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In this paper, we introduce the Yang transform homotopy perturbation method (YTHPM), which is a novel method. We provide
formulae for the Yang transform of Caputo-Fabrizio fractional order derivatives. We derive an algorithm for the solution of
Caputo-Fabrizio (CF) fractional order partial differential equation in series form and show its convergence to the exact solution.
To demonstrate the novel approach, we include some examples with detailed solutions. We use tables and graphs to compare
the exact and approximate solutions.

1. Introduction and Motivation

Noninteger calculus is a popular field that is aimed at
explaining real-world phenomena that are modeled with
operators of fractional order. It is also a field that uses nonin-
teger order derivatives for differentiation and integration. A
fractional derivative is a sort of derivative with a noninteger
order that meets specific conditions: we get the primary func-
tion when the order is zero, and we get the ordinary deriva-
tive when the order is one [1]. The memory effect and
conserved illustrative physical properties are two advantages
of fractional derivatives. Over time, more accurate and up-to-
date studies have been revealed using these types of opera-
tors. In this sense, the theory of fractional calculus and its
applications are gaining popularity around the world. Frac-
tional order models incorporate all previous knowledge from
the past due to the memory effect, making it better for them
to forecast and analyze dynamical models more efficiently.
Fractional order calculus has a wide range of applications in
a variety of areas due to its efficient properties, including biol-
ogy and physics. [2–4], economics and finance [5, 6], science

and engineering [7, 8], and mathematical modeling and
mechanics [9–11]. Since the kernel of Caputo and Riemann
derivatives is singular, they have a problem with this kernel.
Since the kernel is used to explain the physical system’s mem-
ory effect, it is clear that both derivatives cannot accurately
interpret the memory’s full effect due to this limitation.
Caputo and Fabrizio (CF) [12] suggested a new fractional
operator with an exponential kernel in a recent attempt
around the middle of the last decade. This derivative’s kernel
is nonsingular, so the results are more reasonable than the
classical one. We include some applications of the CF opera-
tor in [13–15].

There are two types of nonlinear equations: linear and
nonlinear. Partially differential equations of fractional order
are notoriously difficult to solve, and finding an exact solu-
tion is even more difficult. In applied mathematics, exact
and numerical solutions to this type of equation are neces-
sary. As a result, new techniques for obtaining analytical
solutions that are relatively close to the exact solutions have
been developed. Integral transformations were often used to
solve the differential equations. Integral transforms are useful
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for solving IVPs and BVPs in differential and integral equa-
tions. Several authors implemented various kinds of integral
transforms and examined their implications in different
types of differential equations. The Laplace transform is the
integral transform that is used the most [16]. In 1998, Watu-
gala [17] was successfully introducing Sumudu transform to
solve differential equations and control engineering prob-
lems. Recently, in 2011, T. Elzaki and S. Elzaki introduced
new integral transform “Elzaki Transform” and used heavily
in solving partial differential equations [18]. Also in 2013,
Aboodh introduces “Aboodh Transform” and applies for
solving partial differential equations [19]. There are many
transform which are available in literature.

He formulated the homotopy perturbation method
(HPM) [20] in 1999, which is a combination of the homo-
topy method and the classical perturbation technique and
has been widely applied on both linear and nonlinear prob-
lems [21–23]. The importance of HPM is that it does not
need a small parameter in the equation, so it reduces the
drawbacks of traditional perturbation methods. The main
purpose of this article is to apply newly introduced integral
transform called “Yang Transform” discovered by Yang
[24] with HPM to solve nonlinear fractional order PDEs.
We solve two popular nonlinear PDEs through the proposed
method. We obtain a power series solution in the context of a
quickly convergent series, and just several iterations are
needed to achieve very efficient results. There is no require-
ment for a method like discretizing the problem and no line-
arization for the nonlinear problem, and just a few iterations
can lead to a solution that can be easily estimated using these
techniques.

2. Preliminaries

We give the basic definitions which are needed in the rest of
paper. For the sake of simplicity, we write the exponential-
decay kernel asKðτ, ϱÞ = exp ½−αðτ − ϱ/1 − αÞ�.

Definition 1 [12]. If ℙðτÞ ∈H1½0, T�, T > 0, then the Caputo-
Fabrizio (CF) derivative may be expressed as follows:

CFD
α

t ℙ τð Þ½ � =
N αð Þ

1 − α

ðτ

0

ℙ′ ϱð ÞK τ, ϱð Þdϱ: ð1Þ

NðαÞ is the normalization function withNð1Þ =Nð0Þ = 1.
However, if ℙðτÞ ∉H1½0, T�, then the above derivative is
defined as follows:

CFD
α

t ℙ τð Þ½ � =
N αð Þ

1 − α

ðτ

0

ℙ τð Þ − ℙ ϱð Þ½ �K τ, ϱð Þdϱ: ð2Þ

Definition 2 [12]. The CF fractional integral may be
expressed as follows:

CFI
α

t ℙ τð Þ½ � =
1 − α

N αð Þ
ℙ τð Þ +

α

N αð Þ

ðτ

0

ℙ ϱð Þdϱ, τ ≥ 0, α ∈ 0, 1ð �:

ð3Þ

Definition 3 [7]. For NðαÞ = 1, the following result represents
the Laplace transform of CF derivative:

L CFDα
τ ℙ τð Þ½ �

� �

=
vL ℙ τð Þ½ � −ℙ 0ð Þ

v + α 1 − vð Þ
: ð4Þ

Definition 4. [24]. The Yang transform of PðτÞ is defined as
follows:

Y ℙ τð Þ½ � = χ vð Þ =

ð∞

0

ℙ τð Þe−τ/v, τ > 0, ð5Þ

where υ is transform variable and for some υ the integral on
the right exists.

Remark 5. Yang transform of some useful functions is given
below.

Y 1½ � = v,

Y τ½ � = v2,

Y τq½ � = Γ q + 1ð Þvq+1:

ð6Þ

3. Main Work

First, we derive formula for Yang transform of Caputo-
Fabrizio fractional derivative through the Yang-Laplace dual-
ity property. At the end of this section, we give some exam-
ples with detailed solution to check the validity and
efficiency of the novel method.

Lemma 6 (Laplace-Yang duality). Let the Laplace transform
of PðτÞ is FðυÞ, then χðυÞ = Fð1/vÞ.

Proof. From Equation (5), we can obtain another form of the
Yang transform by substituting −τ/u = x as

Y ℙ τð Þ½ � = χ vð Þ = v

ð∞

0

ℙ vxð Þe−xdx, x > 0: ð7Þ

Since L½ℙðτÞ� = FðυÞ, this implies that

F vð Þ = L ℙ τð Þ½ � =

ð∞

0

e−vτℙ τð Þdτ: ð8Þ

Put τ = x/v in (8), we have

F vð Þ =
1

v

ð∞

0

e−xℙ
x

v

� �

dx: ð9Þ

Thus, from Equation (7), we obtain

F vð Þ = χ
1

v

� �

: ð10Þ
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Also from Equations (5) and (8), we obtain

F
1

v

� �

= χ vð Þ: ð11Þ

The relations (10) and (11) represent the duality relation
between the Yang and Laplace transform. ☐

Lemma 7. Let PðτÞ be a continuous function; then, Yang
transform of CF derivative of PðτÞ is given by

Y CF
ℙ
α τ½ �

� �

=
Y ℙ τð Þ½ � − vℙ 0ð Þ

1 + α v − 1ð Þ
: ð12Þ

Proof. The Laplace transform of the CF fractional is given by

L CF
ℙ
α τð Þ

� �

=
vL ℙ τð Þ½ � −ℙ 0ð Þ

v + α 1 − vð Þ
: ð13Þ

Also, we have that the relation between Laplace and Yang
property, i.e., χðvÞ = Fð1/vÞ. To obtain the required result, we
replace υ by 1/v in Equation (13), and we get

Y CF
ℙ
α τð Þ

� �

=
1/vY ℙ τð Þ½ � − ℙ 0ð Þ

1/v + α 1 − 1/vð Þ
,

Y CF
ℙ
α τð Þ

� �

=
Y ℙ τð Þ½ � − vℙ 0ð Þ

1 + α v − 1ð Þ
:

ð14Þ

The proof is completed. ☐

4. Algorithm of the Proposed Method

In this part, we discuss the algorithms of fractional order dif-
ferential equations involving exponential-decay kernel. We
provide some examples with detailed solution and its com-
parison with exact solutions.

4.1. Application to Caputo-Fabrizio Fractional Differential
Equations. First, we develop the solution procedure of gen-
eral nonlinear Caputo-Fabrizio (CF) fractional partial differ-
ential equations through YTHPM. Let us take a general
nonlinear CF PDE with nonlinear termNðGðx, τÞÞ and linear
term LðGðx, τÞÞ as

CFDα
τG x, τð Þ + L G x, τð Þð Þ +N G x, τð Þð Þ = g x, τð Þ,

G x, 0ð Þ = h xð Þ,

(

ð15Þ

where the term gðx, τÞ represents the source term. Imple-
ment Yang transform to Equation (15), and one can achieve

Y G x, τð Þ½ � − vG x, 0ð Þ

1 + α v − 1ð Þ
= −Y L G x, τð Þð Þ +N G x, τð Þð Þ½ � + Y g x, τð Þ½ �,

Y G x, τð Þ½ � = vh xð Þ − 1 + α v − 1ð Þð Þ Y L G x, τð Þð Þ½½

+N G x, τð Þð Þ� + Y g x, τð Þ½ ��:
ð16Þ

Applying inverse of Yang transform, we achieve

G x, τð Þ = G x, τð Þ − Y−1 1 + α v − 1ð Þð ÞY L G x, τð Þð Þ +N G x, τð Þð Þ½ �½ �,

ð17Þ

where the term Gðx, τÞ represents the source term and the
given I.C (initial condition). Now, we utilize HPM:

G x, τð Þ = 〠
∞

q=0

ρqGq x, τð Þ: ð18Þ

We decompose the nonlinear term NðGðx, τÞÞ as

N G x, τð Þð Þ = 〠
∞

q=0

ρqHq Gð Þ, ð19Þ

where HqðGÞ represents the He’s polynomial and is calcu-

lated through the formula:

Hq G1,G2,⋯,Gq

� 	

=
1

Γ q + 1ð Þ

∂
q

∂ρq
N 〠

∞

i=0

ρiGi

 !" #

ρ=0

q = 0, 1,⋯:

ð20Þ

Putting Equations (18) and (19) in Equation (17), we
achieve

〠
∞

q=0

ρqGq x, τð Þ = G x, τð Þ − ρ Y−1 1 + α v − 1ð Þð ÞY L〠
∞

q=0

ρqGq x, τð Þ

"" 

+ 〠
∞

q=0

ρqHq Gð Þ =

##!

:

ð21Þ

We achieve the following terms by comparing coeffi-
cients of ρ in (21):

ρ0 : G0 x, τð Þ =G x, τð Þ,

ρ1 : G1 x, τð Þ = Y−1 1 + α v − 1ð Þð ÞY L G0 x, τð Þð Þ +H0 Gð Þ½ �½ �,

ρ2 : G2 x, τð Þ = Y−1 1 + α v − 1ð Þð ÞY L G1 x, τð Þð Þ +H1 Gð Þ½ �½ �,

ρ3 : G3 x, τð Þ = Y−1 1 + α v − 1ð Þð ÞY L G2 x, τð Þð Þ +H2 Gð Þ½ �½ �,

⋮

ρq : Gq x, τð Þ = Y−1 1 + α v − 1ð Þð ÞY L Gq x, τð Þ
� 	

+Hq Gð Þ
� �� �

:

ð22Þ

Thus, we may write the acquired solution of Equation
(15) as follows:

G x, τð Þ =G0 x, τð Þ + G1 x, τð Þ+⋯: ð23Þ

4.2. Convergence and Error Analysis. The following theorems
are based on the method’s mechanism and address the orig-
inal problem’s (15) convergence and error analysis.
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Theorem 8. Let Gðx, τÞ be the exact solution of (15) and let
Gqðx, τÞ,Gnðx, τÞ ∈H and σ ∈ ð0, 1Þ, where H denotes the

Hilbert space. Then, the obtained solution ∑∞
q=0Gqðx, τÞ will

converge Gðx, τÞ if Gqðx, τÞ ≤ σGq−1ðx, τÞ∀q > A, i.e., for

any ω > 0∃A > 0, such that ∥Gq+nðx, τÞ∥≤β, ∀m, n ∈N .

Proof. We make a sequence of ∑∞
q=0Gqðx, τÞ.

C0 x, τð Þ =G0 x, τð Þ,

C1 x, τð Þ = G0 x, τð Þ + G1 x, τð Þ,

C2 x, τð Þ = G0 x, τð Þ + G1 x, τð Þ + G2 x, τð Þ,

C3 x, τð Þ = G0 x, τð Þ + G1 x, τð Þ +G2 x, τð Þ +G3 x, τð Þ,

⋮

Cq x, τð Þ = G0 x, τð Þ +G1 x, τð Þ +G2 x, τð Þ+⋯+Gq x, τð Þ:

ð24Þ

To get the desired result, we have to prove that Cqðx, τÞ

forms a “Cauchy sequence.” Further, let us take

∥Cq + 1 x, τð Þ − Cq x, τð Þ∥ = ∥Gq + 1 x, τð Þ∥ ≤ σ∥Gq x, τð Þ∥

≤ σ2∥Gq−1 x, τð Þ∥ ≤ σ3∥Gq−2 x, τð Þ∥⋮

≤ σq+1∥G0 x, τð Þ:

ð25Þ

For q, n ∈N , we acquire

∥Cq x, τð Þ − Cn x, τð Þ∥ = ∥Gq+n x, τð Þ∥ = ∥ Cq x, τð Þ − Cq−1 x, τð Þ
� 	

+ Cq−1 x, τð Þ − Cq−2 x, τð Þ
� 	

+ Cq−2 x, τð Þ − Cq−3 x, τð Þ
� 	

+⋯

+ Cn+1 x, τð Þ − Cn x, τð Þð Þ∥

≤ ∥Cq x, τð Þ − Cq−1 x, τð Þ∥+∥Cq−1 x, τð Þ

− Cq−2 x, τð Þ∥+⋯+∥Cn+1 x, τð Þ − Cn x, τð Þ:

≤ σq∥G0 x, τð Þ∥+σq−1∥G0 x, τð Þ∥+⋯+σq+1∥G0 x, τð Þ∥

= ∥G0 x, τð Þ∥ σq + σq−1+⋯+σq+1
� 	

= ∥G0 x, τð Þ∥
1 − σq−n

1 − σq+1
σn+1:

ð26Þ

Since 0 < σ < 1, and G0ðx, τÞ is bounded, let us take β =

1 − σ/ð1 − σq−nÞσn+1∥G0ðx, τÞ∥, and we obtain

∥Gq+n x, τð Þ∥ ≤ β,∀q, n ∈N: ð27Þ

Thus, fGqðx, τÞg
∞

q=0
forms a “Cauchy sequence” in H. It

follows that the sequence fGqðx, τÞg
∞

q=0
is a convergent

sequence with the limit ðlim/q⟶∞ÞGqðx, τÞ = Gðx, τÞ for

∃Gðx, τÞ ∈H . Hence, this ends the proof. ☐

Theorem 9. Let ∑k
h=0Ghðx, τÞ is finite and Gðx, τÞ represents

the obtained series solution. Let σ > 0 such that ∥Gh+1ðx, τÞ∥

≤σ∥Ghðx, τÞ∥, then the following relation gives the maximum
absolute error.

G x, τð Þ − 〠
k

h=0

Gh x, τð Þ































<
σk+1

1 − σ
G0 x, τð Þk k: ð28Þ

Proof. Since ∑k
h=0Ghðx, τÞ is finite, this implies that ∑k

h=0Ghð
x, τÞ <∞. Consider

G x, τð Þ − 〠
k

h=0

Gh x, τð Þ































= 〠
∞

h=k+1

Gh x, τð Þ































≤ 〠
∞

h=k+1

Gh x, τð Þk k

≤ 〠
∞

h=k+1

σh G0 x, τð Þk k

≤ σk+1 1 + σ + σ2+⋯
� 	

G0 x, τð Þk k

≤
σk+1

1 − σ
G0 x, τð Þk k:

ð29Þ

This ends the theorem’s proof. ☐

4.3. Test Problems. The Yang transform homotopy perturba-
tion method is applied to well-known nonlinear fractional
PDEs in this section, demonstrating its ease of use and high
accuracy. The space where the solution of the following
examples lies is the Hilbert space H.

Example 1. We take nonlinear KdV equation as follows:

CFD
α

τz x, τð Þ = −zzx − zzxxx, 0 < α ∈ 0, 1ð �, ð30Þ

subjected to I.C zðx, 0Þ = x.

Solution 1. Implementing the Yang transform to Equation
(30), we have

Y z x, τð Þ½ � = υz x, 0ð Þ − 1 + αυ − αð ÞY zzx + zzxxx½ �: ð31Þ

Applying Yang inverse transform, we have

z x, τð Þ = z x, 0ð Þ − Y−1 1 + αυ − αð ÞY zzx + zzxxx½ �½ �: ð32Þ

The solution via HPT is as follows:

z x, τð Þ = 〠
∞

q=0

ρqzq x, τð Þ: ð33Þ

Thus, Equation (32) can be written as

〠
∞

q=0

ρqzq x, τð Þ = x − ρY−1 1 + αv − αð ÞY 〠
∞

q=0

ρqHq zð Þ

" #" #

,

ð34Þ
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whereHqðzÞ is He’s polynomial which represents the nonlin-

ear term zzx + zzxxx. The first three terms can be written as

H0 zð Þ = z0
∂

∂x
z0 + z0

∂
3

∂x3
z0,

H1 zð Þ = z0
∂

∂x
z1 + z1

∂

∂x
z0 + z0

∂
3

∂x3
z1 + z1

∂
3

∂x3
z0,

H1 zð Þ = z0
∂

∂x
z2 + z1

∂

∂x
z1 + z2

∂

∂x
z0

+z0
∂
3

∂x3
z2 + z1

∂
3

∂x3
z1+z2

∂
3

∂x3
z0

⋮:

ð35Þ

Comparing the like powers of ρ, we obtain

ρ0 : z0 x, τð Þ = x: ð36Þ

Now, using He’s polynomials, we get H0ðzÞ = x. The second
approximation is given by

ρ1 : z1 x, τð Þ = −Y−1 1 + αv − αð ÞY H0 zð Þ½ �½ �

= −Y−1 1 + αv − αð ÞY x½ �½ � = − xv + α × v2 − α × v
� �

= −Y−1 x 1 − αð Þv + α × v2
� �

ρ1 : z1 x, τð Þ

= −α × τ − x 1 − αð Þ:

ð37Þ

The third approximation is given by

ρ1 : z1 x, τð Þ = −Y−1 1 + αv − αð ÞY H1 zð Þ½ �½ �: ð38Þ

The second term H1ðzÞ of He’s polynomial is calculated
as

H1 zð Þ = z0
∂

∂x
z1 + z1

∂

∂x
z0 + z0

∂
3

∂x3
z1 + z1

∂
3

∂x3
z0

= x
∂

∂x
−αxτ − x 1 − αð Þð Þ + −αxτ − x 1 − αð Þð Þ

∂

∂x
x

+ x
∂
3

∂x3
−αxτ − x 1 − αð Þð Þ + −αxτ − x 1 − αð Þð Þ

∂
3

∂x3
x,

ð39Þ

After simple calculation, we get

H1 zð Þ = −2αxτ − 2x 1 − αð Þ: ð40Þ

Now, substituting Equation (40) into Equation (38), we

get

ρ2 : z2 x, τð Þ = −Y−1 1 + αv − αð ÞY −2αxτ − 2x 1 − αð Þ½ �½ �

= −Y−1 1 + αv − αð Þ −2αxτ − 2x 1 − αð Þvð Þ½ �

= 2Y−1 α3xv3 + 2αx 1 − αð Þv2 + x 1 − αð Þ2v
� �

= α2xτ2 + 4αx 1 − αð Þτ + 2x 1 − αð Þ2,

ð41Þ

Similarly, one can compute the other terms. Thus, the
approximate solution is given.

z x, τð Þ = x − αxτ − x 1 − αð Þ + α2xτ2

+ 4αx 1 − αð Þτ + 2x 1 − αð Þ2 + · · :
ð42Þ

Remark 10. The proposed method is less computational and
accurate as the obtained solution fast converges to the classi-
cal exact solution by substituting α = 1 in Equation (42), i.e.,

z x, τð Þ = x 1 − τ + τ2 − τ3+⋯
� 	

= x〠
∞

i=0

−1ð Þiτi,

z x, τð Þ =
x

1 + τ
:

ð43Þ

Equation (43) represents the exact classical solution of
(30).

The absolute errors between exact solution and approxi-
mate solution for α = 1 are given in Table 1. Also, the abso-
lute errors of α = 1 and α = 0:9 are given in Table 2. The
approximate solutions for α = 0:98 and α = 1 are represented
by zapprox and zapprox, respectively.

Example 2. Consider the nonlinear time fractional order Bur-
ger equation as

CFD
α

τz x, τð Þ + z
∂z

∂x
= η

∂
2z

∂x2
, α ∈ 0, 1ð �, ð44Þ

subjected to the initial condition zðx, 0Þ = nx.

Solution 2. Implementing Yang transform to Equation (44),
we get

Y z x, τð Þ½ � = vz x, 0ð Þ − 1 + αv − αð ÞY −η
∂
2z

∂x2
+ z

∂z

∂x
:

" #

:

ð45Þ

Applying inverse Yang transform, we obtain

z x, τð Þ = xx − Y−1 1 + αv − αð ÞY −η
∂
2z

∂x2
+ z

∂z

∂x

" #" #

: ð46Þ
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Using the HPT method, the approximate solution is

〠
∞

q=0

ρqzq x, τð Þ = nx − ρY−1 1 + αv − αð ÞY 〠
∞

q=0

ρqHq zð Þ

""

− η
∂
2z

∂x2
〠
∞

q=0

ρq zq
� 	

:

##

,

ð47Þ

where He’s polynomial HqðzÞ represents the nonlinear term

zð∂z/∂xÞ. The first three terms of HqðzÞ are given by

H0 zð Þ = z0
∂z0
∂x

,

H1 zð Þ = z0
∂z1
∂x

+ z1
∂z0
∂x

,

H1 zð Þ = z0
∂z2
∂x

+ z1
∂z1
∂x

+ z2
∂z0
∂x

,

⋮:

ð48Þ

Similarly, other terms can be calculated. Comparing the
like powers of ρ in (47), we achieve

ρ0 : z0 x, τð Þ = nx,

ρ1 : z1 x, τð Þ = −Y−1 1 + αv − αð ÞY H0 zð Þ − η
∂
2

∂x2
z0

" #" #

:

ð49Þ

Now, we compute H0ðzÞ as follows:

H0 zð Þ = z0
∂z0
∂x

= nx
∂

∂x
nxð Þ = n2x: ð50Þ

Thus, Equation (49) can be written as

ρ1 : z1 x, τð Þ = −Y−1 1 + αv − αð ÞY n2x − 0
� �� �

= −n2xY−1 v + αv2 − αv
� �

,

ρ1 : z1 x, τð Þ = −n2x 1 − α + ατð Þ:

ð51Þ

Table 3: Absolute error between exact and approximate solution of
the Example 2 at τ = 0:1 and α = 1.

x zapprox x, τð Þ zexact x, τð Þ zexact − zapprox
�

�

�

�

0.1 0.1680 0.1667 0.0013

0.2 0.3360 0.3333 0.0027

0.3 0.5040 0.5000 0.0040

0.4 0.6720 0.6667 0.0053

0.5 0.8400 0.8333 0.0067

0.6 1.0080 1.0000 0.0080

0.7 1.1760 1.1667 0.0093

0.8 1.3440 1.3333 0.0107

0.9 1.5120 1.5000 0.0120

1.0 1.6800 1.6667 0.0133

Table 4: Absolute error between approximate solution of Example
2 at α = 0:98 and α = 1.

τ zapprox x, τð Þ zapprox′ x, τð Þ zapprox − zapprox′
�

�

�

�

0.1 0.1988 0.1680 0.0308

0.2 0.3975 0.3360 0.0615

0.3 0.5963 0.5040 0.0923

0.4 0.7950 0.6720 0.1230

0.5 0.9938 0.8400 0.1538

0.6 1.1925 1.0080 0.1845

0.7 1.3913 1.1760 0.2153

0.8 1.5900 1.3440 0.2460

0.9 1.7888 1.5120 0.2768

1.0 1.9876 1.6800 0.3076

Table 1: Absolute error between exact and approximate solutions of
Example 1 at τ = 0:5 and α = 1.

x zapprox x, τð Þ zexact x, τð Þ zexact − zapprox
�

�

�

�

0.1 0.0750 0.0667 0.0083

0.2 0.1500 0.1333 0.0167

0.3 0.2250 0.2000 0.0250

0.4 0.3000 0.2667 0.0333

0.5 0.3750 0.3333 0.0417

0.6 0.4500 0.4000 0.0500

0.7 0.5250 0.4667 0.0583

0.8 0.6000 0.5333 0.0667

0.9 0.6750 0.6000 0.0750

1 0.7500 0.6667 0.08333

Table 2: Absolute error between approximate solution of Example
1 at α = 0:98 and α = 1.

x zapprox x, τð Þ zapprox′ x, τð Þ zexact − zapprox′
�

�

�

�

0.1 0.0770 0.07500 0.0020

0.2 0.1540 0.1500 0.0040

0.3 0.2310 0.2250 0.0060

0.4 0.3080 0.3000 0.0080

0.5 0.3851 0.3750 0.0101

0.6 0.4621 0.4500 0.0121

0.7 0.5391 0.5250 0.0141

0.8 0.6161 0.6000 0.0161

0.9 0.6931 0.6750 0.0181

1.0 0.7701 0.7500 0.0201
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Similarly, the third approximation is given by

ρ2 : z2 x, τð Þ = 2n3x α − 2α + α2
τ2

2
− 2α α − 1ð Þτ + 1

� �

:

ð52Þ

One can calculate more terms. The acquired series solution is

represented as follows:

z x, τð Þ = nx − n2x 1 − α + ατð Þ + 2n3x

� α − 2α + α2
τ2

2
− 2α α − 1ð Þτ + 1

� �

+⋯:

ð53Þ

Remark 11. The proposed method is less computational and
accurate as the obtained solution fastly converges to the
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Figure 1: Approximate solution zðx, τÞ for fractional orders α = 0:7 and 0.8.
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Figure 2: Approximate solution zðx, τÞ for fractional orders α = 0:9 and 1.
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classical exact solution by substituting α = 1 in Equation
(53), i.e.,

z x, τð Þ = nx 1 − nτ + n2τ2 − n3τ3+⋯
� 	

= x〠
∞

i=0

−1ð Þini+1τi,

z x, τð Þ =
nx

1 + nτ
:

ð54Þ

Equation (54) is the classical solution of the considered
problem.

The absolute errors between exact solution and approxi-
mate solution for α = 1 and τ = 0:5 are given in Table 3. Also,
the absolute errors of for x = 0:5, α = 1, and α = 0:9 are given
in Table 4. The approximate solutions for α = 0:98 and α = 1

are represented by zapprox and zapprox′ , respectively.

Remark 12. The proposed YTHPMmethod is a powerful new
method which needs less computation time and is much
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Figure 3: Approximate solution zðx, τÞ for fractional orders α = 0:7 and 0.8.
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Figure 4: Approximate solution zðx, τÞ for fractional orders α = 0:9 and 1.
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easier and more convenient than the other methods like
HAM (homotopy analysis method). Computational time
means HPM takes less time, to calculate the iterative terms
for the series solution, because HPM only depends on single
parameter. However, HAM depends on two parameters, i.e.,

h (auxiliary parameter) and p (embedding parameter). So,
HAM takes a little more time for calculating the successive
terms of the series solution. Also, the convergence of the
HAM depends on hwhich is different for various approxima-
tions. When h = −1 in HAM, then the solution directly
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Figure 5: Comparison between exact and approximate solutions of Example 1.
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Figure 6: Comparison between exact and approximate solutions of the Example 2.
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converges to the HPM solution; otherwise, more terms will
be calculated than HPM case. So, computational labor is
much in HAM instead of HPM. Actually, the Yang transform
is closely related to Laplace transform which is convergent.
Therefore, Yang transform combined with HPM is an effi-
cient and valid computational method for solving DEs
because the Yang transform allows one in many situations
to overcome the deficiency mainly caused by unsatisfied
boundary or initial conditions that appear in other semiana-
lytical methods such as HAM. The comparison between
HPM and HAM is already given in [25, 26].

5. Conclusion

We used a novel method to solve approximately nonlinear
PDEs of fractional order in the Caputo-Fabrizio context in
this paper. The Yang homotopy perturbation transform
method (YHPTM) is a new method that combines the Yang
transform and the HPM. The nonlinear term was decom-
posed into He’s polynomial using the HPM. A general proce-
dure for solving nonlinear PDEs described by the CF
derivative has been developed. We have demonstrated the
estimated solution’s convergence and provided a result for
the absolute error calculation. We solved well-known nonlin-
ear PDEs such as the KdV equation and Burger’s equation to
test the accuracy and validity of the proposed technique. By
substituting α = 1, we were able to achieve the required solu-
tion in series form, which quickly converges to the exact solu-
tion of the problems, as seen in the remarks following each
problem’s solution (also see Figures 1–4). We determined
the numerical values of the absolute errors between the esti-
mated and exact solutions, indicating that the exact and
approximate solutions are in agreement. We have shown
3D graphs that demonstrate the suggested technique’s high
precision and speed of convergence (see Figures 5 and 6).
The approach also has the advantage of not requiring linear-
ization, discretization, or additional memory. As a result, we
have concluded that the proposed novel method is effective,
reliable, and computationally effective. This approach will
be used to solve the Atangana-Baleanu fractional-order
PDEs. Further, we will use the Yang transform with HAM
to solve nonlinear PDEs of fractional order in the future.
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