
shown in Figure 7. As in the figure, the control input of NFTSMC without compensation
was under the effect of the chattering phenomenon because of using a large sliding gain.
After compensation, the sliding gain could be chosen with a smaller value; therefore,
the chattering phenomenon in the control inputs of the NFTSMC-SOSMO, the NFTSMC-
TOSMO and the proposed fault-tolerant control were significantly reduced. The time
response of the proposed NFTS surface is shown in Figure 8.

Figure 6. Comparison of tracking errors among controllers at (a) joint 1, (b) joint 2 and (c) joint 3.



Actuators 2022, 11, 259 14 of 17

Figure 7. Comparison of control input torque among controllers at (a) joint 1, (b) joint 2 and (c) joint 3.

Figure 8. Time response of the proposed sliding surface at (a) joint 1, (b) joint 2 and (c) joint 3.
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6. Conclusions

This paper proposed a novel fault-tolerant control strategy for robot manipulator
systems using only position measurements. Thanks to the linear characteristic of the added
elements, the proposed high-speed TOSMO could estimate both the velocity signal and
the lumped unknown input with a faster convergence time compared to the TOSMO. The
obtained information from the observer was combined with NFTSMC in designing the fault-
tolerant controller. The proposed controller–observer tactic provided excellent properties,
such as a fast convergence time, high-position tracking precision, finite-time convergence,
chattering phenomenon reduction, robustness against the effects of the lumped unknown
input and velocity requirement elimination. The faster convergence characteristic of the
observer also improved the convergence speed of the designed controller. The system
stability and finite-time convergence were proved using the Lyapunov stability theory.
Finally, the efficiency of the proposed algorithm was validated with simulations on the
PUMA560 robot manipulator. Due to the efficiency of the proposed algorithm, it would
be possible to implement it in real robot system in the future. In addition, designing a
fixed-time observer based on the proposed high-speed TOSMO is a promising idea.
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