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Abstract: In modern software development processes, software effort estimation plays a crucial role. The 
success or failure of projects depends greatly on the accuracy of effort estimation and schedule results. Many 
studies focused on proposing novel models to enhance the accuracy of predicted results; however, the ques-
tion of accurate estimation of effort has been a challenging issue with regards to researchers and practi-
tioners, especially when it comes to projects using agile methodologies. This study aims at introducing a 
novel formula based on team velocity and story point factors. The parameters of this formula are then opti-
mized by employing swarm optimization algorithms. We also propose an improved algorithm combining the 
advantages of the artificial bee colony and particle swarm optimization algorithms. The experimental results 
indicated that our approaches outperformed methods in other studies in terms of the accuracy of predicted 
results.

Keywords: Software effort estimation, agile software development, user story, particle swarm optimization, 
artificial bee colony, swarm optimization algorithm.
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1  Introduction
Software effort estimation has an important role to play in a software development process [35] because the 
success or failure of a project relies greatly on the accuracy of effort and schedule estimates. According to 
the International Society of Parametric Analysis [10] and the Standish Group International [23], two-thirds 
of software projects fail to be delivered on time and within budget. There are two key reasons, including (i) 
improper estimation in terms of project size, cost, and human resource needed for projects and (ii) uncer-
tainty of software requirements. Hence, it is desired to seek an approach to predict efforts for software pro-
jects accurately. Underestimating the costs might lead to the approval of proposed systems that then exceed 
their budgets, causing poor quality and failure to complete on time. In contrast, overestimating may result 
in too many resources committed to a project that brings about not winning the contract, which can lead to 
the loss of jobs. A wide range of studies introduced many methods for software effort estimation, ranging 
from expert judgment [15], algorithmic models such as COCOMO [5], SLIM [29] to machine learning-based 
techniques like fuzzy logic [22], and neural networks [24].

To overcome the uncertainty of software requirements, agile software development methods have been 
proposed, because of their inherent advantages such as iterative development, rapid delivery, reduced risk, 
and enabling organizations to respond to requirement volatility. A concerning issue, therefore, is how to 
efficiently estimate the effort necessary to develop projects adopting agile methodologies. Size is a primary 
factor for many models used to estimate effort. In agile projects, story points are relative measures widely 
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used to determine the size of a project, as well as how difficult tasks are. In addition to story points, the veloc-
ity of a project team, which is the total number of story points that the team can convey in a sprint, is also a 
factor that affects efforts of the project under development. Based on story points and team velocity, we will 
predict efforts that need to be provided to the software project using the agile methodology effectively. This 
paper focuses on constructing a formula for agile software effort estimation, and then swarm optimization 
algorithms are used to find out suitable parameters of the proposed model based on historical software data.

Our contributions in this paper include the following:
–– We propose a novel formula for agile software effort estimation based on velocity and story points.
–– We apply swarm optimization algorithms including particle swarm optimization (PSO) and artificial bee 

colony (ABC) to find parameters of the estimation model.
–– We devise a hybrid version of PSO and ABC to enhance the accuracy of the proposed estimation model.
–– We evaluate the efficiency of the proposed approaches compared with other methods.

The rest of this paper is organized as follows. Section 2 briefly describes work related to our study, while 
Section 3 gives information about factors used for agile software effort estimation. Section 4 shows swarm 
optimization algorithms and a proposed hybrid algorithm. Section 5 presents our proposed estimation model 
and how to apply swarm optimization algorithms for solving the problem. Experimental results are shown in 
Section 6. Section 7 gives information about threats to the validity of the proposed methods, and Section 8 
concludes with the obtained results of the study.

2  �Related Work
There are many papers and studies in the effort estimation for software projects using agile methodologies. 
Keaveney and Conboy [19] researched on the applicability of traditional estimation approaches to agile pro-
jects by focusing on four case studies using agile methodologies of different organizations. The authors uti-
lized the main estimation techniques, being expert knowledge and analogy to past projects. The experimental 
results indicated that the estimation inaccuracy using the proposed method was a less frequent occurrence 
compared to the use of traditional approaches. Hussain et al. [14] provided an efficient approach that helps 
in removing problems like formalized user requirements, and thus function points might be applied for agile 
software effort estimation. Andreas et al. [2] introduced a method to predict the effort in agile software devel-
opment with an investigation about estimation possibilities, especially for Extreme Programming (XP). The 
authors focused on the characteristics of agile methodologies, and provided guidelines for measurement 
aspects within XP projects. The proposed approach was assessed using a survey including 17 questions. Each 
question considers the influence of agile methodologies to effort estimation. The survey showed that the 
benefit of agile methods is hard to evaluate and need further studies, as well as the costs of maintenance 
projects must be taken into consideration. Coelho and Basu [7] gave an overview of different effort estimation 
techniques based on story points for the agile software development process. The authors introduced steps 
followed in the story point-based approach, and highlighted the area that needs to be studied further. Popli 
and Chauhan [28] proposed a model for effort and cost estimation in agile software development by applying 
regression analysis. This technique is appropriate for project planning, execution, and monitoring effectively.

The factors having an impact on the effort that is necessary to develop a software project using agile 
methodologies are subjects of studies as well. In Ref. [1], Abrahamsson and Koskela described the way to 
collect metrics to measure the productivity, quality and schedule estimation, and cost and effort estimation 
for an agile software development project using XP. The authors provided evidence that agile methods are 
efficient and suitable for a variety of situations and environments. Hamouda [12] proposed a process and 
methodology assuring relativity in software sizing while using agile story points on the level of the Capabil-
ity Maturity Model Integration (CMMI) organizations. Zia et al. [41] introduced an effort estimation model for 
agile software development to combine most characteristics of agile methodologies, especially adaption and 
iteration, where it is concentrated on user stories as a basis for estimation. The model was evaluated using 
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the empirical data collected from 21  software projects. The experimental results indicated that the model 
provided acceptable estimation accuracy in terms of the mean magnitude of relative error (MMRE). Neverthe-
less, the regression approach used in their work to generate the predicted effort from team velocity and story 
point of projects can still be improved to fortify the accuracy of estimates. Our study focuses on proposing 
an estimation formula for agile software projects, and then the parameters of this model will be optimized 
adopting swarm optimization algorithms.

Machine learning techniques were also applied to software effort estimation problems. Oliveira [26] 
provided a comparative research on support vector regression (SVR), radial basis function neural networks 
(RBFNs), and the linear regression for the estimation of software development effort. Their experiment was 
conducted on NASA project data sets, and the experimental results showed that SVR performed better than 
RBFN and linear regression analysis. Satapathy et al. [31] predicted the effort of agile software projects using 
the story point approach, in which the total number of story points and project velocity were used to estimate 
the effort involved in developing an agile software product. The obtained results were optimized by applying 
four different SVR kernel methods. The authors concluded that the radial basis function kernel-based SVR 
technique outperformed three other kernel methods. In Ref. [27], Panda et al. attempted to ameliorate the pre-
diction accuracy of the agile software effort estimation process proposed by Zia et al. To solve this problem, 
different kinds of neural networks consisting of general regression neural network (GRNN), probabilistic 
neural network (PNN), group method of data handling (GMDH) polynomial neural network, and cascade-
correlation neural network were used and compared. In our previous work [20], we improved the accuracy of 
the estimation model of Zia et al. using an artificial neural network (ANN) optimized by the combination of 
the fireworks and Levenberg-Marquardt algorithms. The experimental results overcame the results of Panda 
et al. [27]. Table 1 summarizes studies related to the effort estimation for agile software projects.

In this paper, a hybrid algorithm of ABC and PSO is proposed to optimize parameters of the estimation 
formula. ABC and PSO were combined in some literature. In Ref. [34], Shi et al. introduced a way to integrate 
ABC and PSO by executing two their subsystems in parallel. Information exchange from bee colony to par-
ticle swarm occurs in the scout bee phase or when the particle velocity is updated at a certain probability 

Table 1: Related Work on the Effort Estimation for Agile Software Projects.

Author   Year  Metric   Method and algorithm

Abrahamsson and Koskela [1]   2004  Lines of code, user 
stories

  A survey of the empirical data obtained from a controlled case 
study on extreme programming in practical settings

Keaveney and Conboy [19]   2006  Past project data   Expert knowledge and analogy to past projects
Oliveira [26]   2006  Developed lines and 

methodology
  Linear regression, RBFN, and SVR

Andreas et al. [2]   2008  A survey with 17 
questions

  Interviewing and conducting an analysis of the effort 
estimation possibilities within agile software development 
methodologies using a survey

Coelho and Basu [7]   2012  Story points   Introducing steps followed in the story point-based approach, 
and highlighting the area that needs to be studied further

Zia et al. [41]   2012  Story points and project 
velocity

  Linear regression

Hussain et al. [14]   2013  Function points   Using COSMIC functional size measurement method and a 
supervised text mining approach from user requirements

Popli and Chauhan [28]   2014  Story points and velocity  Regression analysis
Hamouda [12]   2014  Software size and story 

points
  Proposing a process and methodology assuring relativity in 

software sizing and story points for CMMI organizations
Satapathy et al. [31]   2014  Story points and project 

velocity
  Four different SVR kernel methods

Panda et al. [27]   2015  Story points and project 
velocity

  GRNN, PNN, GMDH polynomial neural network, and cascade-
correlation neural network

Khuat and Le [20]   2016  Story points and team 
velocity

  Multilayer neural network optimized by fireworks and 
Levenberg-Marquardt algorithms



492      T.T. Khuat and M.H. Le: Novel Hybrid ABC-PSO Algorithm

level. El-Abd [11] introduced another way to combine ABC with PSO. In El-Abd’s algorithm, PSO is run first 
to update position, velocity, and local best position for each individual. After that, the best location of each 
particle is changed using ABC update rules. In Ref. [21], Kiran and Gunduz introduced a crossover operation-
based hybridization of PSO and ABC called the HPA. In their algorithm, the best solutions of the populations 
obtained at each iteration of the PSO and ABC are recombined to generate an individual called TheBest, and 
this solution is taken as Gbest for PSO and neighbors of onlooker bees for ABC to increase the exploration 
and exploitation abilities of HPA. Hence, the social structures of ABC and PSO have been reinforced and 
provide HPA with a better global search process. Wang et al. [38] used these combination ways together with a 
feed-forward neural network to construct classification methods for abnormal brain detection, and obtained 
interesting outcomes. In this work, we associate PSO with employed bee and onlooker bee phases of the ABC 
algorithm using a new formula to seek neighboring food sources.

3  �An Effort Estimation Model for Agile Projects
In Ref. [41], Zia et al. proposed a model to estimate the effort of agile software projects. This model uses story 
points and team velocity to predict the effort for a project.

3.1  �Computing the Story Point of an Agile Project

Story points are a number of user stories associated with their complexities completed in a unit time. To cal-
culate the story points of an agile project, we first determine the story sizes and the complexity of each story 
size. The story size is an estimate of the relative scale of tasks with regard to the actual development effort. 
Each story size is assigned a value from 1 to 5 based on its scale. Value 1 shows that the story is very small, 
which needs a tiny effort level with only a few working hours. Value 2 indicates that it is expected to finish 
a user story in 1 or 2 days of working; meanwhile, value 3 presents that we need from 2 to 5 working days to 
complete a user story. Value 4 is given to the story having a very large size and requiring more than a week of 
working to accomplish, and we need to consider breaking it down into a set of smaller stories. Value 5 repre-
sents an extremely large story, and it is really difficult to estimate time accurately. After specifying the scale of 
the story, we have to consider its complexity. The complexity is also measured by five values assigned to the 
user story according to its nature. Value 1 states that the story requires basic programming skills to complete, 
and their technical and business requirements are very clear with no ambiguity. Value 5 shows that the story 
is extremely complex with many dependencies on other stories, systems, or subsystems, and it needs a set of 
skills or experience that is important but absent in the team along with the extensive research and significant 
refactoring. The details of the user story complexity are clearly described in Ref. [41].

The total story points (SP) for N user stories of a project are computed using Eq. (1).

	 1
,

N

P i i
i

S C S
=

= ⋅∑
�

(1)

where Ci and Si are the complexity and size of the ith project, respectively.

3.2  �Determining Agile Velocity

The initial agile velocity of a team is simply how many units of effort that this team might complete in a 
typical sprint. It is also defined as how many story points that a team can handle in one sprint, and it is 
determined as follows:

units of effort completed /sprint time.iV =
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In practice, the velocity of a project is not only simply measured by units of effort and sprint time, but it 
is also influenced by two other factors including friction and variable or dynamic forces.

The friction forces are constants that drag on productivity and reduce the project velocity. They consist 
of team composition, process, environmental factors, and team dynamics. Their influences are long term; 
however, they are easy to deal with. Table  2 gives information about four friction factors with a range of 
values, and these values have been tuned following their risk severity [41].

The value of friction (FR) is computed as the product of all four friction factors (FF) using Eq. (2):

	

4
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i
FR FF

=

= ∏
�

(2)

The variable or dynamic forces decelerate the project or the performance of team members, and bring about 
the project velocity to be irregular. These forces are usually unpredictable and unexpected. They include 
team changes, new tools requiring learning, vendor defects, responsibilities outside of the project of team 
members, personal issues, stakeholders, unclear requirements, changing requirements, and relocation. 
Table 3 describes variable or dynamic force factors and the values associated with them on the basis of same 
analogy as for size.

Dynamic force (DF) is then computed as the product of all nine variable factors (VF) using Eq. (3):
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(3)

Deceleration of an agile software project is the product of friction and dynamic forces impacting the velocity 
as Eq. (4):

	 .D FR DF= ⋅ � (4)

The final velocity of a project under the influence of friction and dynamic forces is computed using Eq. (5):

	 ( ) .DiV V= � (5)

Table 2: Friction Factors.

Friction factor Stable Volatile Highly volatile Very highly volatile

Team composition 1 0.98 0.95 0.91
Process 1 0.98 0.94 0.89
Environmental factors 1 0.99 0.98 0.96
Team dynamics 1 0.98 0.91 0.85

Table 3: Dynamic Force Factors.

Variable factor Normal High Very high Extra high

Expected team changes 1 0.98 0.95 0.91
Introduction of new tools 1 0.99 0.97 0.96
Vendor’s defects 1 0.98 0.94 0.90
Team member’s responsibility outside the project 1 0.99 0.98 0.98
Personal issues 1 0.99 0.99 0.98
Expected delay in stakeholder response 1 0.99 0.98 0.96
Expected ambiguity in details 1 0.98 0.97 0.95
Expected changes in environment 1 0.99 0.98 0.97
Expected relocation 1 0.99 0.99 0.98
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From the team velocity and story points of a project, Zia et al. [41] used the regression method to predict the 
duration needed to complete the project. In this paper, we devise a novel formula for agile software effort esti-
mation based on two factors: final velocity and story point. The parameters of this model are then optimized 
using swarm optimization algorithms and a set of data shown in Ref. [41].

4  �Swarm Optimization Algorithms
In this paper, we consider two most common swarm optimization algorithms including ABC and PSO. A hybrid 
version of these two algorithms is then presented based on the advantages of each algorithm to improve the 
accuracy of predicted results for software effort.

4.1  �ABC Algorithm

The ABC algorithm was first proposed by Karaboga and Basturk [16] based on simulating intelligent behav-
iors of real honey bee colonies. There are two various honey bee categories sharing knowledge to successfully 
locate such sources. The employed bees first exploit food sources and then give their information about the 
quality of the food sources to unemployed bees. Unemployed bees consist of scout bees, which search for a 
new food source randomly when current food source is exhausted, and onlookers, which wait at the nest and 
establish communication with the employed bees.

In ABC, a swarm includes three kinds of bees, which are employed bees, scouts, and onlookers. The 
number of food sources is equal to the number of employed bees, and the number of employed bees is also 
equal to the number of onlooker bees. At the beginning phase, all employed bees in the population are scout 
bees, and their food source positions are randomly initialized using Eq. (6):

	 ( ),ij j j jx lb rnd ub lb= + ⋅ − � (6)

where i = 1, 2, …, NE, and j = 1, 2, …, D. xij is the jth dimension of the ith food source, which will be assigned to the 
ith employed bee. lbj and ubj are the lower and upper bounds of the jth dimension respectively, rnd is a random 
number in the range of [0, 1], NE is the number of employed bees, and D is the dimensionality of the problem.

After the initialization phase, all scout bees become employed bees, and the quality of food sources of 
employed bees is assessed using Eq. (7):

	

1 , if 0
1fit ,
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(7)

where fiti is the fitness of the ith food source and fi is the objective function value specific for the problem.
The employed bees start to seek around the self-food sources for new food sources. A new food source 

position around current food source of each employed bee is obtained using Eq. (8):

	 ( ),ij ij ij ij kjv x x xφ= + ⋅ − � (8)

where i ∈ {1, 2, …, NE}, j is a random value in the range of [1, D], k is the index of a randomly chosen individual 
(k ≠ i), and φij is a random number uniformly distributed in the range of [–1, 1]. After that, the fitness values of 
vi and Xi are compared with each other. If vi is better than Xi, the position of the new food source will replace 
the old food source Xi, and the trial counter of the food source is reset; otherwise, the trial counter of the food 
source Xi is increased by 1. This is a greedy selection mechanism.

After the employed bees return to the hive, the employed bees share self-food source positions with the 
onlooker bees. An onlooker bee opts an employed bee and memorizes its food source position to eliminate its 
food source by using roulette-wheel selection mechanism, given as follows:
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where pi is the probability that the ith employed bee is selected by an onlooker bee. Intuitively, employed 
bees with higher values of fitness will have more chances to be chosen. After choosing an employed bee, the 
onlooker bee searches around the food source position of that employed bee using Eq. (8). If the fitness of 
the food source found by the onlooker bee is better than the old one, the employed bee memorizes the new 
food source position of the onlooker bee, and the trial counter of this food source is reset; otherwise, the trial 
counter of the food source is increased by 1.

The occurrence of the scout bee phase in ABC depends on the user-defined limit value and trial counters 
of the food sources. After the onlooker bee phase, if the maximal value of the trial counter of any food source 
is higher than the limit, a scout bee will seek a new food source position using Eq. (6). It is noticed that only 
one scout bee can occur at the each ABC iteration. The cycle of ABC terminates when the maximum iteration 
number is met or an error tolerance happens. The details of ABC are shown in Algorithm 1.

ABC has been used in many applications in several different fields. One of the most interesting applica-
tion areas is training neural networks [18, 39]. ABC was also adopted by some researchers to solve the opti-
mization problems encountered in electrical engineering. In Ref. [30], Rao et al. presented a new technique 

Algorithm 1: The Pseudo Code of the ABC Algorithm.

Input:
   – The maximum cycle number: MCN
   – The number of employed bees: NE

   – The number of trials for abandoning food source: limit
   – The dimensionality: D
Output: The best individual in the population: = …

�
1 2{ , , , }.best DX x x x

 Initialize a population of solutions Xi = {xij}, i = 1, …, NE, j = 1, …, D
 Compute fitness value for each Xi using Eq. (7)
 cycle = 1
 while cycle ≤ MCN do
  for i = 1 to NE do
    – Generate a new solution vi for the employed bee Xi using Eq. (8)
    – Compute fitness value for each vi using Eq. (7)
    – Apply the greedy selection process
  end for
  For i = 1 to NE do
    – Compute the probability value pi for the solution Xi using Eq. (9)
  end for
  �Formulate the set of potential solutions Sol by using the roulette-wheel selection mechanism to select NE solutions in the 

population based on the probability value pi

  for each solution Xi in Sol do
    – Generate a new solution vi for the employed bee Xi using Eq. (8)
    – Compute fitness value for each vi using Eq. (7)
    – Apply the greedy selection process
  end for
  for i = 1 to NE do
    if value limit of solution Xi is reached then
      Produce a random solution and replace Xi with this solution
      break;
    end if
  end for
  Memorize the best solution achieved so far
  cycle = cycle + 1
 end while
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applying an ABC algorithm for determining the sectionalizing switch to be operated to deal with the distribu-
tion system loss minimization problem. Bijami et al. [4] used ABC for simultaneous coordinated tuning of two 
power system stabilizers to damp the power system inter-area oscillations. An interesting application area of 
ABC is data mining, such as clustering [17], feature selection [36], and knowledge discovery [13]. A compre-
hensive survey presenting ABC and its applications in detail can be found in Ref. [18]. In this study, we apply 
ABC to another field, which is software effort estimation.

4.2  �Particle Swarm Optimization

PSO, which was proposed by Eberhart and Kennedy [9], is a population-based optimization algorithm, where 
the system is initialized with a population of random particles, and the algorithm searches for optima by 
updating generations. This algorithm works as follows: each particle in PSO represents a bird corresponding 
to a solution, and it has a fitness value computed by a fitness function. Particles have velocity information 
leading them in the search area. The algorithm is started with a certain number of random generated parti-
cles. Suppose that the search space is D-dimensional. The position of the ith particle might be represented by 
a D-dimensional vector, Xi = {xi1, …, xiD}, and the velocity of this particle is vi = {vi1, …, viD}. Each particle seeks 
the most suitable solution in the search space by updating its velocity and position information using Eqs. 
(10) and (11), respectively.

	 1 1 2 2( ) ( ),ij ij ij ij j ijv w v c r Pbest x c r Gbest x= ⋅ + ⋅ ⋅ − + ⋅ ⋅ − � (10)

	 ,ij ij ijx x v= + � (11)

where vij and xij are the velocity and the position of the jth dimension of the ith particle, respectively. The con-
stant w, which is called inertia weight, plays the role to balance between the global search ability and local 
search ability [33]. c1 and c2 are the acceleration coefficients influencing the maximum size of the step that a 
particle can take in each iteration. r1 and r2, which are the random numbers in the range of [0, 1], affect the 
stochastic nature of the algorithm [3]. Pbesti is the best position that the ith particle has visited, while Gbest is 
the best position in the whole population. One has the following [40]:

	
1,..,
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where i is the index of particle, NP denotes the total number of particles in the swarm, t is the current iteration 
number, f denotes fitness function, and Xi is the position of the ith particle.

After changing the position, each particle updates its personal best position using Eq. (14):
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(14)

Finally, the global best of the swarm is updated using Eq. (15).

	 1 1    ( ).t tGbest arg min f Pbest+ += � (15)

The PSO is shown in detail in Algorithm 2.
Similar to ABC, PSO was applied to several different fields of research. The first practical application of 

PSO was in the field of ANN training [9]. Since then, there are thousands of publications reporting applica-
tion of PSO to other fields such as electrical, electronic engineering and automatic control, communication, 
operations, fuel and energy, medical engineering, and chemical and biological engineering. A recent survey 
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on PSO [40] described a comprehensive investigation of PSO, modifications, hybridization, extensions, and 
its applications.

4.3  �The Hybridization of ABC and PSO

From the algorithms mentioned above, it is clear that the global best solution of the population does not 
need to be directly used in ABC algorithm to find new food source positions [21]. Meanwhile, it can be 
concluded that when the particles in the PSO get stuck in the local minima, it may not escape from the 
local minima by using random search as scout bees in ABC. We can also find that the reason for ABC being 
so good is that its update equation only updates a single variable in an individual with D variables [11] 
instead of all variables as PSO. To overcome the disadvantages and take the advantages of two algorithms, 
we propose a hybrid global optimization approach by combing the ABC algorithm with the PSO searching 
mechanism, called ABC-PSO.

In this algorithm, three phases of ABC are used, and we use velocity and the way of finding new food 
source positions of PSO for the employed bee phase. After updating the position of new food source, the 
current best position that the individual has visited is updated using Eq. (14). If the current best position is 
changed, the trial counter of the food source is reset; otherwise, its value is increased by 1. In the onlooker 
bee phase, for each selected employed bee, the onlooker bee will memorize its position and find a new food 
source position based on information of the best food source position that the employed bee has visited. 
This is done by using Eq. (16). The new food source position replaces the current best food source one, and 
the trial counter of the food source is reset if it has better value; otherwise, the trial counter value is increased 
by 1. The scout bee phase is the same as ABC. The details the of ABC-PSO algorithm are shown in Algorithm 3 
and Figure 1.

	
, if 

( ), if 
ij

ij
im im im km

Pbest j m
x

Pbest Pbest Pbest j mφ

 ≠=  + ⋅ − =
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where xij is the jth dimension of the ith employed bee selected, m is a random index in the range of [1, D], k is the 
index of a randomly chosen individual (k ≠ i), and φim is a random number in the range of [–1, 1].

Algorithm 2: The Pseudo Code of the PSO Algorithm.

Input: Max_Iterations, w, c1, c2, NP

Output: The best individual in the population: = …
�

1 2{ , , , }.best DX x x x

 – Initialize a swarm including NP particles with positions Xi = {xij}, i = 1, …, NP, j = 1, …, D with a uniformly distribution using Eq. (6)
 – Initialize Pbest of each particle to its initial position: Pbest(i, 0) = Xi(0)
 – Initialize Gbest to the minimal value of the swarm: Gbest(0) = arg min[f(Xi(0))]
 – �Initialize velocity of each particle: vij ~ U(–|ubj–lbj|, |ubj–lbj|), where lbj and ubj are the lower and upper bounds of the jth 

dimension, respectively
 t = 1
 while t ≤ Max_Iterations do
   for each particle i do
     Update vi using Eq. (10)
     Update Xi using Eq. (11)
     Compute the fitness value for each particle i
     Update Pbesti using Eq. (14)
   end for
   Update Gbest using Eq. (15)
   t = t + 1
 end while
 return Gbest
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5  �Applying Swarm Optimization Algorithms for the Software Effort 
Estimation Problem

5.1  �The Proposed Agile Software Effort Estimation Problem

Based on the final velocity and story point mentioned in Section 2, we propose a formula to predict the effort 
of agile software projects as follows:

	
( ) ( ) ,P

P

A S
Eff C ln S D ln V E

B V
⋅

= + ⋅ + ⋅ +
⋅ �

(17)

where Eff is the predicted effort measured in day unit, SP is the value of story point for the project computed 
as in Section 2, and V is the final velocity of the team.

Our purpose is to determine the values of A, B, C, D, and E so that the predicted values for the project 
are most accurate compared to actual values. In this study, we use swarm optimization algorithms to seek 
the values of parameters using historical data of previous projects. When we have a predictive model with 
appropriate parameters, it can be used to predict the effort of a new project. Figure 2 describes the flowchart 
of the proposed process.

5.2  �Measuring Estimation Quality

The approaches that are widely used to evaluate the quality of software effort estimation models consist of
–– The MMRE [25];

Initialization

Employed bee phase:
update particle’s velocity and position

Onlooker bee phase:
Finding particle’s new position

updating particle’s local best position

Scout bee in the colony?

Scout bee phase

Update best position in the whole swarm

Stop criteria met?

Best solution

Yes

No

No

Yes

Figure 1: Flowchart of the Proposed Algorithm.
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Training dataset

– V1, Sp1 
– V2, Sp2 
– …… 
– Vn, Spn 

Algorithms

– ABC 
– PSO 
– ABC-PSO 

Predictive model

– Parameters
  (A, B, C, D, E)

New project

– V
–  Sp

Output

– Effort 

Offline learning

Online prediction

Offline

Online

Trained

Figure 2: Flowchart of the Proposed Process.

Algorithm 3: The Pseudo Code of the ABC-PSO Algorithm.

Input:
   – The maximum cycle number: MCN
   – The number of employed bees: NE

   – The number of trials for abandoning food source: limit
   – The dimensionality: D
   – Coefficients w, c1, c2

Output: Ensure the best individual in the population: = …
�

1 2{ , , , }.best DX x x x

 Initialize a population of solutions Xi = {xij}, i = 1, …, NE, j = 1, …, D using Eq. (6) and their velocities
 Compute fitness value for each Xi using Eq. (7)
 cycle = 1
 while cycle ≤ MCN do
   for i = 1 to NE do
     – Update the velocity of individual i and its positions using Eqs. (10) and (11), respectively
     – Compute fitness value for each Xi using Eq. (7)
     – Determine the current best position of individual i using Eq. (14), and update the trial counter
   end for
   for i = 1 to NE do
     – Compute the probability value pi for the solution Xi using Eq. (9)
   end for
   �Formulate the set of potential solutions Sol using the roulette-wheel selection mechanism to select NE solutions in the 

population based on the probability value pi

   for each solution Xi in Sol do
     – Finding a new food source position using Eq. (16)
     – Compute fitness value for each Xi using Eq. (7)
     – Determine the current best position of individual i using Eq. (14), and update trial counter
   end for
   for i = 1 to NE do
     If value limit of solution Xi is reached, then
       Produce a random solution and replace Xi with this solution
       break;
     end If
   end for
   Update the Gbest of the whole population using Eq. (15)
   cycle = cycle + 1
 end while
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–– The median magnitude of relative error (MdMRE) [37];
–– The prediction at level N (PRED(N)) [8].

The MMRE is probably the most widely employed evaluation criterion for appraising the performance of soft-
ware prediction models [6]. The MMRE is defined in Eq. (18).

	 1

1MMRE MRE ,
T

i
iT =

= ∑
�

(18)

where T is the number of observations, i expresses each observation for which effort is predicted, and MRE is 
the magnitude of relative error, which is computed as

	

| |
MRE ,i i

i
i

A P
A
−

=
�

(19)

where Ai and Pi are actual and predicted effort values of the ith test data, respectively.
Conte et al. [8] indicated that MMRE ≤0.25 is acceptable for effort estimation models. Given two data sets 

A and B, suppose that data set A includes small projects whereas B contains large projects. Given everything 
else is equal, and MMRE(B) is smaller than MMRE(A), as a result, a prediction model assessed on data set B 
will be considered as better than a competing model evaluated on data set A.

Unlike the mean value, the median always shows the middle value m, given a distribution of values, and 
assures that there is the same number of values above m as below m. Therefore, the median of MRE values 
for the number of observations called the MdMRE is an alternative to evaluate the performance of software 
prediction models. Similar to MMRE, the value of MdMRE ≤0.25 is acceptable for effort estimation models.

Another method that is commonly used is the prediction at level N known as PRED(N). It is the percentage 
of projects for which the predicted values fall within N% of their actual values. For instance, if PRED(25) = 85, 
this indicates that 85% of the projects fall within 25% error ranges. Conte et al. [8] claimed that N should be 
set at 25%, and a good estimation system should offer this accuracy level to 75% of the effort. Equation (20) 
illustrates the way to compute the value of PRED(N):
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The squared correlation coefficient (R2), also known as the coefficient of determination, is computed in Eq. 
(21). The higher the values of R2, the better the values of estimated results are.
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where Amean is the mean of actual effort values.
Although MMRE and MRE were frequently used for assessing the effort estimation accuracy, Shepperd 

and MacDonell [32] criticized that the use of these criteria is biased. For instance, we have two projects where 
the first project is an overestimate and the second project is an underestimate. The actual and estimated 
values of the effort of project 1 are 20 and 100, respectively. Project 2 has the actual effort value being 100, and 
the estimated value is 20. Both estimates have identical absolute residual with 80; however, the MMRE values 
differ by an order of magnitude. Consequently, MMRE will be biased toward prediction systems that under-
estimate [32]. Therefore, Shepperd and MacDonell proposed a novel measure called mean absolute residual 
(MAR), and it is shown in Eq. (22):
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This paper uses all measures above to assess the accuracy of the various software effort estimation models 
presented.

5.3  �Representation of Individuals and Fitness Function

In this study, each individual used in the swarm optimization algorithms is represented as follows:

{ , ,  ,  ,  }.i i i i i iX A B C D E=

After algorithms finish, they will return the best individual that contains parameters such that the predicted 
effort using Eq. (17) is closest to the actual effort.

To assess the fitness of each individual in swarm optimization algorithms, we utilize the fitness function 
in Eq. (23):

	 ( ) MMRE( ) MAR( ),i i if X X X= + � (23)

where MMRE(Xi) and MAR(Xi) are the MMRE and MAR of individual Xi on T projects in the training dataset, 
respectively. In this study, we use 21 agile software projects in Zia et al.’s work [41] to assess the effectiveness 
of our proposed approach, and we also compare it with the regression method as introduced by Zia et al.

6  �Experimentation

6.1  �Experimental Setup

To evaluate the efficiency among ABC, PSO, and ABC-PSO, we establish the same population size (note that 
the population size of the ABC and ABC-PSO algorithms is double of the number of employed bees) and the 
number of iterations.

The setting parameters of ABC are as follows:
–– The number of employed bees: NE = 50
–– The number of cycles: MCN = 1000
–– The number of trials for abandoning food source: limit = 50

The parameters of the ABC-PSO are set as follows:
–– The number of employed bees: NE = 50
–– The number of cycles: MCN = 1000
–– The number of trials for abandoning food source: limit = 50
–– w = 0.25, c1 = c2 = 2

The settings of PSO are presented below:
–– The number of iterations: Max_Iterations = 1000
–– Population size: NP = 100
–– w = 0.25, c1 = c2 = 2

The range of parameters of the proposed estimation model is shown in Table 4.
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6.2  �Experimental Results

The results reported in this paper are the best results of each algorithm in 25 independent runs. The para-
meters of the proposed model using each algorithm are presented as below:

–– Using ABC-PSO: A = 16.274; B = 16.432; C = 3.866; D = –0.128; E = –15.691.
–– Using ABC: A = –13.026; B = –12.185; C = –0.160; D = 4.087; E = –4.377.
–– Using PSO: A = 11.086; B = 10.185; C = –0.051; D = 13.359; E = –16.284.

The story points, velocities, actual effort, and predicted effort using swam optimization algorithms and Zia 
et al.’s method on 21 agile projects are shown in Table 5.

We assess the accuracy of the predicted effort using swarm optimization algorithms based on criteria 
MMRE, MdMRE, PRED(8), R2, and MAR. Table 6 shows the obtained results of the approaches.

It is seen that three algorithms gave the better results than Zia et  al.’s regression method in terms of 
almost all evaluation criteria. This indicates the efficiency of swarm optimization algorithms compared with 
the simple regression. Among three swarm optimization algorithms, the improved version ABC-PSO showed 
the best results, and it outperformed two original algorithms (ABC and PSO) with regard to all criteria, while 
PSO showed the worst results. The hybrid version significantly enhanced the effectiveness of PSO with opti-
mization parameters for the software effort estimation model.

Table 4: Range of Parameters of the Proposed Model.

Parameter Minimum value Maximum value

A –20 20
B –20 20
C –20 20
D –20 20
E –20 20

Table 5: Experimental Results.

Story point  
 

Velocity 
 

Actual effort 
 

Predicted effort

Using ABC-PSO  Using ABC  Using PSO  Zia et al.’s work

156   2.7  63  60.9  60.6  59.6  58
202   2.5  92  84.7  84.9  83.6  81
173   3.3  56  56  55.7  56.5  52
331   3.8  86  92.8  93.3  96.1  87
124   4.2  32  32  32.3  34.8  29
339   3.6  91  99.9  100.6  103  95
97   3.4  35  30.1  30.4  30.9  29
257   3  93  90.5  90.8  91.4  84
84   2.4  36  36  35.9  33.3  35
211   3.2  62  70.2  70  70.8  66
131   3.2  45  43.6  43.4  43.6  41
112   2.9  37  40.7  40.5  39.7  39
101   2.9  32  36.5  36.5  35.6  35
74   2.9  30  26.1  26.6  25.5  26
62   2.9  21  21.3  22.2  21  22
289   2.8  112  108.3  109.3  109.5  103
113   2.8  39  42.4  42.2  41.2  40
141   2.8  52  53.2  52.9  52  50
213   2.8  80  80.2  80.3  80  76
137   2.7  56  53.5  53.1  52  51
91   2.7  35  35  35  33.4  34
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To enrich the study of the ABC-PSO algorithm, we carried out statistical tests to see whether the predicted 
results using ABC-PSO are statistically different from those using other algorithms in datasets. We used a 
normality test on the results obtained and identified that data were not normally distributed. For this reason, 
we employed the Wilcoxon test, which is a non-parametric test; this type of test should be used when the 
distribution is not normal. Table 7 gives the results of the Wilcoxon test based on the 95% confidence inter-
val (CI). Bold text indicates that the results are statistically different at 95% CI. If the p-value is ≤0.05, then 
we conclude that the results using ABC-PSO are statistically different from the others at 95% CI. Otherwise, 
results using ABC-PSO are not statistically different at 95% CI. Based on Table 7, we can see that the ABC-PSO 
algorithm gave statistically significant results different from Zia et al.’s regression method; however, it fails 
to be statistically different from the two remaining algorithms.

In Ref. [27], Panda et al. used different types of neural networks such as GRNN, PNN, GMDH polynomial 
neural network, and cascade-correlation neural network to predict the effort based on 21 software projects in 
Zia et al.’s work. The performance of the ABC-PSO algorithm is compared with these studies. Table 8 presents 
the comparison of obtained results using different types of ANN and the PSO-ABC algorithm.

It is clear that our ABC-PSO algorithm outperformed all different kinds of ANNs in terms of criteria R2 and 
MMRE. The experimental results indicated that our proposed method significantly ameliorated the accuracy 
of results obtained in comparison with other methods.

7  �Threats to Validity
This paper introduces a method to improve the accuracy of predictions of effort for the agile software projects 
using the estimation model of Zia et al. [41].

Table 6: Results for Algorithms Based on the Criteria MMRE, MdMRE, PRED(8), R2, and MAR.

Algorithm MMRE (%) MdMRE (%) PRED (8) (%) R2 MAR

ABC-PSO 5.69 3.33 66.67 0.9734 3.12
ABC 5.84 5.18 61.9 0.9732 3.15
PSO 6.69 7.14 61.9 0.9626 3.66
Zia et al.’s regression 7.19 7.14 57.14 0.9638 4

Bold text indicates that the results are statistically significant.

Table 7: Wilcoxon Test for ABC-PSO Algorithm.

ABC-PSO vs. p-Value at 95% CI

ABC 0.28462
PSO 0.5892
Zia et al.’s regression 8E–05

Bold text indicates that the results are statistically different at 95% CI.

Table 8: Comparison Results Using ABC-PSO with Different Kinds of Artificial Neural Networks.

Method R2 MMRE (%)

ABC-PSO 0.9734 5.69
GRNN 0.7125 35.81
PNN 0.6614 157.76
GMDH polynomial neural network 0.6259 15.63
Cascade-correlation neural network 0.9303 14.86

Bold text indicates that the results are statistically significant.
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Threats to construct validity are related to the way that the effort estimation models are defined. In 
this paper, the proposed model assumes that the value of initial project velocity is given by taking from the 
past projects developed by the same team in similar working conditions. However, when a team is new, the 
company will not have any past team velocity record. In that case, no obvious assignment to initial project 
velocity can be allocated. To deal with this problem, we are able to take advantage of the average velocity 
values of all the teams working in similar conditions with the same size of the project and assign them to the 
initial project velocity, and then these facts are used to train the classifier by applying swarm intelligence 
algorithms. Another limitation of the proposed approach is that the complexity of each story is assessed in 
range from 1 to 5, and it might not cover all diversified characteristics of agile projects in practice. Therefore, 
further studies need to clarify methods in order to evaluate the complexity of each user story. The focus of 
our research is to apply swarm intelligence algorithms to create a new formula for software effort estimation 
based on Zia et al.’s model; thus, we only use two metrics for each agile software project, which are team 
velocity and story points. In general, there are a wide number of other metrics for an actual project using agile 
methodologies such as the amount of new logical lines of code the team produced in a release, code integra-
tions, and functional or non-functional requirements [1]. Hence, we intend to generate another estimation 
model for agile software projects by combining various features into a model.

In our study, threats to external validity insist on the generalization of other types of dataset. In this 
work, records of 21 projects developed by six software houses from the work of Zia et al. [41] are used without 
information with regard to the kind of projects taken for research. To increase the persuasiveness, data cover-
ing all categories of software developed by agile methods should be collected and experimented for studies in 
the future. The proposed formula and algorithms in this paper should be compared and evaluated through a 
real case study as well. This problem is not solved in this work due to the difficulty in collecting the data from 
industrial software projects. This issue will be resolved in our future research.

8  �Conclusion and Future Work
This paper proposed a novel formula based on velocity and story points to estimate the effort for agile soft-
ware projects. The parameters of the estimation model were then optimized by using swarm optimization 
algorithms. We also introduced a hybrid version of the ABC and PSO algorithms. The experimental results 
proved that the ABC-PSO algorithm outperformed ABC and PSO on all evaluation criteria. This new algorithm 
also gave better results compared with different kinds of ANNs in other studies.

In future work, we intend to apply the proposed algorithm for industrial projects and assess it com-
prehensively. We are going to apply machine-learning techniques such as support vector machine, random 
forest, and stochastic gradient boosting for the effort estimation problem of agile software projects.
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