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ABSTRACT The auction algorithm is a widely used method for task assignments. However, most existing

auction algorithms yield poor performance when applied to multi-UAVs dynamic task assignment. To end

this, we propose a novel hybrid ‘‘Two-Stage’’ auction algorithm based on the hierarchical decision mecha-

nism and an improved objective function, which simultaneously realizes heterogeneousmulti-UAVs dynamic

task assignment with limited resources of each UAV and avoidance obstacle path planning. In the first stage,

according to the novel proposed hierarchical decision mechanism, we select a task that is urgently needed

to be performed in the task group by using the decision function and three attribute values of tasks. After

the first stage, it will result in a reasonable auction sequence, instead of random auction sequence as in

previous algorithms. In the second stage, by considering the coverage factor and adaptive-limitation penalty

term, a novel objective function is proposed and directs related UAVs for auction. In addition, we combine

the structural advantages of the centralized and distributed auction algorithm, which greatly promotes its

performance in dynamic task assignment. The experimental results demonstrate that the proposed method

outperforms many state-of-the-art models in efficiency and robustness.

INDEX TERMS Hierarchical decision mechanism, unmanned air vehicle, dynamic task assignment, auction

algorithm, decision function.

I. INTRODUCTION

For highly autonomous multi-UAVs systems, dynamic task

assignment is a crucial problem that needs to be addressed

efficiently. The multi-UAVs dynamic task assignment can be

stated as follows: Given a set of UAVs and tasks, where each

UAV has upper bound on the number of tasks that it can

perform, and each UAV has a payoff for each task, find an

assignment of UAVs to tasks such that the sum of the payoff

of all UAVs is maximized. And when environment changes,

such as when the UAV finds new targets or is destroyed in

dynamic environment, the original assignment scheme can be

constantly adjusted to maximize the overall payoff. However,

basic task assignment problem, which usually formulated as

the integer programming problem [1] or a set of optimization

problems [2], is difficult to be addressed. In the past few
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decades, there are many optimization algorithms to solve this

problem, e.g., the Hungarian algorithms [2], the integer pro-

grammingmethods [3], and some heuristic algorithms such as

genetic algorithm [4], particle swarm optimization [5]. How-

ever, these methods may fail in dealing with dynamic task

assignment problem in complex environment. In recent years,

more and more researchers begin to focus on auction algo-

rithm which has made excellent performances in dynamic

task assignment. Existing auction algorithm can be roughly

categorized into centralized auction algorithm [1], [6]–[8],

distributed auction algorithm [10]–[40], and hybrid auction

algorithm [41]–[44].

The centralized auction algorithm requires a central sta-

tion, which distributes global information about current

prices and assignment results among bidders [9], [10].

The representative model proposed by Bertsekas et al. [1],

addresses the problem of assigning a set of tasks to a

few agents on well-connected network. This kind of model
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performs well in task assignment when there are few agents,

due to its simple network topology. However, when agent

increases or agent systems run on less reliable networks, the

communication cost of maintaining a central station could

become prohibitive [9]. Besides, the network topology may

affect the scalability of centralized algorithm [22]. To address

these shortcomings, distributed auction algorithm is pro-

posed, which uses local information and limited commu-

nication ability to accomplish task assignment instead of

using a central station [10]. For example, Kim et al. [12]

propose a resource-oriented, distributed auction algorithm,

which considers multiple resources of the agents and limited

communication range. In [25], it uses a distributed auction

algorithm to handle the task assignment problemwhile taking

path planning into account. Because of using a well con-

structive distributed auction algorithm, the method in liter-

ature [26] can provide desirable assignment results in the

constraint of limited resources and deadlines. In [27]–[29],

the UAV can obtain its available task period and resources

according to task sequence mechanism in dynamic environ-

ment. This mechanism can effectively handle the scenario

which has real-time and resources limited requirements of

task assignment. A series of distributed auction algorithms

based on hierarchical mechanism are presented to solve

multi-UAVs task assignment problem [30]–[34]. Similarly,

the distributed algorithms are proposed to solve dynamic task

assignment problems in robotic swarm [35]–[40]. Neverthe-

less, the distributed auction algorithm cannot handle dynamic

task assignment very well due to its complex structure and

organization [22].

To solve the above problems, the hybrid auction algo-

rithm has been proposed where other advanced algorithms

are incorporated into the distributed auction algorithm. For

example, Choi et al. [42] put forward the consensus-based

bundle algorithm (CBBA) that utilizes both distributed auc-

tion algorithm and decision strategy, to deal with dynamic

multi-assignment problems. When the environment changes,

Cao et al. [41] propose a hybrid dynamic task assign-

ment method. Firstly, they use a centralized particle swarm

optimizer-fish swarm algorithm (PSO-FSA) between groups

and then use auction algorithm in group to realize dynamic

task assignment in multi-UAVs system. Kim et al. [43] pro-

pose a distributed task allocation method for heterogeneous

UAV team based on the concept of social welfare in eco-

nomics. Another dynamic task assignment algorithm based

on sequential single item auctions (DTAP) is presented by

Farinelli et al. [44], where agents announce their desired tasks

and then collect bids from other agents to decide whether it

can perform its desired tasks or leave them for another agents.

However, the auction sequence in the above algorithms is

randomly generated, which may affect the performance of

dynamic assignment [41]–[44].

In this paper, we propose a novel hybrid ‘‘Two-Stage’’ auc-

tion algorithm based on the hierarchical decision mechanism

and centralized-distributed auction structure. Specifically,

UAV obtains initial information of the mission area from the

central station before starting from the base to perform tasks.

In the first stage, the algorithm finds a task from the task

group that is urgently needed to be performed based on the

hierarchical decision mechanism. Therefore, it generates a

reasonable auction sequence according to the change of the

environment, which is the key to the method. Furthermore,

related UAVs bid for this task under the guidance of the

novel objective function and repeat above procedures until

all tasks are assigned. Since the objective function contains

the new coverage factor and penalty term, our method can

better deal with dynamic task assignment problem. Besides,

UAV must consider its current resource surplus and existing

tasks queue before bidding for other new tasks. The above

task assignment is usually called offline allocation because

the information of tasks is known in advance. The dynamic

assignment mechanism will be activated when UAVs leave

the base. Correspondingly, each UAV can act as an auctioneer

when it finds new tasks in the mission area. Moreover, when

UAV is destroyed by threatening targets, the central station

can use the challenge mechanism to confiscate its unexecuted

tasks and reauction these tasks.

In summary, the contributions of this paper include the

following:

• A novel hierarchical decision mechanism is proposed

based on the three attribute values of tasks and decision

function, which not only realizes the dynamic task selec-

tion according to changes of the environment, but also

improves the speed of the multi-UAVs system to remove

high threat targets in dynamic environment.

• By incorporating novel coverage factor into objective

function, we construct an improved auction mechanism

to consider the association cost between tasks that fur-

ther improves the performance of dynamic assignment.

Meanwhile, the coverage factor with reasonable Lcov can

make UAV swarms more fully distribute in the mission

area.

• Instead of limiting the number of tasks that each agent

can perform with a fixed constant, we propose a novel

adaptive-limitation penalty term based on the potential

function, which balances the use of individuals in UAV

swarm and makes full use of the resources carried by

each UAV.

The rest of the paper is organized as follows: Section II

reviews three related auction algorithms. In Section III we

propose our novel hybrid auction algorithm. In section IV,

the performance of ‘‘Two-Stage’’ auction algorithm is ana-

lyzed in detail. Finally, Section V concludes the paper.

II. BACKGORUND AND RELATED WORK

A. CONVENTIONAL AUCTION ALGORITHM (CAA)

In [1], it was the first time that the auction algorithm

was proposed as a polynomial-time algorithm for the

single-assignment problems, then many extensions and

improvements have been made to solve multi-assignment

problems. In CAA [1], [6], [7], the central station acts as an

auctioneer and issues auction call for tasks. All agents are
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bidder and submit their bid values to the auctioneer for bid-

ding their interested tasks. Since the central station contains

the system’s global variables, all agents have permission to

read and write. After comparing bid values, the auctioneer

assigns the task to the bidder who gives the highest bid price.

To be specific, the value of a task is defined by cij = aij − pj,

where aij denotes the reward of assigning task j to agent i,

and pj is the global price of task j. Note that the value of pj
is continuously updated to manifest the current bid for the

task. Auctions shall be done in rounds and continue until all

agents are assigned to the task that gives it themaximumvalue

(maxj cij). Every round selects some agent i that has not been

assigned a task and finds out j∗ , argmaxj(aij−pj). Once task

j∗ has already been assigned to another agent, the two agents

swap tasks. At the end of each round, the price of the task j∗

is increased such that the value cij∗ is the same as the second

highest valued task in agent i’s list. However, the centralized

topology seriously affects the performance of dynamic task

assignment [22].

B. CONSENSUS-BASED BUNDLE ALGORITHM (CBBA)

In [42], Choiet al. propose the CBBA model based

on a decentralized market-based decision strategy, which

addresses dynamic task assignment to coordinate a fleet of

autonomous vehicles. The CBBA is a multi-assignment strat-

egy that utilizes both auction and consensus. The algorithm

consists of iterations between two phases: bundle construc-

tion and conflict resolution. In the first phase, each agent

generates only one bundle and updates it as the allocation

progresses and adds tasks to its bundle until it is incapable

of adding any other task. Moreover, tasks in the bundle are

ordered based on the added time, that is, the earlier a task is

added, the higher its position in the bundle.

cij [bi] =

{

0, if j ∈ bi

maxn≤|pi| S
pi⊕n{j}
i − S

pi

i , otherwise
(1)

where |·| represents the cardinality of the list, and operation

⊕n inserts the second list right after the n − th element of

the first list. S
pi
i denotes the total reward value for agent i

performing the tasks along the path pi. In CBBA, themarginal

score will be used if a task j is added to the bundle bi. The

score function is initialized as S
{∅}

i = 0, while the path and

bundle are updated as:

bi = bi ⊕end {Ji} , pi = pi ⊕ni,Ji {Ji} (2)

In the second phase, three vectors are used for consensus.

The winning bids list yi ∈ R
Nt
+ and the winning agents list

zi ∈ INt . The third vector si ∈ RNu denotes the time node of

the last information update of all agents. The update of the

time vector follows the following formula:

sik =

{

τr , if gik = 1

maxm:gim=1 smk , otherwise
(3)

where τr represents the message reception time.

Due to the combination of distributed structure and con-

sensus mechanism, the flexible topology of CBBA performs

well in multi-assignment problems. But in complex dynamic

environments, such as multi-obstacles and high-risk mili-

tary environment, its assignment results are unsatisfactory

because of the random auction sequence. Besides, if an agent

disappears during mission execution, the tasks it carried will

never be performed.

C. DTA BASED ON SEQUENTIAL SINGLE ITEM AUCTIONS

(DTAP)

The DTAP [44] takes inspiration from sequential single item

auctions, where agents assign one task at the time, and when

they calculate their bid values, they need to consider previ-

ous assigned tasks. The basic idea of DTAP is that agents

broadcast their interested tasks to everyone, and then collect

quotations from their team-mates. These quotations weigh

how well each agent fits to a given task. To be specific, each

agent selects the task that maximizes the utility function.

Then, the agent announces its selected tasks and correspond-

ing bid values to all team-mates. After comparing the bid

values, the agent checks whether it is the best bidder for

the selected task. If this is the case, the agent performs the

selected task, otherwise it selects next task and iterates the

selection process.

In specific patrolling problem, tasks are nodes to be visited,

i.e., there are a set of patrol nodes P = {p1, ...pm}, and the

agent decides to visit or not to visit such node depending on

the average idleness of the node and its travel cost. The utility

function, that is vij = U (ri, pj, t), which weighs how fit it

is for the system assignment robot ri to node pj at current

time t .

U (ri, pj, t) = θ1I
pj (t) + θ2Tc(ri, pj, t) (4)

p = argmaxp′∈CurrentTasksU (rk , p
′, t) (5)

where Ipj (t) denotes the idleness of pj at time t , Tc(ri, pj, t)

denotes the distance cost for robot ri to arrive at pj considering

its position at time t , and θ1, θ2 are positive parameters that

balance the above two terms. In addition, only one robot

should be assigned to a specific node (i.e., ∀t, j
∑

iaij ≤ 1)

to keep a similar frequency across the nodes.

In general, DTAP model produces significant improve-

ments in multi-obstacles environment due to its on-line strat-

egy. Moreover, the problem that agents disappear during

mission execution is addressed by the forceBid(dst, value,

sender) function (5), which forces the current bid as the best

one. However, similar with the CBBA model, the auction

sequence of DATP model is still generated randomly, which

limits its performance in complex and changeable environ-

ment. Besides, both DTAP and CBBA limit the number of

tasks that each agent can perform with a fixed constant, the

flexibility of dynamic assignment results will be seriously

affected.

III. PROPOSED ‘‘TWO-STAGE’’ AUCTION ALGORITHM

In this section, we will present and discuss the details of

the proposed ‘‘Two-Stage’’ auction algorithm. According to
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the above analysis, we know that CAA, CBBA and DATP

all use random auction sequence, which may produce poor

performances in complex dynamic environment. To solve

this problem in these models, we divide the multi-UAVs

dynamic task assignment problem into two stages, where

the first stage judges which tasks are prioritized, and the

second stage executes auction process to find the suitable

agent and plans the path with the consideration of avoiding

obstacles. To be specific, the first stage produces a reasonable

auction sequence according to the novel hierarchical decision

mechanism. Then, related UAVs bid for the task based on the

novel objective function and build their own local task queue

and path.

A. DYNAMIC TASK ASSIGNMENT MODEL

Definition 1 (Task Space): There is a task set

{T1,T2,T3, . . . ,TM } existing in a two-dimensional plane,

and Tj(j = 1, 2, . . . ,M ) has four attributes: location coor-

dinates (Xj,Yj), gain value V (Tj), threat value Th(Tj) and

blind value B(Tj). The above four attributes come from the

initialization of the mission area. Note that there are multiple

types of tasks in this environment, which can be categorized

into attack, reconnaissance and induced task subsets.

Definition 2 (Executive Unit): There are N agents (UAVs)

with integrated wireless communication capabilities.

{U1,U2,U3, . . . ,UN } denotes the set of UAVs. Consider-

ing the multi-UAVs operational scenario, there are three

basic configurations: attack UAV, reconnaissance UAV, and

induced UAV. The reconnaissance UAVUinv is equipped with

an advanced sensing system and high airspeed configuration.

In addition, it has a fast flight speed and a large field of view.

Therefore, it is suitable to execute reconnaissance missions.

Attack UAV Uatc is suitable for attack missions due to its

high maneuverability and the capabilities to carry weapons

and ammunition. The induced UAVUcht can imitate the radar

reflection cross-section RCS characteristics of important

aircraft through airborne equipment. Thus, it will mislead the

enemy air defense radar to protect our important aircrafts.

Heterogeneous type constraint is shown in Fig. 1.

Due to the limited task resources of each UAV, we estab-

lish the resource vector of each UAV based on the resource

constraints principles.

resi = (r i1, r
i
2, r

i
3, r

i
4) (6)

req
j
i = (rq

i,j
1 , rq

i,j
2 , rq

i,j
3 , rq

i,j
4 ) (7)

where resi indicates the fuel, ammunition, reconnaissance,

and induced resources of i − th UAV, and req
j
i indicates the

resources required to assign task j to Ui.

After getting a task, each UAV updates its own resource

vector:

resi = resi −
∑

req
j
i (8)

Before bidding process, each UAV will check its own

resource vector resi, if r is < rq
i,j
s , s = 1, 2, 3, 4, it indicates

that there are no enough resources to bid any new tasks.

FIGURE 1. Heterogeneous type constraint diagram.

The allocation model can be a balanced assignment or

an unbalanced assignment. For the undifferentiated hybrid

model with variable number of tasks and execution units,

we define the target allocation matrix XN×M :

xij =

{

1, if Ui perform task Tj

0, else
(9)

If the target allocation matrix is Ui− = [11 1 0], it means

that theUAVUi acquires the task queueU
Tseq
i = {T1,T2,T3}.

Then, we define an objective function of the UAV Ui in this

assignment:

G(U
Tseq
i ) = Rwd(Ui(T1))+Rwd(Ui(T2))+Rwd(Ui(T3))

(10)

Rwd(UI (Tj)) = Benefit(Ui(Tj)) − Cost(Ui(Tj)) (11)

Formula (10) and (11) denote the revenue that UAV Ui
accomplishes the local task queueU

Tseq
i . Rwd

(

Ui
(

Tj
))

is the

net profit of UAVUi to accomplish the task Tj.Benefit(Ui(Tj))

denotes the revenue that UAVUi completes task Tj in the task

queue U
Tseq
i . Cost(Ui(Tj)) is the cost of UAV Ui to complete

the task Tj in the task sequence U
Tseq
i . The Benefit(Ui(Tj))

term comes from two aspects. On the one hand, it is the

value attribute of the target. For example, the value V (Tj)

gains from destroying high-value targets such as base stations

or airports. On the other hand, it comes from the threat

value Th(Tj) of a target. For example, high-threat targets such

as air-defense radar or anti-aircraft artillery could destroy

UAVs onmissions. In the scenario ofmulti-UAVs cooperative

protect piloted airplanes, sweeping battlefield threats target

usually takes precedence over attack targets. We define task

benefit that UAV Ui accomplish the task Tj:

Benefit
(

Ui
(

Tj
))

= kaV
(

Tj
)

+ kbTh
(

Tj
)

(12)
{

ka + kb = kc

0 ≤ ka, kb ≤ 1
(13)

where V (Tj) indicates the gain value of the task Tj. Th(Tj)

denotes the threat value of the task Tj. The above two attribute

values reflect the current attributes of the mission area. When

the environment changes, the value of these attributes will

change accordingly, which is one of the conditions for starting
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dynamic assignment. ka and kb are the normalization coeffi-

cients of these factors for the benefit function, which indicates

the preference of the benefit function for gain or threat. kc
denotes the weight coefficient of the benefit function among

the objective function.

The Cost
(

Ui
(

Tj
))

term is usually the fuel cost, time cost,

etc. There are some literatures consider the risk factor for

UAVs to perform tasks as part of the cost. The fuel con-

sumption during the actual flight is related to many factors

such as altitude, speed, distance, wind speed, etc., thereby the

actual fuel consumption is difficult to be calculated accurately

in the simulation. Since the UAV flight distance and fuel

consumption are close to linear in the constant speed cruise

phase, this paper replaces the fuel consumption cost with the

route cost. We define the cost of UAV Ui to complete task Tj
as follows:

Cost(Ui(Tj)) = k
UiTj
mt (kdD(UiTj) + kpp

j
i) (14)

where D(UiTi) is the distance cost of Ui to complete task

Tj. p
j
i denotes the probability that Ui destroyed by the coun-

terattack on missions. kd and kp are the normalization coef-

ficients of the distance cost and the destroyed cost. k
UiTj
mt

represents the cost coefficients when task crossover occurs.

When k
UiTj
mt ≤ 1, it indicates Ui is suitable for task Tj, and the

execution cost is lower. Otherwise, it denotes that Ui is not

suitable for the task Tj.

Besides the benefits and costs of the UAV executes mis-

sions that usually used in dynamic task assignment scheme.

In this paper, we also propose two new terms to optimize the

dynamic task assignment scheme XN×M , the coverage factor

and penalty term. For example, some targets may not be in the

UAV local task queue U
Tseq
i , but within the coverage of the

UAVmission area. Therefore, it has a lower execution cost for

these targets in the following dynamic task assignment. The

novel coverage factor allows the UAV individuals to be more

evenly distributed in the mission area instead of gathering

at high-value and low-cost areas, which is conducive to the

following dynamic task assignment and further optimization

of the objective function. We define the target coverage factor

as:

Cover
(

XN×M
)

=

∑

UTcov
i

sum (T )
(15)

Tcov = {T |D(TU
Tseq
i ) ≤ Lcov} (16)

D(TU
Tseq
i ) = min

(

√

(Xj − Xi)2 + (Yj − Yi)2
)

(17)

where UTcov
i is the coverage tasks set of Ui. sum (T ) is

the number of tasks in the mission. D(TU
Tseq
i ) denotes the

minimum distance between task Tj and the tasks in U ′
i s

local task queue. (Xj,Yj) and (Xi,Yi) are corresponding point

coordinates. When D(TU
Tseq
i ) ≤ Lcov, task Tj is considered

to be under the coverage of Ui and belongs to Tcov. If the size

of mission area is relatively small, the value of Lcov should be

smaller. Conversely, larger Lcov can be chosen if the size of

mission area is larger. We found that the performance of our

algorithm is optimal when the threshold Lcov equals 2500 in

the 10km∗10km square area.

In order to balance the use of individuals in the UAV swarm

and make full use of the resources carried by each UAV,

we propose a novel penalty term using a potential function.

P = µ(Li − n)2 (18)

where µ is negative constant. n is positive constant. Li repre-

sents the number of tasks carried by the UAV.

Obviously, when Li = n, the penalty term is 0. The larger

the deviation of Li from n, the larger penalty will be imposed

on the profit of a task in the auction process, which adaptively

limits the number of tasks that the UAV can perform. After a

great number of trials, we find that the penalty term works

well as n = 3.

In summary, we define the objective function as follow:

G(XN×M ) =

N
∑

i=1

Benefit(Ui(U
Tseq
i )) −

N
∑

i=1

Cost(Ui(U
Tseq
i ))

+Cover(XN×M ) + µ(Li − n)2 (19)

G(XN×M ) denotes the objective function of the mission

planning scheme XN×M , which includes four terms: mission

benefit, mission cost, coverage factor and penalty term. The

first two terms determine the net profit of the assignment

results, their specific contents have been described above.

The third term mainly considers the association cost between

tasks. Specifically, new tasks found by the UAVs are associ-

ated with the tasks in their local task queue. If the new task

is within combat path of the UAV, the subsequent dynamic

assignment has a lower cost for this UAV. The last penalty

term balances the use of individuals in the UAV swarm and

make full use of the resources carried by each UAV using

a potential function. Therefore, the last two terms in novel

objective function can make the assignment results get higher

payoff when all other conditions are equal. The allocation

algorithm is looking for the maximum value of the objective

function. We define the mathematical form of the optimiza-

tion objective function is:

max
(

G
(

XN×M
fin

))

(20)

The purpose of assignment algorithm is to optimize the

objective function for finding the optimal or sub-optimal

scheme XN×M
fin of the objective function. Dynamic task

assignment algorithm often abandons the global perspective

to reduce the computational cost and optimize the global allo-

cation efficiency from local optimization through the greedy

principle, so it usually has better response speed.

B. FIRST STAGE: UPPER DECISION

Upper decision function:

Class{T } = max[kv · Vscore, kth · Thscore, khr · Hrscore]

(21)
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Vscore = a1

m
∑

j=1

V (Tj)

Thscore = a2

m
∑

j=1

Th(Tj)

Hrscore = a3

m
∑

j=1

B(Tj) (22)

where a1, a2, a3 > 0 are weighting parameters. m is the sum

of the three types UAVs in the mission area. V (Tj), Th(Tj) and

B(Tj) represent the gain value, threat value, and blind value of

j − th task. Vscore, Thscore and Hrscore denote the gain value,

threat value, and blind value of the mission area, respectively.

kv, kth and khr are normalization coefficients.

In order to optimize the auction sequence, we propose a

novel hierarchical decision mechanism based on the three

attribute values of tasks and decision function. First, the hier-

archical decision mechanism is used, depending on the novel

decision function, to select the subset of task types {Tclassi}

as current auction task set. Obviously, the decision function

used here is essentially an extremal function. Second, it will

choose a specific task in above auction task set according

to the attribute values of tasks. To be specific, the output of

the decision function (21) determines the current environment

attribute. When kv · Vscore is the largest in (21), the environ-

ment of the mission area is determined to be the high-profit

situation. As a result, the attack tasks will be executed first

and their sequence in local task queues will be ordered based

on their gain values. Similarly, if kth · Thscore is the largest of

the three, the environment is judged as the high-risk situation,

then induced tasks are prioritized. When there are many blind

zones in the mission area, the corresponding term khr ·Hrscore
reaches the maximum. Therefore, reconnaissance-type UAVs

are given priority to execute reconnaissance tasks. In gen-

eral, task sequence in local task queues is ordered based

on the three attribute values. The purpose of imposing the

hierarchical decision mechanism is not only to arrange the

auction sequence dynamically depending on the change of

the environment attributes, but also to improve the speed

of the multi-UAVs system to remove high threat targets in

dynamic environment. By incorporating the novel hierarchi-

cal decision mechanism into auction algorithm, our method

can handle dynamic task assignment problem better in com-

plex and changeable environment.

C. SECOND STAGE: AUCTION MECHANISM

In the second stage, each UAV bids for their interested tasks

based on the novel objective function (19) and puts corre-

sponding tasks in its local task queue. Different from the

CBBA model, the local task queue is ordered based on the

attribute values of tasks in our method. All UAVs calculate

the profit of tasks independently and continuously updates its

local task queue. Besides, each UAV plans its path according

to the obstacle avoidance algorithm. It should be noted that

the path-planning is not as optimal as in [26], due to the

Algorithm 1 The Algorithm of ‘‘Two-Stage’’

Input:

Read in the tasks set {Tatc,Tinv,Tcht }, UAVs set

{Uatc,Uinv,Ucht } and Constraint set {R}.

Initialization:

Initialize the attribute values of tasks V (Tj), Th(Tj),

B(Tj), and resource vector of UAVs resi, reqij; Set

cross-cost coefficient k
UiTj
mt , distance threshold Lcov,

coefficientsµ, n, a1, a2, a3, the value of normalization

coefficientska, kb, kd , kp, kv, kth, khr , the number of UAVs N

and tasksM , and the number of iteration termination m.

Repeat:

1. Compute the decision function according to Eq.21;

2. Based on the attribute values of tasks, find a specific

task Ttypical form the subset that is determined by above step.

3. Start the auction process according to Eq.19;

4. If new tasks suddenly appear or the UAV disappears

in the mission area, adjusts the original assignment plan

according to the relevant mechanism immediately.

5. Path planning and obstacle avoidance.

Until:

The number of iterations is equal to m.

Output:

The final dynamic task assignment results.

priority of the environment attributes in the mission area.

In dynamic assignment situation, new found tasks have asso-

ciated cost with tasks which has existed in the local task

queue. The execution efficiency of the allocation scheme will

be reduced if new found tasks are directly assigned at the end

of the local task queue without considering the previous tasks.

In addition, due to resource constraints, each UAV can only

perform limited tasks and must return to base to replenish

resources when the resources are about to run out. The last

term in objective function (19) can ingeniously accomplish

the full use of resources carried by each UAV. Specifically,

the three algorithms introduced in section II set the number of

tasks that each agent can perform using a fixed constant. For

example, although the agent has enough resources to bid for

another tasks, it must exit the bidding process when it reaches

the fixed constant. However, our method can completely

avoid this problem. In order to illustrate the advantages of

our method, we set n = 3. Although there is a penalty

cost for getting the fourth task, it is less than the cost of

using a new agent. Moreover, profits will sharp decrease

when Li seriously deviates from n, which balances the use

of individuals in UAV swarm.

The ‘‘Two-Stage’’ auction algorithm proposed in this paper

not only quickly finds the most suitable UAV for the selected

task, but also realizes dynamic task assignment in complex

and changeable environment. The novel objective function is

more conducive to maximize the overall payoff by consider-

ing the coverage factor and penalty term, which can optimize

the overall task execution efficiency. Moreover, the introduc-

tion of the penalty term can balance the UAV mission load
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FIGURE 2. The algorithm flowchart.

and use UAVs in the swarm as reasonably as possible. The

algorithm flowchart, which shows in Fig. 2, clearly explains

the specific process of the algorithm.

In summary, our algorithm consists in following steps:

IV. EXPERIMENTS

The mission area is set to a square area of 10km∗10km, and

there are up to 20 known targets and 4 unknown targets in

this area. UAV swarm consists of 8 UAVs, including 4 attack

UAVs, 3 reconnaissance UAVs and 1 induced UAV. The flight

speed of every UAV is 50m/s by default. In order to make

the simulation closer to the actual situation, we set obstacles

(no-fly-zones) in the mission area, which need to be avoided

in the path planning process. Unless other specified, we use

the following parameters in this paper: N = 8, µ = 0.5,

n = 3, a1 = a2 = a3 = 1, kb = kd = kp = 0.8,

ka = 0.5, kv = kth = khr = 0.6, Lcov = 2500,

m = 30.

we mainly carry out our experiments from the following

five aspects. 1) Dynamic task assignment for known tar-

gets. 2) Dynamic task assignment for new found targets.

3) Dynamic task assignment after UAV lost. 4) Dynamic

task assignment under different scenarios. 5) Comparison

experiments with CAA, CBAA, and DTAP in terms of the

total allocation payoff and the completion speed of tasks.

A. DYNAMIC TASK ASSIGNMENT FOR KNOWN TARGETS

Among all 8 UAVs, U1-U4 are attack UAVs, U5-U7 are

reconnaissance UAVs, and the last one U8 is induced UAV.

TABLE 1. The initial information of UAVs.

TABLE 2. The initial information of attack tasks.

TABLE 3. The initial information of reconnaissance tasks.

TABLE 4. The initial information of induced tasks.

All UAVs take off from the same initial position (100, 100)

in this paper. Each UAV has a corresponding vector, which

indicates four kinds of resources carried by the UAV. Note

that the initial position of tasks, the three attribute values

of tasks, and the last three values in resource vector are

generated in random way. The initial information of UAVs is

shown in Table 1. The initial information of tasks is respec-

tively shown in Table 2, Table 3 and Table 4. In the first

scenario, there are 15 known targets and 2 unknown targets.
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TABLE 5. The results of high-profit situation task assignment.

FIGURE 3. The initial environment of the task assignment.

Specifically, Fig. 3 shows the initial environment of the

first scenario. Different types of tasks are represented by

different colors and shapes, where yellow triangle, red dia-

mond, and blue circle represent attack, reconnaissance, and

induced tasks, respectively. The dark green circle indi-

cates the obstacles that UAVs cannot fly over. The unknow

tasks are not shown in Fig. 3, which will be discussed

in IV-B and IV-D.

Assume that each task has three attribute values, namely

gain value, threat value, and blind value. The hierarchi-

cal decision mechanism determines the current environ-

ment attributes of the mission area based on these values,

and then generates a reasonable auction sequence. Due to

the dynamic changes of the environment in mission area,

the output of the hierarchical decision function will change

accordingly. When the environment is high-profit, high-risk,

or high-blind situation, the dynamic assignment results of

our method will be different. We verify the efficiency and

robustness of the proposed algorithm according to these three

situations.

As shown in Fig. 4, there are five obstacles in the mis-

sion area. When kv · Vscore is the largest, the environment

FIGURE 4. High-profit situation dynamic task assignment results.

is determined to be the high-profit situation, then the

attack-type tasks are preferentially executed. Tasks in

the local task queues of attack UAVs are ordered based on

the gain value, which is shown in Table 5. Since the attack

tasks are prioritized for auction, the attack UAVs are first

to fly out of the base, which is conducive to their compe-

tition for nearby reconnaissance-type tasks. Considering the

cross-execution of tasks, U1 bids T3, T2 and T13 with higher

prices. Besides, U2 puts T5, T10 and T11 in its local task

queue, which causes two reconnaissance UAVs have no tasks

to perform. It needs to be emphasized that because of incor-

porating the adaptive-limitation penalty term into objective

function, all UAVs except U6 and U7 get about three tasks

in the auction process. Due to the use of obstacle avoid-

ance path planning algorithm, our method achieves desirable

dynamic assignment results in the environment with some

obstacles.

As can be seen from Fig. 5, when khr · Hrscore reaches

the maximum, it means that there are many blind regions in

the mission area. Then, reconnaissance-type UAVs are given

priority to perform reconnaissance tasks. In this case, all three
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TABLE 6. The results of high-blind situation task assignment.

TABLE 7. The results of high-risk situation task assignment.

FIGURE 5. High-blind situation dynamic task assignment results.

reconnaissance-type UAVs fly out of the base to performmis-

sion. Since the reconnaissance UAVs cannot execute attack

tasks and induced tasks, there are no cross-execution in this

situation. The specific tasks queues and resources surpluses

are shown in Table 6.

When kth · Thscore is the largest among three attributes, the

environment is judged as the high-risk situation. Therefore,

FIGURE 6. High-risk situation dynamic task assignment results.

the induced tasks are prioritized. Considering the coverage

factor of the tasks, as is shown in Fig. 6, U8 also puts the

reconnaissance task T9 into its task queue after accomplishing

T14 and T15. The specific dynamic tasks assignment results

of this situation are shown in Table 7. Moreover, we observed

that the priority of the reconnaissance tasks is higher than

attack tasks because of khr ·Hrscore > kv · Vscore. In addition,

except for induced tasks, the assignment results and trajectory
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FIGURE 7. High-profit situation dynamic task assignment results after
finding new targets.

of other tasks are similar to Fig. 4, which strongly illustrates

the stability and reliability of our algorithm.

B. DYNAMIC TASK ASSIGNMENT FOR NEW FOUND

TARGETS

Due to the complex and changeable environment in mission

area, some targets may not be detected during initialization,

and they can be discovered when UAVs execute assigned

tasks according to their radar detector. When new tasks are

detected in the mission area, the UAV who finds these tasks

will transform their information to its neighbors by broad-

cast. The neighbors immediately check its own local task

queue and resources surpluses. If conditions permit, they

will bid the tasks based on the received information, oth-

erwise, they will not. Then, the winner inserts these tasks

into the appropriate position of its local task queue according

to the attribute values or rearranges the local task queue

based on the remained resources. Above process does not

need the participation of the central station for coopera-

tive control. The assignment of tasks and the calculation of

remaining resources are completed by highly autonomous

UAVs.

For example, as shown in Fig. 7, in high-profit situation,

U2 finds task T16 on the way to its first task T5, and U3 finds

task T17 on the way to T7, respectively. The new found tasks

T16 and T17 are attack tasks, and their positions and required

resources are shown in Table 8. For further analysis, when U2

and U3 respectively find tasks T16 and T17, they immediately

establish an auction network with its neighbors. Then, each

UAV gives its bidding price by comprehensively considering

some factors, such as resources and distance. The bidding

information of neighbors shows in Table 9. Here, we take T16

as an example to illustrate the detail process. Since U4 is not

within the communication range of U2, it cannot participate

in the auction process. In the bidding of U1, U2 and U3, U2

finally gets T16 with the highest bid price, and it changes

TABLE 8. The information of two new tasks.

FIGURE 8. High-blind situation dynamic task assignment results after
finding new targets.

the original flight trajectory. Note that dashed line indicates

the original trajectory, and dash-dot line indicates the current

trajectory after finding new tasks.

When environment becomes high-blind situation, the

results of dynamic assignments will change dramatically.

As shown in Fig. 8, U6 and U7 find new tasks T16 and T17

during the way to perform original plan, respectively. To be

specific, U6 sends the detailed information of T17 to U1, U2

and U3 as soon as it finds this task. New task T17 will be

directly assigned to U3 because U1 and U2 have insufficient

resources to execute it. Besides, none of UAVs near task

T16 have enough resources to execute this task. Therefore,

the central station will assign T16 to U4, which is on standby

at the base. The specific remained resources of U1, U2 and U3

are shown in Table 6. Table 8 shows the requirement for attack

resources of T16 and T17. Since the dynamic task assignment

results of the high-blind situation are similar to the high-risk

situation, which is shown in Fig. 9. We do not describe this

situation in detail here.

C. DYNAMIC ASSIGNMENT AFTER UAV LOST

In the military environment, there is a risk that the UAV may

be destroyed. Once the UAV disappears in the mission area,

the tasks it carried will never be performed.

This paper adopts a centralized-distributed hybrid auction

structure, where central station sends challenge messages to

each UAV at regular intervals. If the UAV does not respond

to the challenge within specified time, central station will
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TABLE 9. The bidding information of neighbors.

TABLE 10. The bidding information of neighbors after U2 lost.

FIGURE 9. High-risk situation dynamic task assignment results after
finding new targets.

TABLE 11. Dynamic allocation after U2 Lost.

confiscate its unexecuted tasks and reauction them. Hence,

this mechanism solves the problem of losing both UAV and

its carried tasks. As previous experiment shown in Fig. 6, U2

is destroyed when it passes by T15. Thus, three tasks T5, T10

and T15 it carried are reauctioned by the central station.

We show the dynamic assignment results when U2 dis-

appears from the mission area in Fig. 10 and Table 10,

respectively. Table 11 shows the comparison of the results

FIGURE 10. High-risk situation dynamic task assignment results after
U2 lost.

between the original assignment and dynamic assignment

after losing U2. We observed that U1 gets T5 with the highest

bid price, and then it inserts T5 in the second position of

its local task queue. U4 gets T10 and T11 with the similar

way. Note that, dashed line indicates the original trajectory,

and the dash-dot line shows the trajectory after dynamic

assignments.

D. DYNAMIC ASSIGNMENT UNDER DIFFERENT

SCENARIOS

To further evaluate the efficiency and robustness of our

method, we conduct the above experiments in different sce-

narios. We increase the number of tasks and obstacles (no-

fly-zones) in the mission area. Specifically, the mission area

is still a square area of 10km∗10km, and there are 20 known

targets, 4 unknown targets and 7 obstacles. UAV swarm con-

sists of 8 UAVs, including 4 attack UAVs, 3 reconnaissance

UAV and 1 induced UAV. Besides, the position of tasks and

obstacles has changed. The choice of other parameters is
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TABLE 12. Local task queue dynamic statistics.

FIGURE 11. Dynamic task assignment results under high-profit situation.

the same as the above experiments. Due to space limitation,

the following experiments only focus on the high-profit sit-

uation which is the most complex case. First, we show the

dynamic assignment results under high-profit situation for

known tasks in Fig. 11. Since the increased number of tasks,

all UAVs participated in auction process. We observed that

most of the UAVs obtain three tasks. As shown in Fig. 12,

when U1 finds task T20 and T21 on the way to its first task

T3, it transforms the information about these two tasks to its

neighbors U2, U5 and U6.

After the bidding process, U1 gets the task T21 and rear-

ranges its local task queue. Because U3 adds the new task

T22 into its local task queue, it has insufficient resources to

execute T8. Therefore, U3 removes T8 from the local task

queue and sends its information to U2 and U4. Then, U2 gets

task T8 and puts it at the end of the local task queue. Finally,

we show the dynamic assignment results when U2 disappears

from the mission area in Fig. 13. With the intervention of

central station, T4 and T2 are obtained by U1 and U3, respec-

tively. It is clearly seen that our method produces desirable

assignment results in more complex scenarios.

The detailed statistical analysis of UAVs finding new tasks

and U2 disappearing from the mission area shows in Table 12.

Note that, dashed line indicates the original trajectory, and

dash-dot line indicates the latest trajectory after finding new

tasks or losing UAV.

For further validation of the performances of our method,

we implement our algorithm in other scenarios. As is shown

FIGURE 12. Dynamic task assignment results under high-profit situation
after U2 lost.

FIGURE 13. Dynamic task assignment results under high-profit situation
after finding new targets.

in Fig. 14, the dynamic assignment results for known tasks are

still satisfactory in this case. Fig. 15 shows the assignment

results of our method for new found tasks in high-profit

situation. We observed that U1 finds T12 during the execution

of its tasks, and then sends its information to neighbors U2

and U5. Due to the limitation of task type and resources,

U2 finally adds T12 in its local task queue and adjusts the

sequence of tasks. U3 and U4 deal with this problem in a sim-

ilar way to the above process, which are no longer discussed

here.

When U3 is shot down during the continuous flight over

two high risk regions, the subsequent dynamic assignment

results are shown in Fig. 16. Specifically, U4 removes the last

three tasks from its local task queue in order to execute T6

and T9. Meanwhile, U2 takes over the three tasks removed by

U4 after abandoning the reconnaissance task T13. Besides, U5

adds T13 into its local task queue. The specific changes to the

local task queue are shown in Table 13.
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FIGURE 14. Dynamic task assignment results under high-profit situation.

FIGURE 15. Dynamic task assignment results under high-profit situation
after finding new targets.

TABLE 13. Local task queue dynamic statistics.

E. COMPARISON EXPERIMENTS

To verify the efficiency of the proposed algorithm,

we compare our method with conventional auction

algorithm (CAA) [7], Consensus-based Bundle Algo-

rithm (CBBA) [42], and market-based dynamic task assign-

ment algorithm (DTAP) [44] in terms of the total allocation

payoff and the completion speed of tasks. Fig. 17 shows the

total assignment payoff of four algorithms. As we can see

FIGURE 16. Dynamic task assignment results under high-profit situation
after U3 lost.

FIGURE 17. The total assignment payoff of four algorithms.

from that, the final convergence values of DTAP and CBBA

are almost the same, while their values are higher than CAA.

However, our method makes the total assignment payoff

converge to the highest value. This is because CBBA can

outbid earlier assigned tasks in the consensus stage to provide

better dynamic assignments and DTAP employs an informed

coordination protocols approach, while CAA locks the task

into that assignment once it has a winner. Nevertheless,

the novel objective function adopts the adaptive-limitation

penalty term and considers the association costs between

tasks. Therefore, it eventually gets the highest payoff than

other three algorithms. In Fig. 18, when the environment is

high-profit situation, we observed that the attack tasks in the

mission area were completed very quickly. The reason is

due to that the hierarchical decision mechanism adaptively

adjusts the auction sequence based on the attribute values

and places the attack tasks in front of the local task queue of

related UAVs. The task completion speed of CBBA, DTAP,
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FIGURE 18. The gain values of the mission area in high-profit situation.

FIGURE 19. The threat values of the mission area in high-blind situation.

and CAA are relatively uniform due to their auction sequence

are random. In Fig. 19, related UAVs execute reconnais-

sance tasks first under high-blind situation, that is, the value

of khr · Hrscore decreases faster than others. In summary,

the hierarchical decision mechanism combining with the

novel objective function proposed in this paper significantly

improves the performance of dynamic task assignments in

complex environment. These three comparison experiments

have demonstrated that our method is efficient and robust for

handling dynamic task assignment.

V. CONCLUSION

In this paper, we propose a novel hybrid ‘‘Two-Stage’’ auc-

tion algorithm, which solves the problem of dynamic task

assignment of heterogeneous multi-UAVs in complex and

changeable environment. The hierarchical decision mecha-

nism can adaptively adjust the auction sequence based on the

attribute values. Therefore, it improves the threat removal rate

of the mission area. Moreover, the proposed novel objective

function considers the association cost between tasks, which

further improves the performance of dynamic task assign-

ment. Besides, the novel adaptive-limitation penalty term not

only balances the use of individuals in the UAV swarm, but

also makes full use of the resources carried by each UAV.

The simulation experiments results show that the proposed

algorithm outperforms state-of-the-art algorithms.
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