
A NOVEL HOUGH TRANSFORM
BASED ON ELIMINATING PARTICLE

SWARM OPTIMIZATION AND ITS
APPLICATIONS

Yanhui Guo 1, 2 H.D. Cheng1,2 , , Wei Zhao1 , Yingtao Zhang1
1School of Computer Science and technology, Harbin Institute of Technology, Harbin,

China, 150001
2Department of Computer Science, Utah State University, Logan, UT 84322 U.S.A.

Abstract

Hough transform (HT) is a well estab-
lished method for curve detection and
recognition due to its robustness and in-
sensitiveness to noise, and its parallel
processing capability. However, HT is
quite time-consuming. In this paper, an
eliminating particle swarm optimization
(EPSO) algorithm is studied to improve
the speed of a Hough transform. The so-
lutions of Hough transformation are con-
sidered as the particles positions, and the
EPSO algorithm searches the optimum
solution by eliminating the “weakest”
particles to speed up the computation. An
accumulation array in Hough transforma-
tion is utilized as a fitness function of the
EPSO algorithm. The experiments on
numerous images show that the proposed
approach can be used to detect curves or
contours of both noise-free and noisy im-
ages with much better performance. Es-
pecially, for noisy images, it can archive
much better results than that obtained by
using the existing HT algorithms.

Keywords: Hough transform, Particle
swarm optimization, Eliminating PSO,
Curve detection.

1. Introduction

Hough transform (HT) is an important
and popular curve detection method
which could be employed to recognize
and detect analytically defined curves,
including lines, circles, etc. [1, 2], and the
generalized Hough transform can be used
to detect arbitrary curves under certain
conditions [3-5].

Hough transform is very robust in the
presence of additional structures as well
as being insensitive to noise, suitable to
parallel processing and could search sev-
eral curves in one process. It has been ap-
plied widely to image processing, patter
recognition and image vision, motion de-
tection [6, 7], temporal signal monitoring
[8], chirp detection [9], character recogni-
tion[10], defect detection [11], etc.

HT consists of three main steps. First, a
pixel is transformed into a parameterized
curve. Second, valid curve’s parameters
are binned into an accumulator where the
numbers in a bin are defined as the
curves’ score. Finally, curves with the
scores higher than the threshold are de-
tected [12].

The conventional HT treats all angles
equally, which results in heavy computa-
tion, huge parameter space, and less-
salient peaks. Various literatures were
proposed to modify the conventional HT.
They mainly focus on how to select an-

Proceedings of the 11th Joint Conference on Information Sciences (2008)
 Published by Atlantis Press
 © the authors
 1

gles to conduct the transform accurately
and efficiently.

HT is insensitive to missing parts of
lines, to noise, and to other non-line
structure co-existing in the image, and it
may search for several curves in one pass
of the process, however, HT suffers sev-
eral flaws [13]:
(1) Huge computation and memory stor-
age
(2) Low speed
(3) Depending on the number of parame-
ters and the split of the parameter space
(4) Difficulties in finding local maxima if
peak is not properly defined.

In order to reduce the computational
time and improve the performance on
noisy images, in this paper, an eliminat-
ing particle swarm optimization Hough
transformation (EPSOHT) algorithm is
studied. In this method, the solutions of
Hough transformation are considered as
the particles positions, and EPSO algo-
rithm searches the optimum solution by
eliminating the “weakest” particles to
speed up the computation. An accumula-
tion array in Hough transformation is util-
ized as a fitness function of the EPSO al-
gorithm. The experiments on numerous
images demonstrate that the proposed ap-
proach can detect curves with better accu-
racy and higher speed, especially, in
noisy cases.

2. Proposed approach

2.1. Particle swarm optimization algo-
rithm

Particle swarm optimization (PSO) algo-
rithm is an evolutionary computation
technique utilizing random search in-
spired by the mechanics of natural selec-
tion and genetics to emulate the evolu-
tionary behaviors of biological systems.
The PSO was introduced in [14], which
simulated simplified swarm social models
such as bird flocking and fish schooling.

PSO has a fitness function to compute
each position’s fitness value [14]. The
position with the highest fitness value in
the entire run is called the global best so-
lution BestP . Each particle also tracks its
highest fitness value. The location of this
value is called the personal best solution

iP . The algorithm involves: casting a
population of particles over the search
space and remembering the best solution
encountered. At each iteration, every par-
ticle adjusts its velocity vector based on
its momentum and the influence of both
its best solution and the global best solu-
tions of its neighbors, then a new point is
examined. The studies show that the PSO
has more chances to “fly” into better so-
lution areas quickly; hence, it can dis-
cover a reasonable solution much faster
than other evolutionary algorithms. The
detail of PSO can be found in [14, 15]:

Assume iP represents the ith particle,
whose position and velocity in a d-
dimensional space are defined as idX and

idV , respectively. The position and veloc-
ity are updated according to the following
formulas:

1

2

() (1) ()((1) (1))
()((1) (1))

id id id i

ig i

V t V t c rand P t X t
c rand P t X t

ω= − + − − −
+ − − −

 (1)
() (1) (1)id id idX t X t V t= − + − (2)

where ()idX t is the position of the ith
particle in a d-dimensional space at time
step t, and iV is the velocity of ()iP t . Pa-
rameters 1c and 2c are learning factors,
usually, 1 2 2c c= = , ω is an inertia
weight and ()rand is a random function.
2.2. Eliminating PSO algorithm

A modified PSO, eliminating PSO
(EPSO), is based on the idea of survival
of the superior and weeding out the infe-
rior. M particles are initialized. The ve-
locities and positions are updated accord-

Proceedings of the 11th Joint Conference on Information Sciences (2008)
 Published by Atlantis Press
 © the authors
 2

ingly, and the positions’ fitness values are
calculated and sorted in a list with the de-
scending order. Then L particles are
eliminated whose fitness values are in the
last L positions of the list. This will re-
duce the computational time, while the
precision of the solution is not affected.
The process is iterated until the maximum
iteration number is reached or the mini-
mum error condition is satisfied.

The procedure of EPSO is described
below:
(1) Select M particles (primary popula-
tion number) and put them into the pri-
mary swarm 1 1(1) { , , }MS P P P= , and
initialize the positions idX of swarm S
randomly;
(2) Randomly initialize the velocities idV ;
(3) Evaluate the fitness of each particle

(())idFit X t ;
(4) Compare the personal best of each
particle in the new swarm (1)S t + with
its current fitness value, and set ()idP t to
the better one:

() (()) (())
(1)

() (()) (())
id id id

id
id id id

P t Fit P t Fit X t
P t

X t Fit P t Fit X t
>⎧

+ = ⎨ ≤⎩

(5) Set the global best (1)gdP t + to the
position of the particle with the best fit-
ness in the swarm;
(6) Sort the particles according to the fit-
ness values. A new swarm (1)S t + is ob-
tained by eliminating the L particles
whose fitness values are in the last L po-
sitions of the list;
(7) Change the velocity vector

(1)idV t + for each particle according to Eq.
(1);
(8) Update each particle position in

(1)S t + ;
(9) Go to step (3), and repeat the process
until the maximum iteration number is
reached.
2.3. EPSO Hough transformation

EPSO Hough transformation (EPSOHT)
is a novel Hough transformation based on
EPSO algorithm. In this method, the pa-
rameters of a solution after Hough trans-
formation are considered as the particles
positions, and EPSO algorithm is em-
ployed to search the optimum solution by
eliminating the “weakest” particles to
speed up the computation. An accumula-
tion array in Hough transformation is util-
ized as a fitness function of EPSO algo-
rithm.

Hough transformation is usually em-
ployed for circle detection. In circle de-
tection, three parameters, 0x (the x-
coordinate of the center of the circle),

0y (the y-coordinate of the center of the
circle), and r (the radius of the circle)
should be determined. Here, Let us use
circle detection as an example to demon-
strate the procedure of EPSOHT.

The procedure of circle detection using
EPSOHT is described below:
(1) Select M particles (primary popula-
tion number) and put them into the pri-
mary swarm 1 1(1) { , , }MS P P P= , deter-
mine the parameters in Hough transfor-
mation, 0x (the x-coordinate of the center
of the circle), 0y (the y-coordinate of the
center of the circle), and r (the radius of
the circle);
(2) Construct an edge set E ;
(3) Select three points 1P , 2P and 3P in
E randomly, and calculate a circle’s pa-
rameters determined by these three points,
finally, initialize a particle’s position us-
ing the circle’s parameters idX (positions
of swarm S);
(4) Initialize all particles in the primary
swarm using the method in step (3);
(5) Randomly initialize the velocities idV ;
(6) Evaluate the fitness of each parti-
cle 0 0((; , ,))idFit X t x y r :

0 0

0 0 0 0

((; , ,))
(, ,) #((, ,))

idFit X t x y r
Accumlator x y r x y rδ= =

Proceedings of the 11th Joint Conference on Information Sciences (2008)
 Published by Atlantis Press
 © the authors
 3

0 0

0 0 0 0

1
(, ,)

0

x x and y y
x y r and r r

otherwise
δ

= =⎧
⎪= =⎨
⎪
⎩

(7) Compare the personal best of each
particle in the new swarm (1)S t + with
its current fitness value, and set ()idP t to
the better one.

() (()) (())
(1)

() (()) (())
id id id

id
id id id

P t Fit P t Fit X t
P t

X t Fit P t Fit X t
>⎧

+ = ⎨ ≤⎩

(8) Set the global best (1)gdP t + to the
position of the particle with the best fit-
ness in the swarm;
(9) Sort the particles according to the fit-
ness values. A new swarm (1)S t + is ob-
tained by eliminating the L particles
whose fitness values are in the last L po-
sitions of the list;
(10) Change the velocity vector

(1)idV t + for each particle according to Eq.
(1);
(11) Update each particle position in

(1)S t + ;
(12) Go to step (5), and repeat the process
until the maximum iteration number is
reached or the best fitness value is greater
than a threshold value.

3. Experimental results

3.1. Experiments on NOISE FREE
images

In this section, EPSOHT is compared
with the random Hough Transformation
(RHT) [13]. In our experiments, primary
particles number M is 100 and eliminat-
ing particle number L is 10.

Eight circles with different radii are
shown in Fig. 1. The comparison of com-
putational time of EPSOHT and RHT is
shown in Fig. 2. In Fig. 2, the computa-
tional times of the EPSOHT and RHT are
described by black and gray bars, respec-
tively. As shown in Fig. 2, the proposed
method could reduce the computational

time greatly compared with SHT, and
achieves the same speed as RHT for the
“clean” images.

In order to evaluate the accuracy of the
circle detection results, a metric, error
sum Es , is defined to measure the errors
and differences between the detection re-
sults and true results.

det det det() () ()true true trueEs abs x x abs y y abs r r= − + − + − (3)
where truex , truey and truer are the true
coordinates of circle’s center and radius,
while detx , dety and detr are the detected
coordinates of circle’s center and radius,
respectively.

(a) (b) (c) (d)

(e) (f)

 (g)

(h)

Fig. 1 Eight images having circles with differ-
ent sizes.

Proceedings of the 11th Joint Conference on Information Sciences (2008)
 Published by Atlantis Press
 © the authors
 4

(a) 100X100, (b) 150X150, (c) 200X200, (d)
300X300, (e) 350X350, (f) 400X400, (g)

450X450, (h) 500X500.

1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0.3

Images

C
om

pu
ta

tio
na

l T
im

es
 (s

)

EPSOHT
RHT

Fig. 2 The computational times of EPSOHT

and RHT.
The average of EPSOHT method’s er-

ror sum is 2.9 and the average of compu-
tational time is 0.1152 second.

The EPSOHT has the error sum nearly
the same as RHT, but reduces the compu-
tational time by 42.53% of RHT’s com-
putational time in average, especially, for
large size circles. The algorithm of EP-
SOHT is implemented using Matlab 7.1
and the program was executed on a PC
with a single processing unit AMD
XP2500 and 256MB random access
memory. The average execution time was
0.1152 second per image, whose average
size is 275X275, while the average exe-
cution time using RHT was 0.1992 sec-
ond per image, i.e., EPSOHT is twice
faster.
3.2. Experiments on images with dif-

ferent noise levels

An image, whose size is 256X256, has a
circle in the center, added different kinds
of noise (Gaussian, Salt and pepper,
Speckle) with different noise levels. Then,
the noisy images are processed by EP-
SOHT and RHT, and the detection results
and computational times are compared.

The images having Gaussian noise at
different levels are shown in Fig. 3, and
Fig. 4 shows the computational time of
EPSOHT and RHT described by black
and gray bars, respectively.

(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 3 Images with Gaussian noise, whose
mean m=0 and standard deviations v having

different values: (a) v = 10, (b) v = 30, (c) v =
40, (d) v = 50, (e) v = 60, (f) v = 80, (g) v = 90,

(h) v = 100.
From the experimental results, the pro-

posed EPSOHT achieves better perform-
ance in detection speed and detection ac-
curacy.

1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5

Images

C
om

pu
ta

tio
na

l T
im

es
 (s

)

EPSOHT
RHT

Fig. 4 The computational times of EPSOHT
and RHT for processing the images in Fig. 3.

4. Conclusions

In this paper, the EPSOHT algorithm is
developed to improve the processing
speed. The parameters of a solution in
EPSOHT are considered as the particles
positions, and the EPSO is employed to
search the optimum solution by eliminat-
ing the “weaker” particles to speed up the
computation. The experiments on numer-
ous images show that the proposed ap-
proach can detect curves of “clean” or
noisy images with better accuracy and
higher speed. The proposed approach

Proceedings of the 11th Joint Conference on Information Sciences (2008)
 Published by Atlantis Press
 © the authors
 5

may find wide applications in image
processing, pattern recognition and com-
puter vision, especially, in real-time proc-
essing cases.

5. Acknowledgement

The work was supported, in part,
by Natural Scientific Research Inno-
vation Foundation in Harbin Institute
of Technology, Project
HIT.NSRIF.2008.48, and Natural
Science Foundation of China
No.60873142 and No. 30670546.

6. References

[1] V. F. Leavers, "Which Hough trans-
form?" CVGIP: Image Underst., vol.
58, no. 2, pp. 250-264, 1993.

[2] J. Illingworth and J. Kittler, "A sur-
vey of the Hough transform," Comput.
Vision Graph. Image Process., vol.
44, no. 1, pp. 87-116, 1988.

[3] Euijin Kim, M. Haseyama, and H.
Kitajima, "Fast line extraction from
digital images using line segments,"
Systems and Computers in Japan, vol.
34, no. 10, pp. 76-89, 2003.

[4] T. Achalakul and S. Madarasmi, "A
concurrent modified algorithm for
Generalized Hough Transform," pp.
965, 2002.

[5] A. Sakai, Y. Nomura, and Y. Mitsuya,
"Matching for affined transformed
pictures using Hough planes,"
MVA'96 IAPR Workshop on Ma-
chine Vision Applications, pp. 381-
384, 1996.

[6] H. Kalviainen, " Detecting multiple
moving objects by the randomized
Hough transform, in time-varying im-
age processing and moving object
recognition," Proc. 4th Internat.
Workshop on Time-Varying Image
Processing and Moving Object Rec-
ognition, pp. 375-382., 1993.

[7] H. Kalviainen, E. Oja, and L. Xu, "
Motion detection using randomized
Hough transform," Proc. 7th Scandi-
navian Conf. on Image Analysis, pp.
72-79, 1991.

[8] A. Imiya, "Detection of piecewise-
linear signals by the randomized
Hough transform," Pattern Recogni-
tion Letters, vol. 17, no. 7, pp. 771-
776, 1996.

[9] Y. Sun and P. Willett, "The Hough
transform for long chirp detection,"
Proc. 40th IEEE Conf. on Decision
and Control (Cat. No. 01CH37228),
pp. 958-963, 2001.

[10] O. Shiku, H. Takahira, A. Na-
kamura, and H. Kuroda, "A method
for character string extraction from
binary images using Hough trans-
form," MVA'96 IAPR Workshop on
Machine Vision Applications, pp.
498-501, 1996.

[11] T. M. Meksen, R.Drai, and
F.Sellidj., "Pattern Recognition in Ul-
trasonic Imagery Using the Hough
Transform," World Congress on Ul-
trasonics, Paris, 2003.

[12] L. G. Shapiro and G. C. Stock-
man, Computer vision: Prentice Hall
Upper Saddle River, NJ, 2001.

[13] L. Xu, E. Oja, and P. Kultanen,
"A new curve detection method: ran-
domized Hough transform (RHT),"
Pattern Recognition Letters, vol. 11,
no. 5, pp. 331-338, 1990.

[14] J. Kennedy and R. Eberhart,
"Particle swarm optimization," Neu-
ral Networks, 1995. Proceedings.,
IEEE International Conference on, pp.
1942-1948, 1995.

[15] R. C. Eberhart and Y. Shi, "Par-
ticle swarm optimization: develop-
ments, applications and resources,"
Proceedings of the 2001 Congress on
Evolutionary Computation, vol. 1, pp.
81-86, 2001.

Proceedings of the 11th Joint Conference on Information Sciences (2008)
 Published by Atlantis Press
 © the authors
 6

