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The survival of human beings is inseparable from microbes. More and more studies

have proved that microbes can affect human physiological processes in various

aspects and are closely related to some human diseases. In this paper, based on

known microbe-disease associations, a bidirectional weighted network was constructed

by integrating the schemes of normalized Gaussian interactions and bidirectional

recommendations firstly. And then, based on the newly constructed bidirectional

network, a computational model called BWNMHMDA was developed to predict potential

relationships between microbes and diseases. Finally, in order to evaluate the superiority

of the new prediction model BWNMHMDA, the framework of LOOCV and 5-fold cross

validation were implemented, and simulation results indicated that BWNMHMDA could

achieve reliable AUCs of 0.9127 and 0.8967 ± 0.0027 in these two different frameworks

respectively, which is outperformed some state-of-the-art methods. Moreover, case

studies of asthma, colorectal carcinoma, and chronic obstructive pulmonary disease

were implemented to further estimate the performance of BWNMHMDA. Experimental

results showed that there are 10, 9, and 8 out of the top 10 predicted microbes having

been confirmed by related literature in these three kinds of case studies separately,

which also demonstrated that our new model BWNMHMDA could achieve satisfying

prediction performance.

Keywords: microbe, disease, association prediction, bidirectional weighted network,

bidirectional recommendations

1. INTRODUCTION

Microorganisms are small in shape, simple in structure, and closely related to human beings.
The development of modern bioinformatics and sequencing technologies has led to the study
of microorganisms living in the ocean, soil, human body, and other places by the scientific
community (Gilbert and Dupont, 2011). Among them, eukaryotes, archea, bacteria, and viruses
are human-related microorganisms, collectively known as human microbiota (Turnbaugh et al.,
2007; Methé et al., 2012). Microorganisms exist in large quantities in humans, nearly 10 times that
of human cells (Sender et al., 2016). According to recent researches, there are nearly 1,014 bacterial
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cells in the human body with more than 10,000 kinds of
microorganisms, which provide different degrees of metabolic
activity (Bhavsar et al., 2007; Turnbaugh et al., 2007; Shah et al.,
2016). Parasitic in the human body, these microbes do not harm
the host, but are interdependent with human beings and are
called “forgotten organs” (Quigley, 2013). With the continuous
advancement of high-throughput sequencing technology and
analytical systems, people have gradually realized the importance
of microorganisms in the investigation. According to the
survey, microbes participate in a series of human life activities,
such as harvesting and storing energy, regulating the immune
system, protecting the human body from foreignmicroorganisms
and pathogens, participating in the digestion and absorption
of carbohydrates and promoting metabolism (Guarner and
Malagelada, 2003; Gill et al., 2006). Therefore, once the microbes
become “unhealthy” in the human body, the human body
will receive their effects leading to physiological disorders and
even illness.

Humans and commensal microbiota have formed a close
symbiotic relationship in the process of continuous evolution.
The microbiota will be affected by the host and living
environment. It has been reported that diet affects the structure
and activity of human intestinal microbes (Duncan et al., 2006;
Ley et al., 2006; Walker et al., 2010; David et al., 2013) For
example, a short-term high-fat, low-fiber diet can cause changes
in microbial structure, while long-term diets are associated
with alternative intestinal status (Wu et al., 2011). Besides,
smoking (Mason et al., 2014), age, and genes are also factors
influencing the composition of the microbiota (Gill et al., 2006).
Therefore, once the human body and the microbiota cannot
coexist harmoniously, it may cause various problems in the
human body. Based on the 16S ribosomal RNA (rRNA) gene
sequence and classification spectrum (Thompson et al., 2014;
Jesmok et al., 2016), researchers have found that a large number
of human diseases are closely related to human microorganisms,
including cancer (Moore and Moore, 1995), diabetes (Wen et al.,
2008; Brown et al., 2011; Qin et al., 2012), Obesity (Ley et al.,
2005; Zhang et al., 2009), kidney stones (Hoppe et al., 2011),
and other thorny diseases. For example, Huang (2013) pointed
out that microbes can affect allergic sensitization and asthma
development in susceptible individuals, and early intervention in
promoting “healthy” human microbiome constitution may have
the potential and benefits of preventing asthma. Hence, some
researchers are proposing to promote the induction of sensitized
immune response through the research and development of
probiotic-based therapies (Rauch and Lynch, 2012).

Disease-related microbes are obtaining more and more
attention from humans, and researchers have carried out
some large-scale sequencing projects, including the Human
Microbiome Project (HMP) (Turnbaugh et al., 2007) and the
EarthMicrobiome Project (EMP) (Gilbert et al., 2010).Moreover,
some databases (Matsumoto et al., 2005; Faith et al., 2007;
Chen et al., 2010; Mikaelyan et al., 2015) for categorizing
and managing disease-related microbial information have
also been developed. For instance, Ma et al. collected and
compiled 483 pairs of human microbe-disease associations
by collecting published literature and established the Human

Microbe-Disease Association Database (HMDAD) (Ma et al.,
2016). These accurate data provide the possibility to predict
human microbes and diseases. Nowadays, most microbial
community identification methods are independent culture
methods and quantitative methods. Their shortcomings are
obvious and often take a lot of time and efforts. Previously, many
researchers have studied the potential correlation predictions
of diseases and other biological categories (such as miRNA
Chen and Yan, 2014; You et al., 2017; Chen et al., 2018b,c
and lncRNA Chen and Yan, 2013; Chen et al., 2016b, 2018a;
Yu et al., 2018; Xuan et al., 2019), and simultaneously, Drug-
target interaction prediction (Chen et al., 2012) and the study of
synergistic drug combinations prediction (Chen et al., 2016a) has
also achieved satisfying successes. And among existing state-of-
the-art methods, the computational model of KATZ measure for
human microbe-disease association prediction (KATZHMDA)
(Chen et al., 2017) proposed by Chen et al. is one of their
prominent representatives, which not only achieved excellent
prediction performance but also initialized the research field
of the microbe-disease prediction. Later, Huang Z.A. et al.
(2017) proposed a Path-Based computational model of Human
Microbe-Disease Association prediction (PBHMDA), which
adopts a special depth-first search algorithm to traverse all
possible paths between microbes and diseases in heterogeneous
networks to obtain the prediction score of each microbe-disease
pair. Wang et al. (2017) proposed a semi-supervised learning-
based computational model of Laplacian Regularized Least
Squares for Human Microbe-Disease Association prediction
(LRLSHMDA), which utilizes Laplace’s regular least squares
classification combined with topological information of the
known microbe-disease association network to train an optimal
classifier. Huang Y.A. et al. (2017) developed a method based
on Neighbor and Graph-based combined recommendation
model for Human Microbe-Disease Association prediction
(NGRHMDA) by combining two recommendation models as
a neighbor-based collaborative filtering model and a topology-
based model. Peng et al. (2018) developed a model of Adaptive
Boosting for Human Microbe-Disease Association prediction
(ABHMDA), which reveals the associations between disease and
microbe by using a strong classifier to calculate the probability
of disease-microbe pair association. In addition, Shen et al.
(2018) proposed Bi-Random Walk based on Multiple Path
(BiRWMP) to predict microbe-disease associations. Shi et al.
(2018) propose BMCMDA based on Binary Matrix Completion
to predict potential microbe-disease associations.

In this paper, inspired by the performance of KATZHMDA,
we proposed a new microbe-disease association prediction
model called BWNMHMDA. A novel two-way network
was constructed firstly based on the known microbe-disease
associations downloaded from the HMDAD database, and
then, the Gaussian interaction profile kernel similarity were
adopted to assign weights to every node and edge in a newly
constructed two-way network. Hence, a bidirectional weighted
network was further obtained by implementing two newly
developed bidirectional recommendation measures. Finally,
based on the newly constructed bidirectional weighted network,
a computational model was constructed to infer potential
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microbe-disease associations. In order to estimate the prediction
performances of BWNMHMDA, the framework of leave-one-
out cross validation (LOOCV) and 5-fold cross validation(5-Fold
CV) were implemented, and simulation results indicated
that BWNMHMDA could achieve reliable AUCs of 0.9127
in LOOCV and 0.8967 ± 0.0027 in 5-Fold CV, respectively,
which is much better than that of state-of-the-art methods. And
moreover, in case studies of asthma, colorectal carcinoma, and
chronic obstructive pulmonary disease, the simulation results
also demonstrated the effective predictability of BWNMHMDA.

2. MATERIAL

Since known microbe-disease associations were considered in
our prediction model BWNMHMDA, we firstly downloaded
known microbe-disease associations from the Human Microbe-
Disease Association database (HMDAD) (Ma et al., 2016), and
as a result, after getting rid of the redundant associations, a
total of 450 different microbe-disease associations including 39
human diseases and 292 microbes were collected from 61 public
publications. Hence, a 39×292 dimensional adjacency matrix A
is obtained finally, which will be utilized as the data source of
our prediction model BWNMHMDA. And additionally, in the
adjacency matrix A, the value of A[i][j] is set to 1 if there is a
known association between the ith disease and the jth microbe,
otherwise, A[i][j] is set to 0.

3. METHODS

As illustrated in the following Figure 1, in BWNMHMDA, three
kinds of association networks such as the knownmicrobe-disease
association network, the microbe similarity network and the
diseases similarity network will be constructed firstly. And then,
through integrating these three kinds of association networks, an
integrated microbe-disease heterogeneous association network
will be obtained. Moreover, through adopting the Gaussian
interaction profile kernel similarity to assign weights to every
node and edge in the integrated microbe-disease heterogeneous
association network, a bidirectional weighted microbe-disease
association network can be further obtained. Hence, based on the
newly constructed bidirectional weighted association network,
a novel computation model can be developed to infer potential
microbe-disease associations.

3.1. Microbes Similarity Based on Gaussian
Interaction Profile Kernel Similarity
It is obviously reasonable that for any two microbes if there
are more common human diseases proved to be related to
them, may tend to share more functional similarities potentially.
Hence, in the known microbe-disease association network, we
will first adopt the Gaussian interaction profile kernel similarity
to construct a microbe similarity network according to the
following formula (1):

KM(m(i),m(j)) = exp(−γm‖IP(m(i))− IP(m(j))‖2) (1)

Where m(i) and m(j) represent the ith and jth microbes
respectively in the adjacency matrix A, IP[m(i)] and IP[m(j)]
denote ith and jth column, respectively, in the adjacency matrix
A, and ‖X‖ represents the norm of the vector X. Moreover, the
parameter γm can be obtained as follows:

γm = γm
′/

1

Nm

Nm
∑

i=1

∥

∥IP(m(i))
∥

∥

2
(2)

Here, γm
′ is a parameter utilized to control the Gaussian kernel

bandwidth, and according to the related studies (van Laarhoven
et al., 2011), γm

′ will be set to 1 in BWNMHMDA. In addition,
the parameter Nm indicates the total number of microbes
collected from the HMDAD database, and it is obvious that
there is Nm=292.

Thereafter, according to the above formula (1), it is easy
to see that a microbe similarity matrix KM can be calculated,
specifically, and for simplicity, we will replace KM[m(i),m(j)]
with KM(i, j) in the following sections.

3.2. Diseases Similarity Based on Gaussian
Interaction Profile Kernel Similarity
In a similar way, through adopting the Gaussian interaction
profile kernel similarity, we can further construct a disease
similarity network according to the following formula (3):

KD(d(i), d(j)) = exp(−γd‖IP(d(i))− IP(d(j))‖2) (3)

Here, the parameter γd can be obtained as follows:

γd = γd
′/

1

Nd

Nd
∑

i= 1

∥

∥IP(d(i))
∥

∥

2
(4)

Here, γd
′ is a parameter utilized to control the Gaussian kernel

bandwidth, and according to the related studies (van Laarhoven
et al., 2011), γd

′ will be also set to 1. In addition, the parameter
Nd indicates the total number of diseases collected from the
HMDAD database, and it is obvious that there is Nd=39.

Thereafter, according to the above formula (3), it is easy to see
that a disease similarity matrix KD can be calculated, specifically,
and for simplicity, we will replace KD[d(i), d(j)] with KD(i, j) in
the following sections.

3.3. Data Pre-processing
Based on the newly constructed microbe similarity network and
disease similarity network, after integrating the known microbe-
disease associations with these two similarity networks, it is
obvious that we can construct an integrated heterogeneous
microbe-disease association network consisting of two kinds
of nodes such as microbe and disease, and three kinds of
edges such as the edges between microbes, the edges between
microbes and diseases, and the edges between diseases. And
furthermore, based on the integrated heterogeneous microbe-
disease association network, we can obtain a (39+292)×(39+292)
dimensional matrix P as follows:

p =

[

KD A

AT KM

]

(5)
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FIGURE 1 | Flowchart of BWNMHMDA.

Moreover, in the integrated heterogeneous microbe-disease
association network, if a microbe (or disease) node has more
edges connecting with disease (or microbe) nodes, then it
is obvious that the microbe (or disease) node will have less
significance to those disease (or microbe) nodes connecting
with it, which means that the microbe (or disease) node shall
be assigned smaller weights than those microbe (or disease)
nodes with fewer edges. Hence, based on above formula (5), we
can further obtain a (39+292)×(39+292) dimensional diagonal
matrix W to represent the weight value of each node in the
heterogeneous network as follows:

W = diag(1/(P × PT)) (6)

In addition, while calculating the similarity between two nodes in
the heterogeneous network, there may be cases where the scores
of the path consisting of three edges are larger than the scores of
the path consisting of two edges. Hence, in order to avoid such
kind of situation, we will normalize the weights of edges in the
heterogeneous network by adopting the following formula (7)
and formula (8) separately.

KM∗(i, j) =
KM(i, j)

∑Nm
i=1 KM(i, j)

× NZ(m(i)) (7)

Where NZ[m(i)] denotes the number of elements with non-
zero values in the ith row of the matrix KM. And based
on above formula (7), it is noteworthy that the symmetric
matrix KM will be changed to an asymmetric matrix KM∗ after
the normalization. Moreover, in the heterogeneous network,
KM∗(i, j) represents the weight of the directed edge from the
microbe nodemi to the microbe nodemj, whileKM

∗(j, i) denotes
the weight of the directed edge from the microbe node mj to the
microbe nodemi.

KD∗(i, j) =
KD(i, j)

∑Nd
i=1 KD(i, j)

× NZ(d(i)) (8)

Where NZ[d(i)] denotes the number of elements with non-
zero values in the ith row of the matrix KD. And based on the
above formula (8), it is noteworthy that the symmetric matrix
KD will as well be changed to an asymmetric matrix KD∗ after
the normalization. Moreover, in the heterogeneous network,
KD∗(i, j) represents the weight of the directed edge from the
disease node di to the disease node dj, while KD∗(j, i) denotes
the weight of the directed edge from the disease node dj to the
disease node di .

Therefore, according to the above descriptions, it is obvious
that we can obtain a bidirectional heterogeneous network based
on the above formula (7) and formula (8).
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FIGURE 2 | Flowchart of the method utilized to recommend diseases to microbes.

3.4. Bidirectional Recommendation of
Potential Associations
Considering that there are only 450 known associations
in the adjacency matrix A, which is very sparse, therefore,
in order to solve the problem of the adjacency matrix
A caused by the scarcity of known associations, as
illustrated in the following Figure 2, we designed a novel
bidirectional recommendation model in this section based
on the bidirectional heterogeneous network constructed
above. And in this bidirectional recommendation
model, we first designed a recommendation algorithm
to recommend diseases for microbes based on the
Gaussian interaction profile kernel similarities between
microbes as follows:

(1) Firstly, for any given microbe node mi in the bidirectional
heterogeneous network, let QM1 denote the set consisting
of the first K microbes that are other than mi in the
bidirectional heterogeneous network and most similar to mi

at the same time, and considering about the time complexity,
in this paper, K will be set to 3. And then, let QD1 represent
the set of diseases having known associations with at least
one of the microbe nodes in QM1, thereafter for any microbe
nodemj inQM1, we can obtain the recommendation score of

mj tomi according to the following formula (9):

R(mi,mj) =
KM(i, j)

∑

mk∈QM1
KM(i, k)

(9)

Moreover, for any given disease node dj in QD1, we can further
obtain the recommendation score of dj to mi according to the
following formula (10):

DS(mi, dj) =
∑

mk∈QM1

R(mi,mk) (10)

Hence, in a similar way, for any given microbe node mp in QM1,
we can obtain a set QpM1 consisting of the first K microbes that
are other than mp in the bidirectional heterogeneous network
and most similar to mp at the same time, and then, based
on the set QpM1, we can further obtain a set QpD1 consisting
of diseases that have known associations with at least one of
the microbe nodes in QpM1. In addition, let QpD = QD1 ∩

QpD1, it is obvious that for any node dk in ∪mp∈QM1QpD, it
shall be assigned higher recommendation score than those nodes
that are in QD1 and not in ∪mp∈QM1QpD . Hence, for any
given disease node dj in QD1, based on the above formula
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(10), we can obtain a modified recommendation score of dj to
mi as follows:

DS(mi, dj) =















∑

mk∈QM1

R(mi,mk)+
∑

mp∈QM1

mq∈QpM1

R(mi,mp)× R(mp,mq) : if dj ∈
⋃

mp∈QM1

QpD

∑

mk∈QM1

R(mi,mk) : otherwise
(11)

Obviously, according to the above formula (11), for all these
disease nodes in QD1, we can obtain their corresponding
recommendation scores, after sorting these disease nodes
according to their recommendation scores in descending order,
we will finally recommend the disease node ranking first to the
microbe node mi. And additionally, for the microbe node mi,
supposing that the disease node that we recommended to it is
dj, then we will further set the value of A(i, j) in the adjacency
matrix A to 1. Consequently, through updating the adjacency
matrix A as stated above, it is obvious that we can obtain a new
adjacency matrix Am.

(2) Secondly, in a similar way, for any given disease node di in
the bidirectional heterogeneous network, let QD2 denote the
set consisting of the firstK (=3) diseases that are other than di
in the bidirectional heterogeneous network and most similar
to di at the same time, and then, let QM2 represent the set
of microbes having known associations with at least one of
the disease nodes in QD2, thereafter, for any given disease
node dp in QD2, we can obtain a set QpD2 consisting of the
first K diseases that are other than dp in the bidirectional
heterogeneous network and most similar to dp at the same
time. Moreover, based on the set QpD2, we can further
obtain a set QpM2 consisting of microbes that have known
associations with at least one of the disease nodes in QpD2.
Finally, let QpM = QM2 ∩QpM2, then for any given microbe
node mj in QM2, we can obtain a recommendation score of
mj to di as follows:

DS(di,mj) =















∑

dk∈QD2

R(di, dk)+
∑

dp∈QD1

dq∈QpD2

R(di, dp)× R(dp, dq) : if mj ∈
⋃

dp∈QD2

QpM

∑

dk∈QD2

R(di, dk) : otherwise
(12)

Here,

R(di, dj) =
KD(i, j)

∑

dk∈QD2
KD(i, k)

(13)

Obviously, according to the above formula (12), for all these
microbe nodes in QM2, we can obtain their corresponding
recommendation scores, after sorting these microbe nodes
according to their recommendation scores in descending order,
we will finally recommend the microbe node ranking first to
the disease node di. And additionally, for the disease node di,
supposing that the microbe node that we recommended to it is
mj, then we will further set the value of A(j, i) in the adjacency
matrix A to 1. Consequently, through updating the adjacency

matrix A as stated above, it is obvious that we can obtain a new
adjacency matrix Ad.

3.5. Prediction Model of BWNMHMDA
KATZ is a network-based method that can solve link prediction
problems. In recent years, KATZ has been implemented
successfully in many different prediction applications such
as prediction of social networks (Katz, 1953), prediction of
associations between gene (Yang et al., 2014) and prediction
of associations between lncRNAs (Chen, 2015), etc. In 2017,
Chen et al. further applied KATZ in the field of microbe-
disease association prediction for the first time (Chen et al.,
2017). Considering that KATZ can be utilized to calculate
the similarities between nodes in heterogeneous networks, and
according to the above description in section 3.3, we have
built a bidirectional heterogeneous microbe-disease association
network, hence, in this section, we will design a model called
BWNMHMDA based on KATZ to predict potential microbe-
disease associations. For constructing the prediction model, we
will convert the bidirectional heterogeneous microbe-disease
association network to a (39+292)*(39+292) dimensional matrix
S as follows:

S =

[

KD∗ Ad

AT
m KM∗

]

(14)

Hence, based on above formula (14), for any given disease
node di and microbe node mj in the bidirectional heterogeneous
microbe-disease association network, we can predict the
potential similarity between them as follows:

Sim(di,mj) = A∗
n(i, j) (15)

Here, n is a parameter representing the number of steps
between disease nodes and microbe nodes in the bidirectional
heterogeneous microbe-disease association network. For n = 1,
2, 3, ..., there are:

A∗
n =

Sn2 + STn3
2

(16)

Sn = Sn−1 ×W × Sn−1 =

[

Sn1 Sn2
Sn3 Sn4

]

(17)

S2 = S×W × S (18)

Specifically, in formula (16), the matrix Sn2(i, j) represents the
total score of all paths with length of n from the disease di to
microbe mj, and correspondingly, the matrix Sn3(j, i) represents
the total score of all paths with length of n from the microbe mj

to disease di. It is worth noting that since the weights of the edges
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FIGURE 3 | AUCs achieved by BWNMHMDA in LOOCV while n = 2, 3, 4 separately.

in the heterogeneous network are bidirectional, we integrate Sn2
and Sn3 as formula (16). The two matrices are assigned the same
weight as the final predictive score matrix A∗

n.

4. RESULT

4.1. Effects of the Parameter n to
BWNMHMDA
The framework of Leave-one-out cross validation (LOOCV) and
5-fold cross validation (5-Fold CV) are two kinds of common
methods to evaluate model performance. While implementing
LOOCV on our prediction model BWNMHMDA, each known
microbe-disease association will be used as a test sample and
further predicted by training the other known microbe-disease
associations. Moreover, all microbe-disease pairs without known
relevant evidence will be considered as candidate samples.
The predicted score which obtained a higher rank than the
given threshold will be considered as a successful prediction.
Obviously, while setting different thresholds, the true positive
rate (TPRs, sensitivity) and false positive rate (FPRs, 1-specificity)
can be obtained. Here, sensitivity refers to the percentage
between the number of test samples with ranks higher than the
given threshold and the number of positive samples (known
microbe-disease associations). Meanwhile, 1-specificity denotes
the percentage of negative microbe-disease associations which
obtained ranks lower than the threshold. Finally, the receiver

operating characteristic (ROC) curve can be further drawn. The
area under the ROC curve(AUC) can be calculated to evaluate
its predictive performance, where the AUC value of 1 indicates
perfect prediction perfection and the AUC value of 0.5 implies
pure random prediction performance (Chen et al., 2017).

As described above, in our prediction model BWNMHMDA,
the variable n in the formulas (15) is a critical parameter. Hence,
we will first estimate its effect to the prediction performance of
BWNMHMDA in this section. And as illustrated in Figure 3.
BWNMHMDA achieved the best prediction performance while
n = 2, and as the value of n sequentially increased from 2 to 4,
the AUCs achieved by BWNMHMDA decreased continuously,
and through analysis, we found that the reason may be
that the number of known microbe-disease associations is
minimal in the HMDAD database, which leads that long paths
in the bidirectional heterogeneous microbe-disease association
network will be meaningless to the prediction performance
of BWNMHMDA.

In order to further evaluate the effects of the parameter
n to our prediction model, we further implemented 5-fold
cross validation on BWNMHMDA, and during simulation, all
known microbe-disease associations were randomly divided into
five segments with almost the same size, among which, four
segments were utilized for model learning, and the remaining
segment were used as test samples for model evaluation.
Similar to LOOCV, all microbe-disease pairs without relevant
evidence would be considered as potential candidates. In order
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TABLE 1 | AUCs achieved by BWNMHMDA in the framework of 5-Fold CV while

n = 2, 3, 4 separately.

n = 2 n = 3 n = 4

0.8967 ± 0.0027 0.8804 ± 0.0026 0.8109 ± 0.0052

to reduce the experimental bias, we repeated our simulation
based on the 5-fold cross validation 100 times, and during
each time of simulation, the samples were divided randomly.
Finally, as illustrated in the following Table 1, it is easy to see
that BWNMHMDA could as well achieve the best prediction
performance while n=2, and moreover, as the value of n
sequentially increased from 2 to 4, the AUCs achieved by
BWNMHMDA also decreased continuously. Hence, we will set
n to 2 in the subsequent experiments.

4.2. Comparison With Other
State-of-the-Art Methods
In order to verify the prediction performance of BWNMHMDA,
in this section, we compared it with KATZHMDA (Chen
et al., 2017), BiRWMP (Shen et al., 2018), and LRLSHMDA
(Wang et al., 2017) based on the dataset of known microbe-
disease associations downloaded from the HMDAD database.
And as illustrated in the following Figure 4 and Table 2, it
is easy to see that in LOOCV, BWNMHMDA can achieve a
reliable AUC of 0.9127 that is much better than the AUC
achieved by KATZHMDA (0.8382), BiRWMP (0.8637), and
LRLSHMDA (0.8909), and in the framework of 5-fold cross
validation, BWNMHMDA can achieve a reliable AUC of 0.8967
± 0.0027 that is much better than the AUC achieved by
KATZHMDA (0.8301 ± 0.0033), BiRWMP (0.8522 ± 0.0054),
and LRLSHMDA (0.8794± 0.0029) as well.

We further compare BWNMHMDA with NGRHMDA
(Huang Y.A. et al., 2017), ABHMDA (Peng et al., 2018),
and BMCMDA (Shi et al., 2018) in LOOCV based on the
same dataset. As shown in Table 3, our method achieves the
best performance.

5. CASE STUDIES

In order to further measure the prediction performance of
BWNMHMDA, in this section, we selected three kinds of
important human diseases such as asthma, colorectal carcinoma,
and COPD (Chronic Obstructive Pulmonary Disease) to explore
the associations between the human microbes and the human
respiratory and digestive system diseases. Among them, asthma
is a heterogeneous disease process accompanied by recurrent
episodes of wheezing, chest tightness, difficulty breathing, and
indirect cough (Busse, 2007). In recent years, the prevalence
of asthma is rising rapidly. It is reported that about 8% of
people have been affected by asthma by 2010, especially in the
children’s population (Guilbert et al., 2014). Hence, considering
that asthma has been demonstrated to be closely associated
with microbes as well (Çalşkan et al., 2013; Gilstrap and Kraft,
2013), for example, Hemophilia, Moraxella, and Neisseria spp.

in the lungs of asthma patients are proved to be closely related
to the increased risk of asthma in the neonatal oropharynx.
Staphylococcus was found in the respiratory tract of children
with asthma (Sullivan et al., 2016), in this section, we selected
asthma as one of our case studies to evaluate the performance
of BWNMHMDA. And as illustrated in the following Table 4,
all of these top 10 microorganisms predicted by BWNMHMDA
have been verified to be associated with the onset of asthma.
For example, Tropheryma whipplei (Ranking first in the list of
top 10 predicted microbes) has been confirmed to be abundant
in airway of patients with eosinophilic asthma (Simpson et al.,
2015). Clostridium difficile (Ranking second in the list of top
10 predicted microbes) has been confirmed to be associated
with asthma after 6–7 years of colonization (van Nimwegen
et al., 2011). Firmicutes (Ranking third in the list of top 10
predicted microbes) has been confirmed to be increased in severe
asthmatics (Zhang et al., 2016). Furthermore, the increased
sensitivity to Staphylococcus aureus (Ranking fifth in the list of
top 10 predicted microbes) has been proved to be a marker
of eosinophilic inflammation and severe asthma in asthmatic
patients as well (Nagasaki et al., 2017). We published evidence
for the top 10 potential asthma-related microbes predicted by
BWNMHMDA in the Table 4.

In recent years, colorectal carcinoma (CRC) is becoming a
major cause of cancer mortality in both China and the United
States. In 2016, an estimated 134,000 people had been diagnosed
with CRC, and approximately 49,000 had died of CRC (Bibbins-
Domingo et al., 2008). By gender, CRC is the second most
common cancer in women (about 9.2%) and the third in men
(about 10%) (Astin et al., 2011). Since it has been proved that
CRC is related to gut microbiota such as the Fusobacterium,
the Bacteroides fragilis and the enteropathogenic Escherichia coli,
and the dysbiosis of these gut microbiotas will induce colon
cancer through a chronic inflammatory mechanism (Mármol
et al., 2017). Hence in this section, we selected CRC as one of
our case studies to evaluate the performance of BWNMHMDA.
And as illustrated in the following Table 5, there are 9 out
of these top 10 microorganisms predicted by BWNMHMDA
have been verified to be associated with the onset of colorectal
carcinoma. For instance, related studies have shown that the
abundance of Firmicutes (Ranking 6th in the list of top 10
predicted microbes) in the lumen of CRC rats will increase,
while the abundance of Bacteroidetes (Ranking 4th in the list
of top 10 predicted microbes) will reduce. And moreover, the
abundance of Proteobacteria (Ranking second in the list of top
10 predicted microbes) has been confirmed to be higher in CRC
rats than in healthy rats. Meanwhile, Bacteroides (Ranking 9th
in the list of top 10 predicted microbes) has been proved to
of a relatively high abundance in CRC rats at the genus level.
Prevotella (Ranking third in the list of top 10 predicted microbes)
has been found to be significantly more abundant in healthy
rats than CRC rats (Zhu et al., 2014). Additionally, compared
with the healthy control group, Fukugaiti MH et al. detected
more C. difficile (Ranking 5th in the list of top 10 predicted
microbes) in the cancer group, which suggests that these
bacteria may play an important role in the colorectal carcinoma
(Fukugaiti et al., 2015). We published evidence for the top 10
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FIGURE 4 | AUCs achieved by KATZHMDA, BiRWMP, LRLSHMDA, and BWNMHMDA in LOOCV.

TABLE 2 | AUCs achieved by BWNMHMDA, KATZHMDA, BiRWMP, and

LRLSHMDA in LOOCV and 5-Fold CV separately.

Method LOOCV 5-Fold CV

BWNMHMDA 0.9127 0.8967 ± 0.0027

LRLSHMDA 0.8909 0.8794 ± 0.0029

BiRWMP 0.8637 0.8522 ± 0.0054

KATZHMDA 0.8382 0.8301 ± 0.0033

TABLE 3 | AUCs achieved by BWNMHMDA, NGRHMDA, ABHMDA, and

BMCMDA in LOOCV separately.

Method BWNMHMDA NGRHMDA ABHMDA BMCMDA

AUC 0.9127 0.8938 0.8869 0.906

potential CRC-related microbes predicted by BWNMHMDA in
the Table 5.

Finally, COPD is an obstructive pulmonary disease that
worsens over time, and the main symptoms of COPD are
shortness of breath and coughing. And as of 2015, patients
with chronic obstructive pulmonary disease accounted for
approximately 174.5 million (about 2.4%) of the global
population (Vos et al., 2016). For the past few years, due to high
smoking rates and an aging population in developing countries,
the death toll of COPD is rising fast (Mathers and Loncar,
2006). Although treatments can slow the progression of COPD,
there is no cure yet. Considering that many evidences have

TABLE 4 | Top 10 potential asthma-related microbes predicted by BWNMHMDA

and all of these 10 microbes have been confirmed by evidences.

Rank Microbe Evidence

1 Tropheryma whipplei PMID: 26647445

2 Clostridium difficile PMID: 21872915

3 Firmicutes PMID: 27078029

4 Lachnospiraceae PMID: 26512904

5 Staphylococcus aureus PMID: 17950502

6 Clostridia PMID: 22047069

7 Bacteroides PMID: 18822123

8 Fusobacterium PMID: 24024497

9 Clostridium coccoides PMID: 21477358

10 Actinobacteria PMID: 23265859

demonstrated that there exist associations between microbiomes
and COPD, for instance, Galiana et al. found that the microbiota
diversity of patients with severe COPD was lower than that of
mild/moderate diseases, and actinomyces accounted for a high
proportion of patients with severe COPD (Galiana et al., 2013),
hence in this section, we selected COPD as one of our case
studies to evaluate the performance of BWNMHMDA. And as
illustrated in the following Table 6, there are 8 out of these top 10
microorganisms predicted by BWNMHMDA have been verified
to be associated with the onset of COPD. For instance, COPD
has been confirmed to be a kind of essential comorbidity in
human immunodeficiency virus (HIV) patients, and more T.
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TABLE 5 | Top 10 potential CRC-related microbes predicted by BWNMHMDA

and 9 out of these 10 microbes have been confirmed by evidences.

Rank Microbe Evidence

1 Tropheryma whipplei Unconfirmed

2 Proteobacteria PMID:24603888

3 Prevotella PMID:29432368

4 Bacteroidetes PMID:26992426

5 Clostridium difficile PMID:19807912

6 Firmicutes PMID:29985435

7 Helicobacter pylori PMID:11774957

8 Clostridia PMID:26691472

9 Bacteroides PMID:30090033

10 Staphylococcus aureus PMID:7074582

TABLE 6 | Top 10 potential COPD-related microbes predicted by BWNMHMDA

and 8 out of these 10 microbes have been confirmed by evidences.

Rank Microbe Evidence

1 Tropheryma whipplei PMID:24460444

2 Proteobacteria PMID:23071781

3 Bacteroidetes PMID:29709671

4 Prevotella PMID:30053882

5 Clostridium difficile PMID:15655746

6 Firmicutes PMID:24591822

7 Helicobacter pylori PMID:15733502

8 Lachnospiraceae Unconfirmed

9 Staphylococcus aureus Unconfirmed

10 Clostridia PMID:26852737

whipplei (Ranking first in the list of top 10 predicted microbes)
has found in lower airway of human immunodeficiency virus-
infected subjects (Segal et al., 2014; Sze et al., 2016). And
also, it has been demonstrated that Proteobacteria (Ranking
second in the list of top 10 predicted microbes) and Firmicutes
(Ranking 3rd in the list of top 10 predicted microbes)
will increase significantly with the development of COPD
(Pragman et al., 2012). We published evidence for the top 10
potential COPD-related microbes predicted by BWNMHMDA
in the Table 6.

Furthermore, in order to reconfirm the prediction
performance of BWNMHMDA, we compared it with
KATZHMDA in the case studies of these three kinds of same
diseases, and as shown in the following Table 7, it is obvious that
there are 10, 9, and 8 out of these top 10 microbes predicted by
BWNMHMDA having been verified to be associated with the
onset of asthma, colorectal carcinoma and COPD respectively,
while there are only 4, 5, and 5 out of these top 10 microbes
predicted by KATZHMDA having been verified to be associated
with the onset of asthma, colorectal carcinoma, and COPD
separately, which demonstrated that our prediction model
BWNMHMDA could achieve better predictive hit rate in case
above studies than the prediction model of KATZHMDA. And
in addition, we published all these rankings of microbe-disease
associations and top 10 disease-related microbes predicted by

TABLE 7 | The number of of microbes having been confirmed by evidences in the

top 10 potential disease-related microbes predicted by BWNMHMDA and

KATZHMDA respectively in case studies of the three kinds of diseases such as

Asthma, CRC, and COPD.

Model Asthma colorectal carcinoma COPD

BWNMHMDA 10 9 8

KATZHMDA 4 5 5

BWNMHMDA in Supplementary Tables 1, 2, respectively, and
hope that these data may provide some help to the future works
of relevant researchers.

6. DISCUSSION AND CONCLUSION

Human microbiome is normal flora for humans, which has
been proved to be of symbiotic relationship with humans
and harmless to humans. If the microbes that breed in the
human body become “unhealthy,” it will definitely affect the
host’s physical condition. People are continuing to explore the
pathologic relationship between microorganisms and the human
body through high-throughput sequencing technologies and
analysis systems. However, it is a pity that their pathogenesis
cannot be fully understood as yet. Considering that relying
only on conventional experimental methods is time-consuming
and laborious, in this article, we proposed a novel prediction
model called BWNMHMDA to accelerate the process of
inferring potential microbe-disease associations, in which, the
core idea is to construct a weighted bidirectional microbe-
disease association network and then convert it into a matrix
for correlation probability calculation. While constructing the
prediction model BWNMHMDA, we first downloaded known
microbe-disease associations from the HDMDA database, and
then, based on these downloaded associations, we constructed
a heterogeneous network through adopting the Gaussian
interaction profile kernel similarity to calculate the weights
of nodes in the heterogeneous network. Moreover, based on
the heterogeneous network, we further constructed a weighted
bidirectional network by standardizing the weights of edges in
the heterogeneous network and introducing a novel bidirectional
recommendation method. Finally, we transformed the weighted
bidirectional network into an integration matrix that can be
utilized for prediction of potential microbe-disease associations.
And simulation results show that BWNMHMDA can achieve
reliable AUCs of 0.9127 and 0.8967 ± 0.0027 in the frameworks
of LOOCV and 5-Fold CV respectively. And moreover, in the
case studies of asthma, colorectal cancer, and COPD, there are
10, 9, and 8 out of the top 10 potential associated microbes
predicted by BWNMHMDA having been verified by published
literature evidence, which demonstrated that BWNMHMDA
could provide valuable potential microbe-disease associations
for future biological experiments. Certainly, there are some
deficiencies in BWNMHMDA. For instance, there is a lack of
negative samples in BWNMHMDA, and it may be possible
to improve the predictive reliability of BWNMHMDA by
identifying unrelated microbe-disease pairs. And moreover, in
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BWNMHMDA, we adopt the Gaussian interaction profile kernel
similarity to calculate the similarities between microbes, which
may bias the similarity between some individual microbes.
Hence, in subsequent work, we will introduce some effective
methods such as Symptom-Based Disease Similarity (Zhou
et al., 2014) to further improve the accuracy and efficiency
of BWNMHMDA.
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