IEEE Transaction on Power Electronics

Title: A Novel High Step-Up DC-DC Converter for Microgrid System

Manuscript ID: TPEL-Reg-2010-06-0460

Authors:Yi-Ping Hsieh, Email: kyo124718@yahoo.com.twJiann-Fuh Chen, Member, IEEE, Email: chenjf@mail.ncku.edu.twTsorng-Juu Liang, Member, IEEE, Email: tjliang@mail.ncku.edu.twLung-Sheng Yang, Email: yanglungsheng@yahoo.com.tw

Address:

Green Energy Electronics Research Center, Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan, R.O.C.

Footnote of the first page:

This work made use of Shared Facilities supported by the Research Center of Ocean Environment and Technology, Ocean Energy Research Center, and the National Science Council, Taiwan, under Award Numbers NSC 97-2221-E-006-278-MY3.

Copyright © 2010 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

The authors are with the Green Energy Electronics Research Center, Department of Electrical Engineering, National Cheng Kung University, Tainan City, Taiwan, R.O.C. (e-mail: <u>kyo124718@yahoo.com.tw</u>).

Abstract

A novel high step-up DC-DC converter for distributed generation (DG) system is proposed in this paper. The concept is composed of two capacitors, two diodes, and one coupled-inductor. Two capacitors are charged in parallel, and are discharged in series by the coupled-inductor. Thus, high step-up voltage gain can be achieved with an appropriate duty ratio. The voltage stresses on the main switch and output diode are reduced by a passive clamp circuit. Therefore, low resistance $R_{DS(ON)}$ for the main switch can be adopted to reduce conduction loss. In addition, the reverse-recovery problem of the diode is alleviated, and thus, the efficiency can be further improved. The operating principle and steady-state analyses of the voltage gain are also discussed in detail. Finally, a 24-V input voltage, 400-V output voltage, and 400-W output power prototype circuit of the proposed converter is implemented in the laboratory to verify the performance.

Index Terms - High step-up, microgrid, DG system, coupled-inductor

I. INTRODUCTION

The distributed generation (DG) systems based on the renewable energy sources (RES) have rapidly developed in recent years [1], [2]. These DG systems are powered by microsources such as fuel cells, photovoltaic systems, and batteries [3]-[7]. Fig. 1 shows a photovoltaic (PV) distributed system in which the solar source is low DC input voltage. PV sources can also connect in series to obtain sufficient DC voltage for generating AC utility voltage; however, it is difficult to realize a series connection of the PV source without incurring a shadow effect [8], [9]. High step-up DC-DC converters are generally used as the front-end converters to step from low voltage (12-40 V) up to high voltage (380-400 V) [10]. High step-up DC-DC converters are required to have a large conversion ratio, high efficiency, and small volume [11]-[16].

The isolated converters such as forward, flyback, push-pull, half-bridge, and full-bridge types can adjust the turns ratio of the transformer to achieve high step-up voltage gain. However, the main switches of these converters will suffer a high voltage spike and high power dissipation from the leakage inductor of the transformer [17]. To reduce these drawbacks, the non-dissipative snubber circuits and active-clamp circuits are employed. However, the cost increases accordingly due to the extra power switch and high side driver [18].

Theoretically, the non-isolated converters can be adopted to provide high step-up voltage gain with extremely high duty cycle [19]. However, the step-up voltage gain is limited by the effect of the power switches, rectifier diodes, and equivalent series resistance (ESR) of the inductors and capacitors. The extreme duty cycle operation may also result in serious reverse-recovery problem and electromagnetic interference (EMI) problem [20].

To improve the conversion efficiency and achieve high step-up voltage gain, many topologies have been proposed [19]-[28]. High step-up gain can be achieved by the use of the switched capacitor technique [22]-[25]. However, the main switch will suffer high transient current, and the conduction loss is high. Another method for achieving high step-up gain is the use of the voltage-lift technique [26]-[28]. However, it has the same drawback.

The converters employ the coupled-inductor technique to achieve high step-up gain by adjusting the turns ratio [29]. However, the leakage inductor of the coupled inductor incurs a voltage spike on the main switch and affects the conversion efficiency. For this reason, the converters using the coupled-inductor technique with an active clamp circuit have also been proposed [30], [31]. An integrated boost-flyback converter is presented, in which the secondary side

of the coupled-inductor is used as a flyback type [32], [33]. The leakage-inductor energy of the coupled inductor is recycled into the load during the switch-off period, thus the voltage spike on the main switch can be limited. Additionally, the voltage stress of the main switch can be adjusted by the turns ratio of the coupled inductor. To achieve high step-up voltage gain, it has been proposed that the secondary side of the coupled-inductor can be used as a flyback and a forward type [34]-[36]. Also, several converters that combine output-voltage stacking to increase voltage gain are proposed [37], [38]. The sepic-flyback converter with the coupled inductor and output stacking techniques has been proposed [39]. Additionally, a high step-up boost converter that uses multiple coupled-inductor with output stacking have been proposed [40], [41].

This paper proposes a high efficiency, high step-up voltage gain, and clamp-mode converter. The proposed converter adds two pairs of additional capacitors and diodes to achieve high step-up voltage gain. The coupled-inductor is used as both a forward and flyback type, thus the two capacitors can be charged in parallel and discharged in series via the coupled-inductor. The transit current does not flow through the main switch compared with earlier studies [22]-[28]. Thus, the proposed converter has low conduction loss. Additionally, this converter allows significant weight and volume reduction compared with other converters [29]-[40]. Another benefit is that the voltage stresses on the main switch and output diode are reduced. However, the leakage inductor of the coupled-inductor may cause high power loss and voltage spike. Thus, a passive clamping circuit is needed to recycle the leakage-inductor energy of the coupled inductor and to clamp the voltage across the main switch. The reverse-recovery problems in the diodes are alleviated, and thus high efficiency can be achieved.

II. OPERATING PRINCIPLE OF THE PROPOSED CONVERTER

Fig. 2 shows the circuit topology of the proposed converter. This converter consists of DC input voltage V_{in} , power switch S, coupled-inductor N_p and N_s , one clamp diode D_1 , clamp capacitor C_1 , two blocking capacitors C_2 and C_3 , two blocking diodes D_2 and D_3 , output diode D_o , and output capacitor C_o . The coupled inductor is modeled as the magnetizing inductor L_m and leakage inductor L_k .

To simplify the circuit analysis, the following conditions are assumed:

- 1) Capacitors C_2 , C_3 , and C_0 are large enough that V_{c2} , V_{c3} , and V_0 are considered to be constant in one switching period.
- The power MOSFET and diodes are treated as ideal, but the parasitic capacitor of the power switch is considered.
- 3) The coupling-coefficient of coupled-inductor k is equal to $L_m/(L_m+L_k)$ and the turns ratio of coupled-inductor n is equal to N_s/N_p .
- (A) Continuous-Conduction Mode (CCM) Operation

In CCM operation, there are six operating modes in one switching period of the proposed converter. Fig. 3 shows the typical waveforms and Fig. 4 shows the current-flow path of the

proposed converter for each modes. The operating modes are described as follows:

1) Mode I [t_0 , t_1]: During this time interval, S is turned on. Diodes D_1 , D_2 , and D_3 are turned off, and

 $D_{\rm o}$ is turned on. The current-flow path is shown in Fig. 4(a). The primary-side current of the coupled inductor $i_{\rm Lk}$ is increased linearly. The magnetizing inductor $L_{\rm m}$ stores its energy from DC-source $V_{\rm in}$. Due to the leakage inductor $L_{\rm k}$, the secondary-side current of the coupled inductor $i_{\rm s}$ is decreased linearly. The voltage across the secondary-side winding of the coupled inductor $V_{\rm L2}$, and blocking voltages $V_{\rm c2}$ and $V_{\rm c3}$ are connected in series to charge the output capacitor $C_{\rm o}$ and to provide the energy to the load R. When the current $i_{\rm s}$ becomes zero, DC-source $V_{\rm in}$ begins to charge capacitors C_2 and C_3 via the coupled inductor. When $i_{\rm Lk}$ is equal to $i_{\rm Lm}$ at $t = t_1$, this operating mode ends.

- 2) Mode II $[t_1, t_2]$: During this time interval, *S* is still turned on. Diodes D_1 and D_0 are turned off, and D_2 and D_3 are turned on. The current-flow path is shown in Fig. 4(b). The magnetizing inductor L_m is stored energy from DC-source V_{in} . Some of the energy from DC-source V_{in} transfers to the secondary side of the coupled inductor to charge the capacitors C_2 and C_3 . Voltages V_{c2} and V_{c3} are approximately equal to nV_{in} . Output capacitor C_0 provides the energy to load *R*. This operating mode ends when switch *S* is turned off at $t = t_2$.
- 3) Mode III $[t_2, t_3]$: During this time interval, S is turned off. Diodes D_1 and D_0 are turned off, and D_2 and D_3 are turned on. The current-flow path is shown in Fig. 4(c). The energies of leakage inductor L_k and magnetizing inductor L_m are released to the parasitic capacitor C_{ds} of switch S.

The capacitors, C_2 and C_3 , are still charged by the DC-source V_{in} via the coupled inductor. The output capacitor C_0 provides energy to load R. When the capacitor voltage $V_{in}+V_{ds}$ is equal to V_{c1} at $t = t_3$, diode D_1 conducts and this operating mode ends.

- 4) Mode IV [t_3 , t_4]: During this time interval, S is turned off. Diodes D_1 , D_2 , and D_3 are turned on and D_0 is turned off. The current-flow path is shown in Fig. 4(d). The energies of leakage inductor L_k and magnetizing inductor L_m are released to the clamp capacitor C_1 . Some of the energy stored in L_m starts to release to capacitors C_2 and C_3 in parallel via the coupled inductor until secondary current i_s equals to zero. Meanwhile, current i_{Lk} is decreased quickly. Thus, diodes D_2 and D_3 are cut off at $t = t_4$, and this operating mode ends.
- 5) Mode V [t_4 , t_5]: During this time interval, S is turned off. Diodes D_1 and D_0 are turned on, and D_2 and D_3 are turned off. The current-flow path is shown in Fig. 4(e). The energy of leakage inductor L_k and magnetizing inductor L_m are released to the clamp capacitor C_1 . The primary-side and secondary-side windings of the coupled inductor, DC sources V_{in} , and capacitors, C_2 and C_3 , are series to transfer their energies the output capacitor C_0 and load R. This operating mode ends when capacitor C_1 starts to discharge at $t = t_5$.
- 6) Mode VI [t_5 , t_6]: During this time interval, S is still turned off. Diodes D_1 and D_0 are turned on, and D_2 and D_3 are turned off. The current-flow path is shown in Fig. 4(f). The primary-side and secondary-side windings of the coupled inductor, DC sources V_{in} , and capacitors, C_1 , C_2 and C_3 ,

transfer their energies the output capacitor C_0 and load R. This mode ends at $t = t_6$ when S is turned on at the beginning of the next switching period.

(B) Discontinuous-Conduction Mode (DCM) Operation

In order to simplify the analysis for DCM operation, leakage inductor L_k of the coupled-inductor is neglected. Fig. 5 shows the typical waveforms when the proposed converter is operated in DCM, and Fig. 6 shows the current-flow path of the proposed converter for each modes. There are three modes in DCM operation. The operating modes are described as follows:

- 1) Mode I [t_0 , t_1]: During this time interval, *S* is turned on. The current-flow path is shown in Fig. 6(a). The part energy of DC-source V_{in} transfers to magnetizing inductor L_m . Thus, i_{Lm} is increased linearly. The DC-source V_{in} also transfers another part energy to charge capacitors C_2 and C_3 via the coupled inductor. The energy of the output capacitor C_0 is discharged to load *R*. This mode ends when *S* is turned off at $t = t_1$.
- 2) Mode II $[t_1, t_2]$: During this time interval, *S* is turned off. The current-flow path is shown in Fig. 6(b). The energy of the magnetizing inductor L_m is released to the capacitor C_1 . Similarly, capacitors C_2 and C_3 are discharged in a series with DC source V_{in} and magnetizing inductor L_m to the capacitor C_0 and load *R*. This mode ends when the energy stored in L_m is depleted at $t = t_2$.
- 3) Mode III [t_2 , t_3]: During this time interval, *S* remains turned off. The current-flow path is shown in Fig. 6(c). Since the energy stored in L_m is depleted, the energy stored in C_0 is discharged to load *R*. This mode ends when *S* is turned on at $t = t_3$.

III. STEADY-STATE ANALYSIS OF THE PROPOSED CONVERTER

(A) CCM Operation

At modes IV and V, the energy of the leakage inductor L_k is released to the clamped capacitor

 C_1 . According to previous work Ref. [15], the duty cycle of the released energy can be expressed as

$$D_{c1} = \frac{t_{c1}}{T_s} = \frac{2(1-D)}{n+1},\tag{1}$$

where T_s is the switching period, D_{c1} is the duty ratio of the switch, and t_{c1} is the time of modes IV and V.

By applying the voltage-second balance principle on L_m , the voltage across the capacitor C_1 can be represented by

$$V_{c1} = \frac{D}{1-D} \cdot V_{in} \cdot \frac{(1+k) + (1-k)n}{2}.$$
 (2)

Since the time durations of modes I, III, and IV are significantly short, only modes II, V, and VI are considered in CCM operation for the steady-state analysis.

In the time period of mode II, the following equations can be written based on Fig. 4(b).

$$v_{L1}^{II} = \frac{L_m}{L_m + L_{k1}} V_{in} = k V_{in},$$
(3)

$$v_{L2}^{II} = n k V_{in}. (4)$$

Thus, the voltage across capacitors C_2 and C_3 can be written as

$$V_{c2} = V_{c3} = v_{L2}^{ll} = nkV_{in}.$$
(5)

During the time duration of modes V and VI, the following equation can be formulated based on Fig. 4(f).

$$v_{L2}^{V} = v_{L2}^{VI} = V_{in} + V_{c1} + V_{c2} + V_{c3} - V_{o}.$$
 (6)

Thus, the voltage across the magnetizing inductor L_m can be derived as

$$v_{L1}^{V} = v_{L1}^{VI} = \frac{v_{L2}^{VI}}{n} = \frac{V_{in} + V_{c1} + V_{c2} + V_{c3} - V_{o}}{n}.$$
(7)

Using the volt-second balance principle on L_m , the following equation is given

$$\int_{0}^{DT_s} v_{L1}^{ll} dt + \int_{DT_s}^{T_s} v_{L1}^{Vl} dt = 0.$$
(8)

Substituting (2), (3), (5), and (7) into (8), the voltage gain is obtained as

$$M_{CCM} = \frac{1+nk}{1-D} + nk + \frac{D}{1-D} \cdot \frac{(1-k)(n-1)}{2}.$$
(9)

The schematic of the voltage-gain versus the duty-ratio under various the coupling coefficients of the coupled-inductor is shown in Fig. 7. It is seen that the voltage gain is not very sensitive to the coupling-coefficient. When k is equal to 1, the ideal voltage gain is written as

$$M_{CCM} = \frac{1+n}{1-D} + n \tag{10}$$

Fig. 8 shows the voltage gain versus the duty ratio of the proposed converter as compared with the converters in previous work [35] and [36] at CCM operation under k = 1 and n = 3. One can see that the voltage gain of the proposed converter is higher than the converters in [35] and [36].

According to the description of the operating modes, the voltage stresses on the active switch S and diodes D_1 , D_2 , D_3 , and D_0 are given as

$$V_{DS} = \frac{1}{1 - D} V_{in} = \frac{V_o - nV_{in}}{n + 1},$$
(11)

$$V_{D1} = \frac{1}{1 - D} V_{in} = \frac{V_o - nV_{in}}{n + 1},$$
(12)

$$V_{D2} = V_{D3} = V_{D0} = \frac{n}{1 - D} V_{in} = \frac{n}{n + 1} (V_o - n V_{in}).$$
(13)

Equations (11), (12), and (13) mean that with the same specifications, the voltage stresses on the main switch and diodes can be adjusted by the turns ratio of the coupled inductor.

(B)DCM Operation

In DCM operation, three modes are discussed. The key waveform is shown in Fig. 5. During the time of mode I, switch S is turned on. Thus, the following equations can be formulated based on Fig. 6(a)

$$v_{II}^I = V_{in},\tag{14}$$

$$v_{L2}^{I} = nV_{in}.$$
 (15)

The peak value of the magnetizing-inductor current is given as

$$I_{Lmp} = \frac{V_{in}}{L_m} DT_s.$$
 (16)

Furthermore, the voltage across capacitors C_2 and C_3 can be written as

$$V_{c2} = V_{c3} = v_{L2}^{I} = nV_{in}.$$
(17)

In the time interval of mode II, the following equations can be expressed based on Fig. 6(b):

$$v_{l1}^{II} = -V_{c1},$$
 (18)

$$v_{L2}^{II} = V_{in} + V_{c1} + V_{c2} + V_{c3} - V_o.$$
⁽¹⁹⁾

During the time of mode III, the following equation can be derived from Fig. 6(c):

$$v_{L1}^{III} = v_{L2}^{III} = 0. (20)$$

Applying the voltage-second balance principle on N_p , N_s of the coupled inductor, the following equations are given as

$$\int_{0}^{DT_{s}} v_{L1}^{I} dt + \int_{DT_{s}}^{(D+D_{L})T_{s}} v_{L1}^{II} dt + \int_{(D+D_{L})T_{s}}^{T_{s}} v_{L1}^{III} dt = 0.$$

$$\int_{0}^{DT_{s}} v_{L2}^{I} dt + \int_{DT_{s}}^{(D+D_{L})T_{s}} v_{L2}^{II} dt + \int_{(D+D_{L})T_{s}}^{T_{s}} v_{L2}^{III} dt = 0.$$
(22)

(21)

Substituting (14), (15), (17), (18), (19), and (20) into (21) and (22), the voltage gain is obtained as

follows:

$$V_{c1} = \frac{D}{D_L} V_{in},\tag{23}$$

$$V_{o} = \left[\frac{D}{D_{L}}(n+1) + (2n+1)\right] V_{in}.$$
(24)

According to (24), the duty cycle $D_{\rm L}$ can be derived as

$$D_{L} = \frac{(1+n)DV_{in}}{V_{o} - (1+2n)V_{in}}.$$
(25)

From Fig. 5, the average current of i_{co} is computed as

$$I_{co} = \frac{1}{2} D_L \frac{I_{Lmp}}{n+1} - I_o.$$
 (26)

Since I_{co} is equal to zero under steady state, Equations (16), (25), and $I_{co} = 0$ into (26) yields

$$\frac{D^2 V_{in}^2 T_s}{2 \left[V_o - (1+2n) V_{in} \right] L_m} = \frac{V_o}{R}.$$
(27)

Then, the normalized magnetizing-inductor time constant is defined as

$$\tau_{Lm} \equiv \frac{L_m}{RT_s} = \frac{L_m f_s}{R},\tag{28}$$

where f_s is the switching frequency.

Substituting (28) into (27), the voltage gain is given by

$$M_{DCM} = \frac{V_o}{V_{in}} = \frac{1+2n}{2} + \sqrt{\frac{(1+2n)^2}{4} + \frac{D^2}{2\tau_{Lm}}}.$$
(29)

The curve of the voltage gain, shown in Fig. 9, illustrates the voltage-gain versus the duty-ratio under various τ_{Lm} .

(C) Boundary Operating Condition between CCM and DCM

If the proposed converter is operated in boundary-condition mode (BCM), the voltage gain of CCM operation is equal to the voltage gain of DCM operation. From (10) and (29), the boundary normalized magnetizing-inductor time constant, τ_{LmB} , can be derived as

$$\tau_{LmB} = \frac{D(1-D)^2}{2(1+n)(1+2n-nD)}.$$
(30)

The curve of τ_{LmB} is plotted in Fig. 10. If τ_{Lm} is larger than τ_{LmB} , the proposed converter is operated in CCM.

IV. DESIGN AND EXPERIMENT OF THE PROPOSED CONVERTER

To verify the performance of the proposed converter, a prototype circuit is implemented in the laboratory. The specifications are as follows:

- 1) input DC voltage V_{in} : 24 V
- 2) output DC voltage V_0 : 400 V
- 3) maximum output power: 400 W
- 4) switching frequency: 50 kHz
- 5) MOSFET S: IRFB4410ZPBF
- 6) Diodes D_1 : SBR20A100CTFP, D_2/D_3 : DESI30, and D_0 : BYR29
- 7) Coupled inductor: ETD-59, core pc40, $N_p : N_s = 1 : 4$

 $L_{\rm m} = 48 \ \mu {\rm H}; L_{\rm k} = 0.25 \ \mu {\rm H}$

8) Capacitors C_1 : 56 μ F/ 100 V, C_2/C_3 : 4.7 μ F/ 200 V, and C_0 : 180 μ F/ 450 V

Fig. 11 shows the measured waveforms for full-load $P_0 = 400$ W and $V_{in} = 24$ V. The proposed converter is operated in CCM under full-load condition. The waveforms demonstrate that the steady-state analysis is correct. In the measured waveforms, v_{ds} is clamped at appropriately 90 V during the switch-off period. Therefore, a low-voltage-rated switch is adopted to achieve high efficiency for the proposed converter.

The waveform of the secondary-side current of the coupled-inductor i_s in Fig. 11(a) shows that the proposed converter is operated in CCM because the current is not equal to zero when the switch is turned on. In Fig. 11(b), the waveforms of i_{D2} and i_{D3} show that capacitors C_2 and C_3 are charged in parallel. Fig. 11(c) shows that the energy of leakage inductor L_k is released to capacitor C_1 from i_{D1} . Fig. 11(d) reveals that V_{c1} and V_{c2} are able to satisfy Equations (2) and (5). In addition, output voltage V_0 is consistent with Equation (10). Fig. 11(e) shows the voltage stresses of the main switch and diodes, and demonstrates the consistency of Equations (11), (12), and (13). Fig. 12 shows the light-load waveforms. The output voltage is about 400 V and the analysis of the DCM of the proposed converter is demonstrated.

Fig. 13 shows the experimental conversion efficiency of the proposed converter, which the maximum efficiency is around 96.8% at P_0 = 80 W and the full-load efficiency is appropriately 94.2 % at P_0 = 400 W. The efficiency of converter in Ref. [41] is also showed. The maximum efficiency

is 94.3% and full-load efficiency is 92.25%. The results show that the proposed converter has promoted the efficiency about 2%.

The results verify the high efficiency of the proposed converter. Because the low input voltage is applied in this converter, the proposed converter should experience extremely high input current at full-load, which would leads to high conduction loss during the switch turn-on period. To further improving the conduction loss, two of the proposed converter can be used in interleaved operation where the input current is shared by two switches to achieve high efficiency.

V. CONCLUSIONS

This paper proposed a novel, high efficiency and high step-up DC-DC converter. By using the capacitor charged in parallel and discharged in a series by the coupled-inductor, high step-up voltage gain and high efficiency are achieved. The steady-state analyses of voltage gain and boundary operating condition are discussed in detail. A prototype circuit of the proposed converter is built in the laboratory. Experimental results confirm that high efficiency and high step-up voltage gain can be achieved. The efficiency is 96.8%. The voltage stress on the main switches is 90 V, thus low voltage ratings and low on-state resistance levels $R_{DS(ON)}$ switch can be selected. Moreover, the proposed converter has simple structure. It is suitable for renewable energy systems in microgrid applications.

REFERENCES

- [1] Y. Li and Y. W. Li, "Decoupled power control for an inverter based low voltage microgrid in autonomous operation," in *Proc. IEEE IPEMC*, pp. 2490-2496, 2009.
- [2] Y. Li, D. M. Vilathgamuwa, and P. H. Loh, "Design, analysis, and real-time testing of a controller for multibus microgrid system," *IEEE Trans. Power Electron.*, vol. 19, no. 5, pp. 1195-1204, 2004.
- [3] C. L. Chen, Y. W, J. S. Lai, Y.S. Lee, and D. Martin, "Design of parallel inverters for smooth mode transfer microgrid applications," *IEEE Trans. Power Electron.*, vol. 25, no. 1, pp. 6-15, Jan. 2010
- [4] A. Timbus, M. Liserre, R. Teodorescu, P. Rodriguez, and F. Blaabjerg, "Evaluation of current controllers for distributed power generation systems," *IEEE Trans. Power Electron.*, vol. 24, no. 3, pp. 654-664, Mar. 2009.
- [5] Y.A.-R.I. Mohamed and E.F. El Saadany, "Hybrid variable-structure control with evolutionary optimum-tuning algorithm for fast grid-voltage regulation using inverter-based distributed generation," *IEEE Trans. Power Electron.*, vol. 23, no. 3, pp. 1334-1341, May. 2008.
- [6] Y.A.-R.I. Mohamed and E.F. El Saadany, "Adaptive decentralized droop controller to preserve power sharing stability of paralleled inverters in distributed generation microgrids," *IEEE Trans. Power Electron.*, vol. 23, no. 6, pp. 2806-2816, Nov. 2008.
- [7] Y.W. Li and C.-N. Kao, "An accurate power control strategy for power-electronics-interfaced distributed generation units operating in a low-voltage multibus microgrid," *IEEE Trans. Power Electron.*, vol. 24, no. 12, pp. 2977-2988, Dec. 2009.
- [8] H. Karimi, A. Yazdani, and R. Iravani, "Negative-sequence current injection for fast islanding detection of a distributed resource unit," *IEEE Trans. Power Electron.*, vol. 23, no. 1, pp. 298-307, Jan. 2008.

- [9] T. Shimizu, K. Wada, and N. Nakamura, "Flyback-type single-phase utility interactive inverter with power pulsation decoupling on the dc input for an ac photovoltaic module system," *IEEE Trans. Power Electron.*, vol. 21, no. 5, pp. 1264-1272, Sep. 2006.
- [10] L. Palma, M. H. Todorovic, and P. Enjeti, "A high gain transformer-less DC-DC converter for fuel-cell applications," in *Proc. IEEE PESC*, pp. 2514-2520, 2005.
- [11] P. Biczel, "Power electronic converters in dc microgrid," in Proc. IEEE CPE Conf., pp. 1-6, 2007.
- [12] A.M. Salamah, S.J. Finney, and B.W. Williams, "Single-phase voltage source inverter with a bidirectional buck–boost stage for harmonic injection and distributed generation," *IEEE Trans. Power Electron.*, vol. 24, no. 2, pp. 376-387, Feb. 2009.
- [13] A. Cid-Pastor, L. MartÕnez-Salamero, C. Alonso, A. El Aroudi, and H. Valderrama-Blavi, "Power distribution based on gyrators," *IEEE Trans. Power Electron.*, vol. 24, no. 12, pp. 2907-2909, Dec. 2009.
- [14] L. S. Yang, T. J. Liang, and J. F. Chen, "Transformer-less DC-DC converter with high voltage gain," *IEEE Trans. Ind. Electron.*, vol. 56, no. 8, pp. 3144-3152, Aug. 2009.
- [15] Q. Zhao and F. C. Lee, "High-efficiency, high step-up dc-dc converters," *IEEE Trans. Power Electron.*, vol. 18, no. 1, pp. 65-73, Jan. 2003.
- [16] R. J. Wai, C. Y. Lin, C. Y. Lin, R. Y. Duan, and Y. R. Chang, "High-efficiency power conversion system for kilowatt-level stand-alone generation unit with low input voltage," *IEEE Trans. Ind. Electron.*, vol. 55, no. 10, pp. 3702-3714, Oct. 2008.
- [17] N. P. Papanikolaou and E. C. Tatakis, "Active voltage clamp in flyback converters operating in CCM mode

under wide load variation," IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 632-640, Jun. 2004.

- [18] J. M. Kwon and B. H. Kwon, "High step-up active-clamp converter with input-current doubler and output-voltage doubler for fuel cell power systems," *IEEE Trans. Power Electron.*, vol. 24, no. 1, pp. 108-115, Jan. 2009.
- [19] B. Axelrod, Y. Berkovich, and A. Ioinovici, "Transformerless DC-DC converters with a very high DC line-to-load voltage ratio," *Proc. IEEE ISCAS*, pp. III435-III438, 2003.
- [20] R. J. Wai and R. Y. Duan, "High-efficiency DC/DC converter with high voltage gain," *IEE Proc. Inst. Elect. Eng.-Electric Power Applications*, vol. 152, no.4, pp. 793-802, Jul. 2005.
- [21] J.A. Carr, D. Hotz, J.C. Balda, H.A. Mantooth, A. Ong, and A. Agarwal, "Assessing the impact of SiC MOSFETs on converter interfaces for distributed energy resources," *IEEE Trans. Power Electron.*, vol. 24, no. 1, pp. 260-270, Jan. 2009.
- [22] Fan Zhang, Lei Du, Fang Zheng Peng, and Zhaoming Qian, "A new design method for high-power high-efficiency switched-capacitor dc–dc converters," *IEEE Trans. Power Electron.*, vol. 23, no. 2, pp. 832-840, Mar. 2008.
- [23] O. Abutbul, A. Gherlitz, Y. Berkovich, and A. Ioinovici, "Step-up switching-mode converter with high voltage gain using a switched-capacitor circuit," *IEEE Trans. Circuits and Systems I*, vol. 50, no. 8, pp. 1098-1102, Aug. 2003.
- [24] B. Axelrod, Y. Berkovich, and A. Ioinovici, "Switched-capacitor/ switched-inductor structures for getting transformerless hybrid DC-DC PWM converters," *IEEE Trans. Circuits and Systems I*, vol. 55, no. 2, pp. 687-696, Mar. 2008.

- [25] B. Axelrod, Y. Berkovich, and A. Ioinovici, "Switched-capapcitor (SC)/Switched-inductor (SL) structures for getting hybrid step-down CUK/ZETA/SEPIC converters," in *Proc. IEEE ISCAS*, pp. 5063-5066, 2006.
- [26] F. L. Luo, "Six self-lift DC-DC converters, voltage lift technique," *IEEE Trans. Ind. Electron.*, vol. 48, no. 6, pp. 1268-1272, Dec. 2001.
- [27] F. L. Luo and H. Ye, "Positive output super-lift converters," *IEEE Trans. Power Electron.*, vol. 18, no. 1, pp. 105-113, Jan. 2003.
- [28] F. L. Luo and H. Ye, "Positive output multiple-lift push-pull switched-capacitor Luo-converters," *IEEE Trans. Ind. Electron.*, vol. 51, no. 3, pp. 594-602, Jun. 2004.
- [29] B. Axelrod, Y. Berkovich, and A. Ioinovici, "Switched coupled-inductor cell for DC-DC converters with very large conversion ratio," in *Proc. IEEE IECON Conf.*, pp. 2366-2371, 2006.
- [30] B. R. Lin and F. Y. Hsieh, "Soft-switching zeta-flyback converter with a buck-boost type of active clamp," *IEEE Trans. Ind. Electron.*, vol. 54, no. 5, pp. 2813-2822, Oct. 2007.
- [31] T. F. Wu, Y. S. Lai, J. C. Hung, and Y. M. Chen, "Boost converter with coupled inductors and buck-boost type of active clamp," *IEEE Trans. Ind. Electron.*, vol. 55, no. 1, pp. 154-162, Jan. 2008.
- [32] K. C. Tseng and T. J. Liang, "Novel high-efficiency step-up converter," IEE Proc. Inst. Elect. Eng.-Electric Power Applications, vol. 151, no. 2, pp. 182-190, Mar. 2004.
- [33] K. C. Tseng and T. J. Liang, "Analysis of intergrated boost-flyback step-up converter," *IEE Proc. Inst. Elect. Eng.-Electric Power Applications*, vol. 152, no. 2, pp. 217-225, 2005.
- [34] R. J. Wai and R. Y. Duan, "High step-up converter with coupled-inductor," IEEE Trans. Power Electron., vol. 20,

no. 5, pp. 1025-1035, Sep. 2005.

- [35] R. J. Wai, L. W. Liu, and R. Y. Duan, "High-efficiency voltage-clamped DC–DC converter with reduced reverse-recovery current and switch-voltage stress," *IEEE Trans. Ind. Electron.*, vol. 53, no. 1, pp. 272-280, Feb. 2005.
- [36] J. W. Baek, M. H. Ryoo, T. J. Kim, D. W. Yoo, and J. S. Kim, "High boost converter using voltage multiplier," in *Proc. IEEE IECON*, pp. 567-572, 2005.
- [37] T. Dumrongkittigule, V. Tarateeraseth, and W. Khan-ngern, "A new integrated inductor balanced switching technique for common mode EMI reduction in high step-up DC/DC converter," in *Proc.* International Zurich Symposium on Electromagnetic Compatibility, pp. 541-544, 2006
- [38] Y. J. A. Alcazar, R. T. Bascope, D. S. de Oliveira, E. H. P. Andrade, and W. G. Cardenas, "High voltage gain boost converter based on three-state switching cell and voltage multipliers," in *Proc. IEEE IECON*, pp. 2346-2352, 2008.
- [39] K. B. Park, H. W. Seong, H. S. Kim, G. W. Moon, and M. J. Youn, "Integrated boost-sepic converter for high step-up applications," in Proc. Power Electronics Specialists Conf., Rohode, Greece, pp. 944-950, 2008.
- [40] G. V. T. Bascope, R. P. T. Bascope, D. S. Oliveira Jr., S. A. Vasconcelos, F. L. M. Antunes, and C. G. C. Branco,"A high step-up DC-DC converter based on three-state switching cell," in *Proc. IEEE ISIE*, pp. 998-1003, 2006.
- [41] S. K. Changchien, T. J. Liang, J. F. Chen, L. S. Yang, "Novel high step-up DC-DC converter for fuel cell energy conversion system," *IEEE Trans. Ind. Electron.*, vol. 57, no. 6, pp. 2007-2017, 2010.

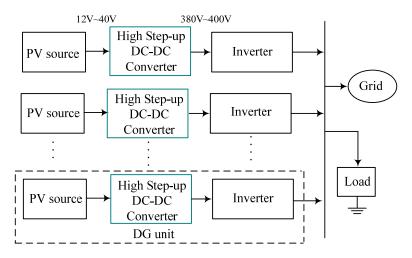


Fig. 1. photovoltaic (PV) distributed system

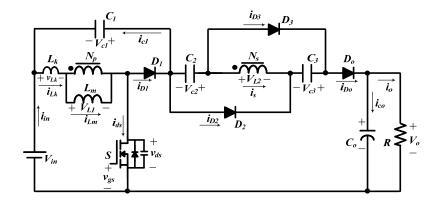
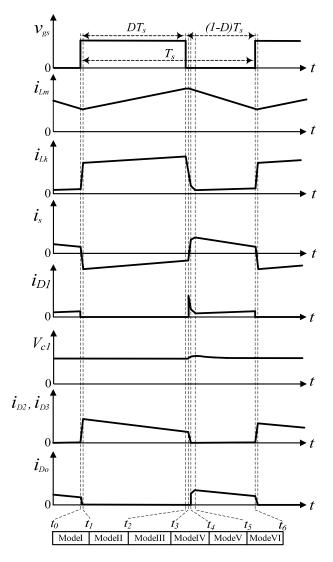
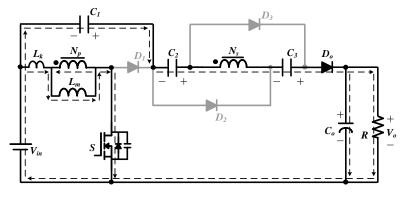
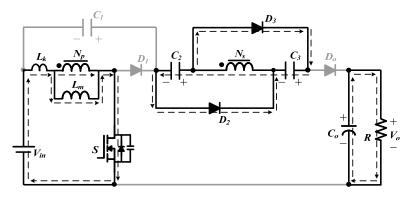
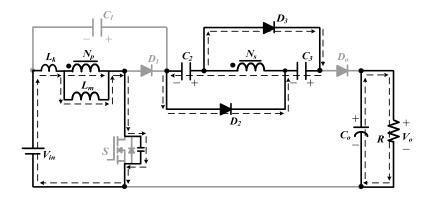
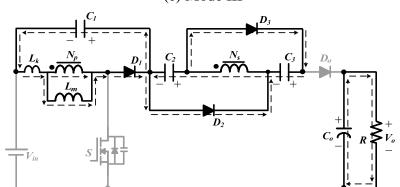
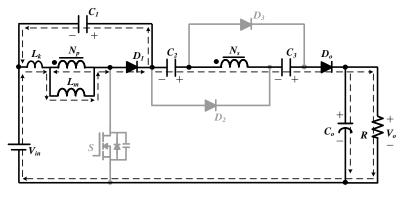


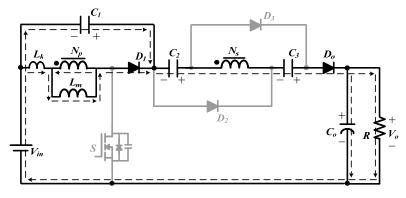
Fig. 2. Circuit configure of the proposed converter


Fig. 3. Some typical key waveforms of the proposed converter at CCM operation.


(a) Mode I


(b) Mode II



(c) Mode III

(d) Mode IV

(f) Mode VI

Fig. 4. Current flowing path of operating modes during one switching period at CCM operation. (a) Modes I. (b) Modes II. (c) Mode III. (d) Mode IV. (e) Mode V. (f) Mode VI.

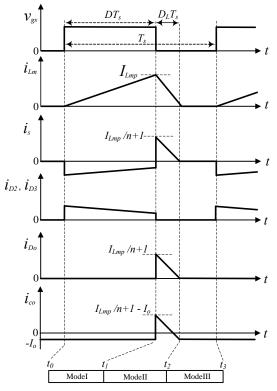
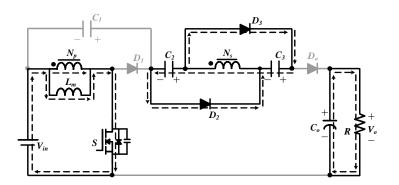
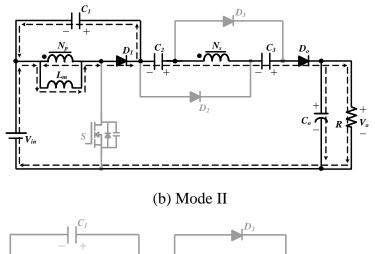
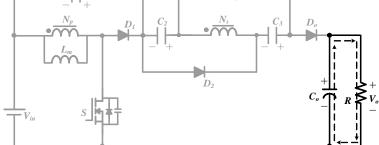





Fig. 5. Some typical key waveforms of the proposed converter at DCM operation.

(c) Mode III

Fig. 6. Current flowing path of operating modes during one switching period at DCM operation. (a) Modes I. (b) Mode II. (c) Modes III.

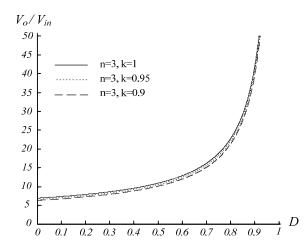


Fig. 7. Voltage-gain versus duty-ratio at CCM operation under n = 3 and various k.

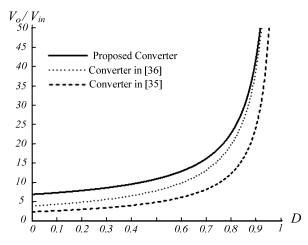


Fig. 8. Voltage-gain versus duty-ratio of the proposed converter, the converters in [35] and [36] at CCM operation under n = 3 and k = 1.

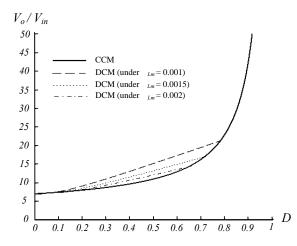
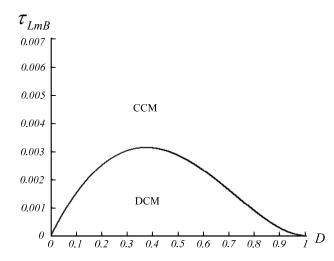
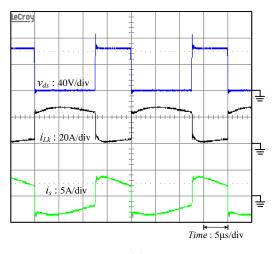
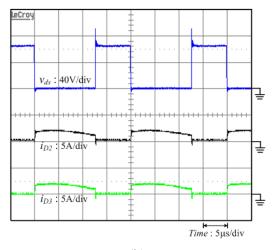
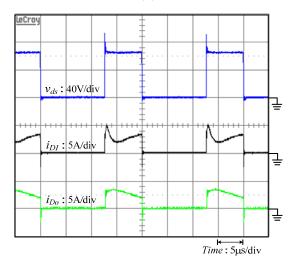
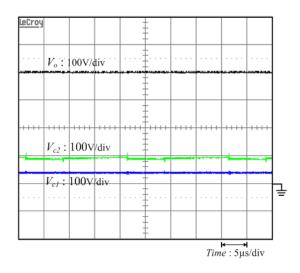
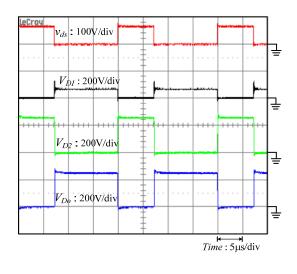


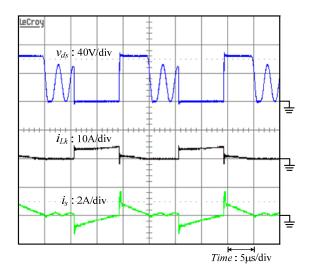
Fig. 9. Voltage-gain versus duty-ratio at DCM operation under various τ_{Lm} and at CCM operation under n = 3 and k = 1.

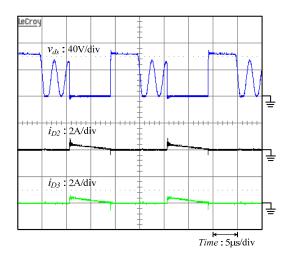




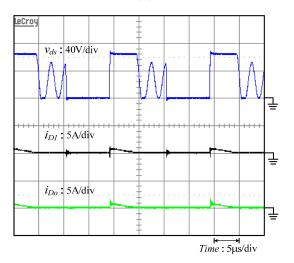

Fig. 10. Boundary condition of the proposed converter under n = 3.


(a)

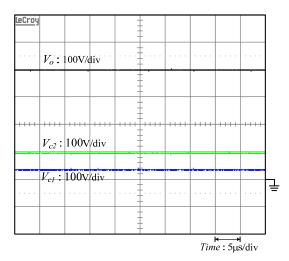



(c)

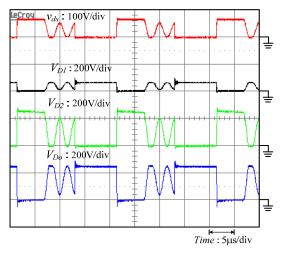




(e) Fig. 11. Experiment results under full-load $P_0 = 400$ W.



(a)



(d)

(e)

Fig. 12. Experiment results under light-load $P_0 = 40$ W.

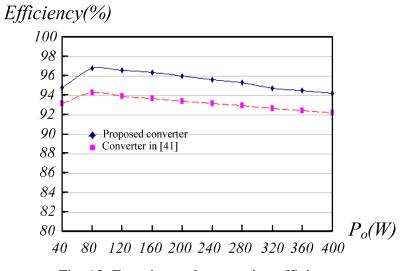


Fig. 13. Experimental conversion efficiency.