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Abstract 

Hough transform (HT) is a well estab-
lished method for curve detection and 
recognition due to its robustness and in-
sensitiveness to noise, and its parallel 
processing capability. However, HT is 
quite time-consuming. In this paper, an 
eliminating particle swarm optimization 
(EPSO) algorithm is studied to improve 
the speed of a Hough transform. The so-
lutions of Hough transformation are con-
sidered as the particles positions, and the 
EPSO algorithm searches the optimum 
solution by eliminating the “weakest” 
particles to speed up the computation. An 
accumulation array in Hough transforma-
tion is utilized as a fitness function of the 
EPSO algorithm. The experiments on 
numerous images show that the proposed 
approach can be used to detect curves or 
contours of both noise-free and noisy im-
ages with much better performance. Es-
pecially, for noisy images, it can archive 
much better results than that obtained by 
using the existing HT algorithms. 

Keywords: Hough transform, Particle 
swarm optimization, Eliminating PSO, 
Curve detection. 

1. Introduction 

Hough transform (HT) is an important 
and popular curve detection method 
which could be employed to recognize 
and detect analytically defined curves, 
including lines, circles, etc. [1, 2], and the 
generalized Hough transform can be used 
to detect arbitrary curves under certain 
conditions [3-5]. 

Hough transform is very robust in the 
presence of additional structures as well 
as being insensitive to noise, suitable to 
parallel processing and could search sev-
eral curves in one process. It has been ap-
plied widely to image processing, patter 
recognition and image vision, motion de-
tection [6, 7], temporal signal monitoring 
[8], chirp detection [9], character recogni-
tion[10], defect detection [11], etc. 

HT consists of three main steps. First, a 
pixel is transformed into a parameterized 
curve. Second, valid curve’s parameters 
are binned into an accumulator where the 
numbers in a bin are defined as the 
curves’ score. Finally, curves with the 
scores higher than the threshold are de-
tected [12]. 

The conventional HT treats all angles 
equally, which results in heavy computa-
tion, huge parameter space, and less-
salient peaks. Various literatures were 
proposed to modify the conventional HT. 
They mainly focus on how to select an-
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gles to conduct the transform accurately 
and efficiently. 

HT is insensitive to missing parts of 
lines, to noise, and to other non-line 
structure co-existing in the image, and it 
may search for several curves in one pass 
of the process, however, HT suffers sev-
eral flaws [13]: 
(1) Huge computation and memory stor-
age 
(2) Low speed 
(3) Depending on the number of parame-
ters and the split of the parameter space 
(4) Difficulties in finding local maxima if 
peak is not properly defined. 

In order to reduce the computational 
time and improve the performance on 
noisy images, in this paper, an eliminat-
ing particle swarm optimization Hough 
transformation (EPSOHT) algorithm is 
studied. In this method, the solutions of 
Hough transformation are considered as 
the particles positions, and EPSO algo-
rithm searches the optimum solution by 
eliminating the “weakest” particles to 
speed up the computation. An accumula-
tion array in Hough transformation is util-
ized as a fitness function of the EPSO al-
gorithm. The experiments on numerous 
images demonstrate that the proposed ap-
proach can detect curves with better accu-
racy and higher speed, especially, in 
noisy cases. 

2. Proposed approach 

2.1. Particle swarm optimization algo-
rithm 

Particle swarm optimization (PSO) algo-
rithm is an evolutionary computation 
technique utilizing random search in-
spired by the mechanics of natural selec-
tion and genetics to emulate the evolu-
tionary behaviors of biological systems. 
The PSO was introduced in [14], which 
simulated simplified swarm social models 
such as bird flocking and fish schooling. 

PSO has a fitness function to compute 
each position’s fitness value [14]. The 
position with the highest fitness value in 
the entire run is called the global best so-
lution BestP . Each particle also tracks its 
highest fitness value. The location of this 
value is called the personal best solution 

iP . The algorithm involves: casting a 
population of particles over the search 
space and remembering the best solution 
encountered. At each iteration, every par-
ticle adjusts its velocity vector based on 
its momentum and the influence of both 
its best solution and the global best solu-
tions of its neighbors, then a new point is 
examined. The studies show that the PSO 
has more chances to “fly” into better so-
lution areas quickly; hence, it can dis-
cover a reasonable solution much faster 
than other evolutionary algorithms. The 
detail of PSO can be found in [14, 15]: 

Assume iP  represents the ith particle, 
whose position and velocity in a d-
dimensional space are defined as idX  and 

idV , respectively. The position and veloc-
ity are updated according to the following 
formulas: 

1

2

( ) ( 1) ()( ( 1) ( 1))
()( ( 1) ( 1))

id id id i

ig i

V t V t c rand P t X t
c rand P t X t

ω= − + − − −
+ − − −

                                                         (1) 
( ) ( 1) ( 1)id id idX t X t V t= − + −  (2) 

where ( )idX t  is the position of the ith 
particle in a d-dimensional space at time 
step t, and iV  is the velocity of ( )iP t . Pa-
rameters 1c  and 2c  are learning factors, 
usually, 1 2 2c c= = , ω  is an inertia 
weight and ()rand is a random function. 
2.2. Eliminating PSO algorithm  

A modified PSO, eliminating PSO 
(EPSO), is based on the idea of survival 
of the superior and weeding out the infe-
rior. M particles are initialized. The ve-
locities and positions are updated accord-
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ingly, and the positions’ fitness values are 
calculated and sorted in a list with the de-
scending order. Then L particles are 
eliminated whose fitness values are in the 
last L positions of the list. This will re-
duce the computational time, while the 
precision of the solution is not affected. 
The process is iterated until the maximum 
iteration number is reached or the mini-
mum error condition is satisfied. 

The procedure of EPSO is described 
below: 
(1) Select M  particles (primary popula-
tion number) and put them into the pri-
mary swarm 1 1(1) { , , }MS P P P= , and 
initialize the positions idX  of swarm S  
randomly; 
(2) Randomly initialize the velocities idV ; 
(3) Evaluate the fitness of each particle 

( ( ))idFit X t ; 
(4) Compare the personal best of each 
particle in the new swarm ( 1)S t +  with 
its current fitness value, and set ( )idP t  to 
the better one: 

( ) ( ( )) ( ( ))
( 1)

( ) ( ( )) ( ( ))
id id id

id
id id id

P t Fit P t Fit X t
P t

X t Fit P t Fit X t
>⎧

+ = ⎨ ≤⎩
 

(5) Set the global best ( 1)gdP t +  to the 
position of the particle with the best fit-
ness in the swarm; 
(6) Sort the particles according to the fit-
ness values. A new swarm ( 1)S t +  is ob-
tained by eliminating the L  particles 
whose fitness values are in the last L  po-
sitions of the list; 
(7) Change the velocity vector 

( 1)idV t + for each particle according to Eq. 
(1); 
(8) Update each particle position in 

( 1)S t + ; 
(9) Go to step (3), and repeat the process 
until the maximum iteration number is 
reached. 
2.3. EPSO Hough transformation 

EPSO Hough transformation (EPSOHT) 
is a novel Hough transformation based on 
EPSO algorithm. In this method, the pa-
rameters of a solution after Hough trans-
formation are considered as the particles 
positions, and EPSO algorithm is em-
ployed to search the optimum solution by 
eliminating the “weakest” particles to 
speed up the computation. An accumula-
tion array in Hough transformation is util-
ized as a fitness function of EPSO algo-
rithm. 

Hough transformation is usually em-
ployed for circle detection. In circle de-
tection, three parameters, 0x (the x-
coordinate of the center of the circle), 

0y (the y-coordinate of the center of the 
circle), and r ( the radius of the circle) 
should be determined. Here, Let us use 
circle detection as an example to demon-
strate the procedure of EPSOHT. 

The procedure of circle detection using 
EPSOHT is described below: 
(1) Select M  particles (primary popula-
tion number) and put them into the pri-
mary swarm 1 1(1) { , , }MS P P P= , deter-
mine the parameters in Hough transfor-
mation, 0x (the x-coordinate of the center 
of the circle), 0y (the y-coordinate of the 
center of the circle), and r ( the radius of 
the circle); 
(2) Construct an edge set E ; 
(3) Select three points 1P  , 2P  and 3P  in 
E  randomly, and calculate a circle’s pa-
rameters determined by these three points, 
finally, initialize a particle’s position us-
ing the circle’s parameters idX (positions 
of swarm S ); 
(4) Initialize all particles in the primary 
swarm using the method in step (3); 
(5) Randomly initialize the velocities idV ; 
(6) Evaluate the fitness of each parti-
cle 0 0( ( ; , , ))idFit X t x y r : 

0 0

0 0 0 0

( ( ; , , ))
( , , ) #( ( , , ))

idFit X t x y r
Accumlator x y r x y rδ= =

 

Proceedings of the 11th Joint Conference on Information Sciences (2008) 
                                          Published by Atlantis Press 
                                                    © the authors 
                                                                3



0 0

0 0 0 0

1
( , , )

0

x x and y y
x y r and r r

otherwise
δ

= =⎧
⎪= =⎨
⎪
⎩

 

(7) Compare the personal best of each 
particle in the new swarm ( 1)S t +  with 
its current fitness value, and set ( )idP t  to 
the better one. 

( ) ( ( )) ( ( ))
( 1)

( ) ( ( )) ( ( ))
id id id

id
id id id

P t Fit P t Fit X t
P t

X t Fit P t Fit X t
>⎧

+ = ⎨ ≤⎩
 

(8) Set the global best ( 1)gdP t +  to the 
position of the particle with the best fit-
ness in the swarm; 
(9) Sort the particles according to the fit-
ness values. A new swarm ( 1)S t +  is ob-
tained by eliminating the L  particles 
whose fitness values are in the last L  po-
sitions of the list; 
(10) Change the velocity vector 

( 1)idV t + for each particle according to Eq. 
(1); 
(11) Update each particle position in 

( 1)S t + ; 
(12) Go to step (5), and repeat the process 
until the maximum iteration number is 
reached or the best fitness value is greater 
than a threshold value. 

3. Experimental results 

3.1. Experiments on NOISE FREE 
images 

In this section, EPSOHT is compared 
with the random Hough Transformation 
(RHT) [13]. In our experiments, primary 
particles number M  is 100 and eliminat-
ing particle number L  is 10. 

Eight circles with different radii are 
shown in Fig. 1. The comparison of com-
putational time of EPSOHT and RHT is 
shown in Fig. 2. In Fig. 2, the computa-
tional times of the EPSOHT and RHT are 
described by black and gray bars, respec-
tively. As shown in Fig. 2, the proposed 
method could reduce the computational 

time greatly compared with SHT, and 
achieves the same speed as RHT for the 
“clean” images. 

In order to evaluate the accuracy of the 
circle detection results, a metric, error 
sum Es , is defined to measure the errors 
and differences between the detection re-
sults and true results. 

det det det( ) ( ) ( )true true trueEs abs x x abs y y abs r r= − + − + − (3) 
where truex , truey  and truer  are the true 
coordinates of circle’s center and radius, 
while  detx , dety  and detr  are the detected 
coordinates of circle’s center and radius, 
respectively. 

    
(a)      (b)          (c)                        (d) 

   
(e)                   (f) 

 
 (g) 

  
(h) 

Fig. 1 Eight images having circles with differ-
ent sizes. 
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(a) 100X100, (b) 150X150, (c) 200X200, (d) 
300X300, (e) 350X350, (f) 400X400, (g) 

450X450, (h) 500X500. 
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Fig. 2 The computational times of EPSOHT 

and RHT. 
The average of EPSOHT method’s er-

ror sum is 2.9 and the average of compu-
tational time is 0.1152 second. 

The EPSOHT has the error sum nearly 
the same as RHT, but reduces the compu-
tational time by 42.53% of RHT’s com-
putational time in average, especially, for 
large size circles. The algorithm of EP-
SOHT is implemented using Matlab 7.1 
and the program was executed on a PC 
with a single processing unit AMD 
XP2500 and 256MB random access 
memory. The average execution time was 
0.1152 second per image, whose average 
size is 275X275, while the average exe-
cution time using RHT was 0.1992 sec-
ond per image, i.e., EPSOHT is twice 
faster. 
3.2. Experiments on images with dif-

ferent noise levels 

An image, whose size is 256X256, has a 
circle in the center, added different kinds 
of noise (Gaussian, Salt and pepper, 
Speckle) with different noise levels. Then, 
the noisy images are processed by EP-
SOHT and RHT, and the detection results 
and computational times are compared. 

The images having Gaussian noise at 
different levels are shown in Fig. 3, and 
Fig. 4 shows the computational time of 
EPSOHT and RHT described by black 
and gray bars, respectively.  

     
(a)                   (b)                     (c) 

     
(d)        (e)       (f) 

   
(g)  (h) 

Fig. 3 Images with Gaussian noise, whose 
mean m=0 and standard deviations v having 

different values: (a) v = 10, (b) v = 30, (c) v = 
40, (d) v = 50, (e) v = 60, (f) v = 80, (g) v = 90, 

(h) v = 100. 
From the experimental results, the pro-

posed EPSOHT achieves better perform-
ance in detection speed and detection ac-
curacy.  
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Fig. 4 The computational times of EPSOHT 
and RHT for processing the images in Fig. 3. 

4. Conclusions 

In this paper, the EPSOHT algorithm is 
developed to improve the processing 
speed. The parameters of a solution in 
EPSOHT are considered as the particles 
positions, and the EPSO is employed to 
search the optimum solution by eliminat-
ing the “weaker” particles to speed up the 
computation. The experiments on numer-
ous images show that the proposed ap-
proach can detect curves of “clean” or 
noisy images with better accuracy and 
higher speed. The proposed approach 
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may find wide applications in image 
processing, pattern recognition and com-
puter vision, especially, in real-time proc-
essing cases. 
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