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ABSTRACT It is the main challenge for Global Positioning System (GPS)/Inertial Navigation System (INS)

to achieve reliable and low-cost positioning solutions during GPS outages. A new GPS/INS hybrid method

is proposed to bridge GPS outages. Firstly, a data pre-processing algorithm based on empirical mode

decomposition (EMD) for wavelet de-noising is developed to reduce the uncertain noise of IMU raw

measurements and provide accurate information for subsequent GPS/INS data fusion and training samples.

Then, the interactive multi-model extended Kalman filter(IMM-EKF) algorithm is proposed to improve the

robustness of Kalman filter output and the accuracy of model training target output. Finally, a new intelligent

structure of GPS/INS based on Extreme Learning Machine (ELM) is proposed. When the GPS is available,

the IMM-EKF is used to fuse the GPS and de-noised INS data, and the de-noised INS data and the outputs

of IMM-EKF are used to train the ELM. During GPS outages, the ELM is used to predict and correct the

INS position error. In order to evaluate the effectiveness of the proposed method, 3 tests were performed in

the actual field test. The comparison results show that the proposed fusion method can significantly improve

the accuracy and reliability of positioning during GPS outages.

INDEX TERMS Inertial navigation system, GPS outages, data fusion, position error.

I. INTRODUCTION

Global Positioning System (GPS) and Inertial Navigation

System (INS) are the two most commonly used positioning

systems today [1]. GPS can provide accurate position and

velocity information when it has direct line of sight with

at least four satellites [2]. However, it is unstable due to

the number of accessible satellites, multipath effects and

external environment [3]. INS uses three accelerometers

and three gyroscopes to provide dynamic measurements of

high-frequency updates in a short period of time, but due to

drift effects, measurement errors will accumulate [4]. In order

to combine the advantages and make up for those shortcom-
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ings, GPS/INS integrated navigation has been widely used in

dynamic navigation and positioning [5].

In general, GPS/INS integrated navigation uses a Kalman

filter (KF) for information fusion [6]. GPS measurement

signals can be optimally estimated for inertial navigation

system errors and feed back to the inertial navigation system

for error correction. Extended Kalman Filter (EKF), as an

extension of KF, has been widely used in GPS and INS

integration to provide a robust navigation solution [7]. How-

ever, the Kalman filtering algorithm requires that the process

noise covariance and the measurement noise covariance are

accurately known in prior knowledge [8]. Inaccurate knowl-

edge of process noise and measurement noise will result in

the reduction of positioning performance [9]. In the actual

environment, GPS signal is easily blocked, so the GPS cannot

53984 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
VOLUME 8, 2020

https://orcid.org/0000-0002-8310-7684
https://orcid.org/0000-0002-4835-2828


D. Li et al.: Novel Hybrid Fusion Algorithm for Low-Cost GPS/INS Integrated Navigation System During GPS Outages

output themeasurement information, and the filteringmethod

will be ineffective. The error of the inertial navigation system

will accumulate over time, which will cause the navigation

information to diverge.

For high-grade INS, accurate positioning information can

also be output independently during GPS outages [10].

However, high-grade INS cannot be widely used because

of the high cost. Recently, micro-electromechanical sys-

tems (MEMS) INS have been widely used in GPS/INS

integration because of their low cost [11]. Compared to

high-grade INS, low-cost INS have large sensor errors, and

their measurements have high noise, bias and drift errors.

During GPS outage, GPS/INS integrated navigation was

forced into pure INS mode and the INS errors could not be

corrected by Kalman outputs [12]. Due to the large random

errors, the positioning accuracy of the low-cost INS is rapidly

reduced in a short time, which cannot meet the requirements

of positioning and navigation [13].

In recent years, many methods have been proposed to

improve positioning accuracy of GPS/INS during GPS

outages [14]. There are several common artificial intelli-

gence (AI) methods, such as Back Propagation Neural Net-

work (BPNN) [15], Multi-Layer Perceptron (MLP) [16],

Radial Basis Function Neural Networks (RBFNN) [17],

Random Forest Regression (RFR) [18] and Support Vector

Machine (SVM) [18]. The AI-based methods relate INS

errors at a certain time instant to the corresponding INS

outputs at the same instant. In order to address the dependence

of the INS errors, an input-delay neural network (IDNN) was

proposed to simulate INS position errors based on current

and past samples of INS position, and it demonstrates better

performance during GPS outages [19].

When these methods based on neural network are applied

to low-cost GPS/INS, the basic idea is to collect INS data

and Kalman filter outputs as training samples to train the

neural network model when the GPS is available. During

GPS outages, the outputs of Kalman filter are predicted by

neural network to correct the INS errors [20]. However, all

these methods assume that neural networks are trained under

ideal conditions, without considering the accuracy of the

training samples. Specifically, on the one hand, the IMU raw

measurement data has complex noise characteristics. These

methods do not take into account the uncertain noise in the

raw data of the inertial sensor [21]. They all lack proper

and efficient pre-processing algorithm to mitigate uncertain

noise in the raw measurements of inertial sensors before

data fusion. On the other hand, the reliability of the Kalman

filtering results as the predicted target outputs are not con-

sidered. Considering that GPS is susceptible to dilution of

low altitude accuracy and multipath effect, the positioning

performance will also decrease. These GPS measurement

errors will lead to random measurement noise and increased

uncertainty in the statistical properties of the measurement

noise,which will result in degradation or even divergence

of the Kalman filter results [22]. The uncertainty of these

training samples increases the complexity of the nonlinear

input/output relationship model, which limits the prediction

accuracy [23].

The complexity of noise in the actual environment and the

variability of target motion will lead to large estimation errors

in positioning information [6]. In order to obtain reliable and

accurate positioning information during GPS outages, a novel

hybrid fusion algorithm is proposed to bridge GPS outages.

Firstly, a data pre-processing algorithm based on empir-

ical mode decomposition (EMD) for wavelet de-noising is

developed to process IMU raw measurements and improve

the accuracy of training inputs. The low-cost INS raw mea-

surements are mixed with a lot of noise, and the wavelet

de-noising algorithm is not ideal [24]. The EMD-based

filtering algorithm will remove the useful signal on the

corresponding component, which causes severe distortion

of the signal [25]. The proposed algorithm can increase

the signal-to-noise ratio and provide accurate information

for subsequent GPS/INS data fusion and model training

inputs.

Secondly, the EKF algorithm requires the measurement

noise covariance to be accurately known in the prior. How-

ever, the actual measurement noise covariance is dynamically

changed [26]. Therefore, the interactive multi-model (IMM)

algorithm is introduced into EKF, which is called IMM-EKF,

to implement dynamic interaction and dynamic changes of

different measurement noise covariances. The proposed algo-

rithm can improve the robustness of Kalman filter outputs and

the accuracy of model training target outputs.

Finally, an extreme learning machine (ELM) is proposed

to improve the prediction performance during GPS outages.

The IMU raw measurements and Kalman outputs are pro-

cessed separately by the above two methods to obtain accu-

rate training samples. Then, the new intelligent structure of

GPS/INS based on ELM is proposed to bridge GPS out-

ages. The feature of ELM is simple structure, fast learning,

good global search performance and generalization perfor-

mance,which can improve predictive performance during

GPS outages [27].

The structure of the paper is organized as follows. Section 2

introduces the training model and the predicting model of the

proposed GPS/INS fusion algorithm in detail. Section 3 pro-

poses the wavelet de-noising method based on EMD to

process IMU raw measurements. Section 4 introduces the

GPS/INS algorithm based on IMM-EKF when the GPS is

available. Section 5 introduces the principles and training

methods of GPS/INS integrated navigation based on ELM.

Section 6 introduces and discusses the road experimental tests

to verify the proposed hybridmethod. Finally, section 7 draws

the conclusions.

II. GPS/INS MODEL DESCRIPTION

The proposed GPS/INS fusion algorithm includes a train-

ing phase and a prediction phase. Fig. 1 shows the training

mode of limiting INS error growth by filtering output when

the GPS is available. MEMS-IMU consists of three-axis

accelerometers and three-axis gyroscopes. wx,wy,wz are the
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FIGURE 1. The block diagram of training phase.

gyroscope outputs in X, Y, and Z directions. ax, ay, az are the

acceleration outputs by the accelerometer in X, Y, and Z

directions, respectively. In Fig. 1, EMD-WD refers to the

wavelet de-noising algorithm based on EMD. Its inputs

are IMU raw measurements, which include wx,wy,wz and

ax, ay, az. Its outputs are the de-noised IMU measurements.

Fig. 3 is the block diagram of EMD-WD. The inputs of

the mechanization equation are the de-noised IMU measure-

ments, and the output is the INS position PINS . In Fig. 1,

the outputs of INS and GPS are PINS and PGPS , respectively.

Then, the residual of the position information of the two

is used as the observation of the IMM-EKF fusion algo-

rithm. Then, the output δP of IMM-EKF is used to correct

the position information PINS . As shown in the dotted box

in Fig. 1, the IMM-EKF is set to three filter models. The

difference between the three filter models is the difference

in covariance matrix of the noise model. The algorithm con-

sists of four steps and the specific process is detailed in

section 4. The training inputs of ELM are PINS and time

T. The training target output is filter output δP of IMM-

EKF. The actual training output is δP′. 1 (δP) is the dif-

ference between the two. It represents the ELM prediction

error.

1 (δP) = δP′ − δP (1)

Then, the output position when the GPS is available is:

P = PINS − δP (2)

Fig. 2 shows the prediction model for correcting INS

position errors during GPS outages. During GPS outages,

the EMD-WD is used to pre-process the IMU raw measure-

ments. Fig. 3 is the block diagram of EMD-WD. The inputs

of the mechanization equation are the de-noised IMU mea-

surements, and the output is the INS position PINS. During

GPS outages, PINS and T input into ELM and ELM is used to

predict the output δP′ of IMM-EKF. In other words, the pre-

dicted output of IMM-EKF is the predicted INS position

errors.

During GPS outages, the latest learning rule base before

GPS outages is used to switch the system to the prediction

FIGURE 2. The block diagram of predicting phase.

mode and predict the INS positioning error. In Fig. 2, δP′′ is

the filter output of ELM prediction.

δP′′ = δP′ − 1 (δP) (3)

Then, the output position during GPS outages is:

P = PINS − δP′′ (4)

III. DATA PRE-PROCESSING ALGORITHM

A. WAVELET DE-NOISING

The basic idea of wavelet transform approximates the orig-

inal function with a family of wavelet bases. Through

wavelet transform, the signal is decomposed into multi-scale

wavelet coefficients arranged according to the frequency,

i.e. wavelet decomposition components. The main idea of

wavelet de-noising is to set a threshold. The high frequency

coefficients are threshold processed. Then, the signal is

reconstructed to eliminate the effects of noise. The threshold

function includes a soft threshold function and a hard thresh-

old function.

The hard threshold function is:

∧

d =

{

d, |d | ≥ λ

0, |d | < λ
(5)

The soft threshold function is:

∧

d =











sgn(d)(|d | − λ), |d | ≥ λ

0, |d | < λ

(6)

where, d is the unprocessed wavelet coefficient, and
∧

d is the

wavelet coefficient after the threshold processing, λ is the set

threshold.

sgn(x) =











1, , x > 0

0, x = 0

−1, x < 0

(7)

To implement the wavelet filter, wavelet function ‘‘db6’’

with soft thresholding scheme based on Stein’s Unbiased

Risk Estimate (SURE) is adopted. It is an unbiased estimate

of the mean square error criterion and it tends to an ideal

threshold. The threshold λ is:

λ = arg
T>0

{

min

[

N
∑

i=0

(|di| ∧ λ)2+Nσ 2
n −2σ 2

n

N
∑

i=0

I (|di| < λ)

]}

(8)
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FIGURE 3. The block diagram of EMD-WD.

In which arg {min f(λ)} represents the λ value when f(λ) is

minimized. The symbol ∧ indicates taking the minimum of

the two numbers. σ 2
n represents the noise standard deviation.

I (x) =

{

1, true

0, f alse
(9)

B. WAVELET DE-NOISING BASED ON EMD

Based on the original wavelet threshold de-noising, the data

pre-processing algorithm based on empirical mode decompo-

sition (EMD) for wavelet de-noising is developed to process

IMU rawmeasurements and improve the accuracy of training

inputs for ELM. The EMDmethod is an important part of the

Hilbert-Huang Transform. It decompose the signal into sev-

eral IntrinsicMode Functions (IMFs), which contain different

time scales. When IMF component cn(t) or residual signal

rn(t) is less than the preset value, or rn(t) is a monotone func-

tion, the whole screening process ends. After the above steps,

it can be decomposed into the sum of n IMF components and

residual signal.

x(t) =

n
∑

i=1

ci (t) + rn (t) (10)

The low-cost INS raw measurements are mixed with a

lot of noise. Considering that the noise is decomposed and

distributed on each IMF component, all IMF components

can be processed in combination with the wavelet de-noising

method. EMD-WD is proposed to pre-process the IMU raw

measurements. Its inputs are IMU raw measurements and

outputs are the de-noised IMU measurements. In order to

facilitate writing, the MEMS-IMU raw measurements which

include the gyroscope outputs ax, ay, az and the gyroscope

outputs wx,wy,wz are represented as the signal x(t). Fig. 3 is

the block diagram of EMD-WD.

The proposed data pre-processing algorithm steps are:

1)Signal x(t) is decomposed by EMD to obtain each IMF

component;

2)Each IMF component performs wavelet threshold

de-noising to obtain de-noised IMF component;

3)The signal is reconstructed by the de-noised IMF com-

ponents.

x ′(t) =

n
∑

i=1

c′i (t) + r ′
n (t) (11)

where, x ′(t) is the de-noised signal, c′i (t) (i = 1, 2, . . . , n)

and r ′
n(t) are the de-noised IMF components.

After EMD-WD, the mechanization equation can output

the de-noised INS data.

IV. INTERACTIVE MULTI-MODEL KALMAN FILTER

ALGORITHM

As shown in Fig.1. The outputs of Kalman filter algorithm are

the training target outputs of ELM. Therefore, the robustness

of the Kalman filter algorithm must be considered in the

practical environment. IMM-EKF is proposed to improve the

robustness of Kalman filter outputs and the accuracy ofmodel

training target outputs.

A. KALMAN FILTER ALGORITHM

The KF is a basic and practical data fusion method widely

used in GPS/INS. The process model and measurement

model of KF are:

{

x = Fx + Gw

z = Hx + v
(12)

where, v is measurement noise vectors and R is measurement

noise covariance matrix. The KF algorithm assumes that the

GPS output error model is a white noise with a zero-mean

Gaussian distribution of known statistical properties. In other

words, the measurement noise covariance matrix R is fixed

throughout the KF process. In the actual environment, the size

of the GPS output error model changes. Once the assumed

measurement noise covariance cannot match the measure-

ment noise of the actual process, the effect of the Kalman

filter fusion output is less than ideal, and the adaptability is

relatively poor.

B. INTERACTIVE MULTI-MODEL EXTENDED KALMAN

FILTER ALGORITHM

The principle of IMM is to design multiple measurement

noise covariances according to different working states of

the system. These models can adjust the probability of each

model in real time, and use Markov chain and likelihood

function to adjust the mutual conversion between models in

real time, which can better match the actual situation of the

system.

IMM-EKF is proposed to implement dynamic interac-

tion and dynamic changes of different measurement noise

covariances. The proposed IMM-EKF algorithm can improve

the robustness of Kalman filter outputs and the accuracy

of training target outputs. A model set is designed, which

has different zero mean Gaussian distributions and different

covariance matrices. The covariance matrix of the model is

Rj, j = 1, . . . , r , respectively. And R1 is set to the normal

measurement noise covariance matrix which is a white noise

with a zero-mean Gaussian distribution of known statistical

properties.

The model set is assumed to be M with r models. mk is

the effective model at time k. The dynamic system can be
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expressed as:

{

Xk+1 = f (k,Xk) + GkWk

Zk = h (k,Xk) + Vk

(13)

Initial Markov transition probability πji can be expressed

as:

πji = P
{

m
j
k+1|m

i
k

}

,mik ,m
j
k+1 ∈ M (14)

The specific algorithm is as follows:

1) INITIALIZATION

At time k+1, the initial condition of the jth (1 ≤ j ≤ r)model

filter is estimated by mixing the state of all filters from the

previous time. Initial model transition probability µ
j
k|k is:

µ
j
k|k =

πjiµ
i
k

∑

r
i=1πjiµ

i
k

(15)

µ
j
k is the probability of model i at time k.

Mixed state estimate
∧

X
j

k is:

∧

X
j

k =

r
∑

i=1

µ
j
k|k

∧

X
i

k (16)

Its estimated error covariance P
j
k is:

P
j
k =

r
∑

i=1

∧
µ
j

k|k

[

Pik|k +

(

∧

X
j

k−
∧

X
i

k|k

)(

∧

X
j

k −
∧

X
i

k|k

)T
]

(17)

2) MATCHED FILTER

This step performs parallel filtering on each model. The algo-

rithm uses an extendedKalman filter that is easy to implement

in engineering as a matching model filter. For the jth model

filter, the EKF algorithm is as follows:

∧

X
j

k+1|k = f(
∧

X
j

k|k) (18)

P
j
k+1|k = F

j
k+1| kP

j
k|k

(

F
j
k+1|k

)T
+ Q

j
k (19)

e
j
k+1 = Z

j
k+1 − h(

∧

X
j

k+1|k) (20)

K
j
k+1 = P

j
k+1|k

(

H
j
k+1

)T

×

[

H
j
k+1P

j
k+1|k

(

H
j
k+1

)T
+ R

j
k+1

]−1

(21)

∧

X
j

k+1 =
∧

X
j

k+1|k + K
j
k+1e

j
k+1 (22)

P
j
k+1 =

(

I − K
j
k+1H

j
k+1

)

P
j
k+1|k (23)

The state estimate
∧

X
j

k+1 and the corresponding estimated

covariance P
j
k+1 are obtained by the above formula.

3) MODEL PROBABILITY UPDATE

The likelihood function 3
j
k+1 of model mj can be simplified

to:

3
j
k+1 = N

[

(2π)n |S
j
k+1

]−1/2

× exp

{

−
1

2

(

e
j

k+1

)T
(

S
j
k+1

)−1
e
j

k+1

}

(24)

where n is the state dimension, the multi-model probability

can be updated to

µ
j
k+1|k = P

{

m
j
k+1|Z

j
k+1

}

=
3
j
k+1

∑r
j=1 πjiµ

j
k|k

∑r
i=1

[

3
j
k+1

∑r
j=1 πjiµ

j
k|k

]

(25)

Filtered innovation information e
j
k+1 is calculated by (20).

Its covariance is calculated as:

S
j
k+1 = H

j
k+1Pk+1|k

(

H
j
k+1

)T
+ R

j
k+1 (26)

4) OUTPUT COMBINATION

The filtered state estimate is weighted by combining filter

estimates based on each model.

∧

X k+1 =

r
∑

j=1

µ
j
k+1|k

∧

X
j

k+1 (27)

Pk+1 =

r
∑

j=1

µ
j
k+1|k

[

Pk+

(

∧

X
j

k+1−
∧

X k+1

)(

∧

X
j

k+1−
∧

X k+1

)T
]

(28)

V. EXTREME LEARNING MACHINE

As shown in Fig.1 and Fig.2, we optimizes the new intelligent

architecture based on ELM. When the GPS is available,

IMM-EKF fuses GPS and de-noised INS data to correct INS

position errors. And at the same time, INS position infor-

mation and the output of IMM-EKF are used to train ELM.

During GPS outages, ELM is used to predict the position

errors of the INS.

Compared with the traditional single-hidden layer feedfor-

ward neural network (SLFNN), ELM is faster than traditional

learning algorithms under the premise of ensuring learning

accuracy. It is more suitable for GPS/INS integrated navi-

gation to provide a fast, accurate and continuous navigation

solution. The structural model of ELM is as follows:

With N samples (Xi, ti), where Xi = [xi1, xi2, . . . , xin] ∈

Rn and ti = [ti1, ti2, . . . , tin] ∈ Rm, with L hidden nodes,

the single-hidden layer neural network can be expressed as:

L
∑

i=1

βig
(

Wi · Xj + bi
)

= oj, j = 1, . . . ,N (29)

where, g (x) is the activation function, Wi =
[

wi,1,wi,2,

. . . ,wi,n
]T

is the input weight, βi is the output weight, and
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bi is the hidden layer bias.Wi ·Xj represents the inner product

of the sum. The goal is to minimize the error of the output.

N
∑

j=1

∥

∥oj − tj
∥

∥ = 0 (30)

It can be expressed mathematically as:

L
∑

i=1

βig
(

Wi · Xj + bi
)

= tj, j = 1, . . . ,N (31)

Or it can be shown as:

Hβ = T (32)

where, T is the target output, H is the hidden layer output

matrix, and β is the output weight.

H (W1, . . . ,WL , b1, . . . , bL ,X1, . . . ,XL)

=







g (W1 · X1 + b1) . . . g (WL · XL + bL)
... . . .

...

g (W1 · XN + b1) . . . g (WL · XN + bL)







N×L

(33)

β =







βT1
...

βTL







L×m

T =







T T1
...

T TN







N×m

(34)

∧

W i,
∧

bi and
∧

β i are expected to be obtained to train neural

network.
∥

∥

∥

∥

H

(

∧

W i,
∧

bi

)

∧

β i − T

∥

∥

∥

∥

= min
W ,b,β

‖H (Wi, bi) βi − T‖ (35)

where i = 1, . . . ,L, this is equivalent to minimizing the loss

function.

E =

N
∑

j=1

(

L
∑

i=1

βig
(

Wi · Xj + bi
)

− tj

)2

(36)

Some traditional algorithms based on the gradient descent

method need to adjust all parameters during the iteration.

ELM is a new SLFN algorithm. It will randomly generate

input layers and the connection weight between the hidden

layers and the threshold of the hidden layer neurons. It do not

need be adjusted during the training process. It only needs

to set the number of neurons in the hidden layer to obtain

the unique optimal solution. Once the input weight and the

hidden layer biases are randomly determined in the ELM

algorithm, H is uniquely determined. Training SLFNN is

equivalent to solving linear systems Hβ = T . And β can

be determined.

β = H∗T (37)

where, H∗ is the Moore-Penrose generalized inverse of

matrix H. More explanations about the ELM algorithm can

be found in [28].

The GPS/INS algorithm based on ELM are as follows.

The input parameters of the ELM algorithm consist of the

training sample, activation function g(x) and the hidden nodes

TABLE 1. IMU specifications.

number. Note that according to Fig.1, the training input

parameters are < PINS,Time >, and the training target

outputs are filter outputs δP of IMM-EKF. Through detailed

and repeated experiments, the number of hidden layer neu-

rons and activation functions are determined through offline

analysis of experimental data. According to the prediction

mean square error results and training time corresponding

to different numbers of nodes, the sigmoid function with

8 hidden nodes was used. In addition, the predicted output

of ELM are δP′.

The ELM algorithm steps are as follows: (1) Input weight

wj and the bias bj are initialized randomly for j = 1, . . . ,N .

(2)Select the sigmoid function as the activation function of

the hidden layer neurons and calculate the hidden layer output

matrix H. (3)Calculate the output weight β using β = H∗T.

H∗ is the Moore-Penrose generalized inverse of matrix H.

It can be calculated by the singular value decomposition

(SVD).

VI. EXPERIMENTAL

To verify the effectiveness of the proposedmethod, a low-cost

MEMS-IMU, GPS receiver and navigation-grade SINS/GPS

are installed at the center of the vehicle. Before each exper-

iment, the inertial navigation system has completed ini-

tial alignment and infield calibration. After a calibration,

the entire system is executed in the loosely coupled mode.

The low-cost GPS receiver has a position measurement accu-

racy of 5m, a speed measurement accuracy of 0.05m/s, and

the output frequency of 1Hz. The output frequency of the

IMU is 200Hz. The technical specifications of the IMU are

given in Table1. In addition, the navigation-grade SINS/GPS

is used to provide position reference information in test 3.

Its positioning accuracy is 0.01m when the GPS is available.

When the GPS signal is interrupted for 10s, the positioning

accuracy is 0.02m, and when the GPS signal is interrupted for

60s, the positioning accuracy is 0.23m.

Three road tests are implemented to verify the proposed

method. Test 1 and 2 were selected for field measurements at

the Taiyuan University of Technology. Test 1 mainly verifies

the effectiveness of the wavelet de-noising algorithm based

on EMD. We call this method EMD-WD. Test 2 mainly ver-

ifies the robustness of the IMM-EKF output results. Finally,

Test 3 chooses to conduct field tests in downtown Taiyuan,

Shanxi Province to evaluate the performance of the proposed

method during real GPS outages. In the paper, the GPS

outages are caused by high buildings, trees or bridges in urban
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FIGURE 4. The structural model of ELM.

environments. By reading relevant articles and conducting

repeated experiments, the GPS outages in urban environ-

ments are usually less than 40 seconds. In our tests, it is

uniformly set to 60 seconds. When the outage is less than 60

seconds, it is artificially extended to 60 seconds.

A. TEST 1

Test 1 is mainly used to test the effectiveness of EMD-

WD, and the experiments are conducted around the Taiyuan

University of Technology. In the experiment, the number

of accessible GPS satellites was more than four, and the

number of barrier-free satellites was sufficient to meet the

requirements of low-cost systems. Four GPS outages are

simulated by manual removal of GPS observations during

the experiments, and every outage lasts for 60 seconds. Some

representative driving operations such as stop, turn and sud-

den acceleration/deceleration have been carried out. Several

typical driving conditions, including straights, corners and

intersections, as shown in Fig.5. In the following experi-

ments, the coordinate system is established with the lower

left corner of the trajectorymap as the origin. And the position

error refers to the horizontal Euclidean distance error between

the estimated position and the corresponding reference value.

EMD implementation of data is a relatively time-

consuming process. In order to realize the real-time solution,

we uses a w-length sliding window. After the current data

window is filtered, the data window continues to move for-

ward for the next filtering. In order to balance the real-time

performance and filtering performance of the algorithm,

the length of the data window is selected as 2000.

In order to verify the validity of EMD-WD, this

paper selects the raw data of the gyroscope Y-axis output

as an example. The data results of other gyroscopes and

accelerometers are similar to this result. Through experimen-

tal analysis, the EMD decomposition of the IMF components

is determined to be 7 layers. The wavelet filter use wavelet

function ‘‘db6’’ of 7-level wavelet decomposition with soft

FIGURE 5. Field test trajectory of test1.

FIGURE 6. Comparison of Gyroscope Y-axis Output data.

FIGURE 7. Positioning result in test 1 during GPS outage 2.

thresholding scheme based on Stein’s Unbiased Risk Esti-

mate (SURE) [29]. In addition, the wavelet de-noising (WD)

algorithm is chosen for comparison

In Fig.6, the blue line represents the raw data of the gyro-

scope Y-axis output. The red line represents the gyroscope

Y-axis data afterWD. The green line represents the gyroscope

Y-axis data after EMD-WD. It can be seen from the figure

that EMD-WD can effectively eliminate noise interference in

inertial navigation and improve navigation accuracy, which

can provide reliable data for subsequent data fusion.

In order to show the effect of EMD-WD further, the GPS

outage 2 and outage 3 in Test 1 are selected as examples.

The gyroscope and accelerometer data are pre-processed, and

then the mechanized equations are applied to obtain the INS

position. Fig. 7 and Fig. 8 show the position errors of path

2 and path 3 during GPS outages. ‘‘Reference’’ represents the

reference path. ‘‘Original’’ refers to the direct positioning of
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FIGURE 8. Positioning result in test 1 during GPS outage 3.

TABLE 2. Statistics of the position error during GPS outages in test
1.(Unit: m).

unprocessed inertial sensor data. ‘‘WD’’ refers to the posi-

tioning result of WD. ‘‘Proposed’’ refers to the positioning

result of EMD-WD.

As shown in the Fig. 7, the outage 2 is a straight path.

If the inertial navigation data is not processed, the error

will increase rapidly. EMD-WD positioning performance is

improved compared to WD.

The outage 3 is a turning path, and it can be clearly seen

that the positioning performance of the proposed algorithm is

greatly improved.

Table 2 is the comparison of position errors during GPS

outages in Test 1. The maximum (MAX) value of the error

and the root mean square (RMS) are used as the evaluation

indicators.

It can be seen from the analysis of the above statistical

results that the proposed pre-processing algorithm can effec-

tively improve the positioning accuracy during GPS outages.

During the four outages, the original method directly uses

the raw output data of the MEMS INS. It has the worst

positioning accuracy, and its MAX and RMS values are the

largest. Compared with the original method, the positioning

accuracy of WD has been improved, but the EMD-WD has

the biggest improvement. Taking outage 2 as an example,

the MAX of WD is 39.38m, and the RMS is 15.74m. For the

original method, the corresponding values are 57.06m and

23.94m. The MAX of EMD-WD is 29.93m, the RMS is

13.47m. The main reason for these improvements is that the

TABLE 3. Comparison of the positioning error results(Unit: m).

EMD-WD can effectively suppress the noise in the original

data of inertial navigation. It can be seen that the EMD-WD

can effectively improve the positioning performance. It not

only provides more accurate information for later data fusion,

but also provides more accurate training samples for ELM.

B. TEST 2

In order to verify the robustness of the IMM-EKF, four

60-second road tests were conducted on the campus in

Taiyuan University of Technology. Although the GPS can

output positioning information in the actual measurement,

there are many obstacles to reduce GPS performance in the

campus. For example, multipath effects caused by high-rise

buildings and trees or satellite instability will affect the

positioning performance. This makes the measurement noise

covariance in the Kalman filter algorithm change dynam-

ically, which affects the positioning performance. In this

paper, IMM-EKF is compared with the extended Kalman

filter (EKF) algorithm. EKF has only one fixed initial mea-

surement noise covariance. The IMM-EKF is set to three

different measurement noise covariances.

The IMM-EKF algorithm is based on the Markov trans-

formation matrix to achieve the change between the three

models. The initial Markov transition probability π is as

follows:

πji =

{

0.95, i = j

(1 − 0.95) /2, i 6= j
(i, j = 1, 2, 3) (38)

In the experiment, the process noise covariance Q of

IMM-EKF is considered to be constant, and the initial mea-

surement noise covariance is set to R = diag
[

10m 10m
]2
.

The measurement noise matrices in the three parallel filters

are set to R, 9R and 25R, respectively. As a comparison,

the EKF process noise covariance is set to Q, and the initial

measurement matrix is set to only R.

Table 3 shows the comparison of the positioning error

results, and the MAX and RMS are selected as the evaluation

indicators.

In order to evaluate the robustness of the IMM-EKF more

clearly, additional noise is artificially inserted to change the

measurement error of the GPS. The noise is modeled by a

first-order Gauss-Markov process. After inserting additional
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TABLE 4. Comparison of the positioning error results after noise
insertion(Unit: m).

FIGURE 9. Increase of RMS error.

noise, the matrix R in the Kalman filter algorithm needs to be

updated accordingly, which is not done in the general EKF.

However, the IMM-EKF is set to three different measurement

matrices. So it can switch between different models and

accommodate the inserted noise better. Table 4 is a compari-

son of the positioning error results after noise insertion in the

same path.

In order to display the robustness of the proposed

IMM-EKFmore intuitively, the increase of RMS error before

and after noise insertion is shown in Fig.9.

In Fig.9, the increase of the RMS of IMM-EKF is sig-

nificantly smaller than that of EKF after noise insertion.

The increase of the RMS error of IMM-EKF is basically

maintained within 1.5m. The error of EKF in the four tests

increased by 2.93m, 2.47m, 2.93m, 3.25m, respectively. The

RMS of IMM-EKF increased by 0.69m, 0.57m, 1.35m, and

1.24m, respectively. Therefore, the proposed IMM-EKF can

adapt to the uncertain noise of GPS and improve the accuracy

of target positioning, which provides more accurate training

samples for ELM.

C. TEST 3

To evaluate the overall performance of the proposed method,

real road experiments are conducted in Taiyuan city accord-

ing to the experimental parameters settings in Test 1 and

Test 2. The experimental route passes through real GPS

outages caused by complex environments such as high-rise

buildings, trees, bridges, and overpasses. When the out-

age is less than 60 seconds, it is artificially extended to

FIGURE 10. Field test trajectory of test 3.

60 seconds. In addition, a series of typical driving operations,

such as vehicle lane change, acceleration and deceleration,

are performed in the trajectory. The real trajectory is shown

in the Fig. 10 and six representative outages were selected.

When the GPS is available,EMD-WD/IMM-EKF is used to

correct INS position errors. At the same time, INS position

information and the output of IMM-EKF are used to train

ELM. During GPS outages, EMD/ELM is used to predict

the output of IMM-EKF, which is the INS position error.

In order to highlight the effectiveness of the proposed EMD-

WD/IMM-EKF/ELM method, ELM/IMM-EKF, RBF/EKF

and EKF were selected for comparison.

EKF method. This method uses EKF to achieve the fusion

of INS and GPS, and then output positioning information

when the GPS is available. The positioning information is

separately output by the INS during GPS outages. RBF/EKF

method. RBF/EKF is the most commonly used reference

algorithm in this research area [17], [18], [13]. During

GPS outages, the method uses RBF to predict and correct

INS errors. IMM-EKF/ELM method. Compared with the

method RBF/EKF, the improvement of the method is that the

IMM-EKF is used to improve the accuracy of the Kalman

filter output, and the ELM is used to replace RBF. These

methods mentioned above all use the data directly output by

the MEMS-INS. Table 5 shows the quantitative comparison

of MAX and RMS of the position error during six GPS

outages.

The positioning error during GPS outages 1 in test 3 is

shown in Fig. 11. The vehicle travels along an approximate

arc during GPS outage 1. It can be clearly seen from the

figure that the proposed method has higher performance

compared to EKF and RBF/EKF. Comparing the green and

purple lines in the graph, it can be concluded that additional

precision improvements can be achieved with the EMD-WD.

It can be seen from the table that the MAX of EKF reaches

60.02m, which has seriously affected the positioning per-

formance. The MAX of RBF/EKF is 41.14m. The MAX

of the proposed algorithm is only 17.12m. Compared with
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TABLE 5. Comparison of the position errors during GPS outages of test 3. (Unit: m).

FIGURE 11. Performance during GPS outage 1 in test 3.

the EKF without any processing, the MAX reduces 43.08m

and improves 71.56%. Compared to the ELM/IMM-EKF,

the MAX reduces 17.79m and RMS reduces 8.57m.

TheGPS outage 1 in test 3 is taken as an example to provide

the positioning residual curve for distinguish the positioning

errors of different algorithms. The results of other outages

in test 3 are similar to this result. Fig. 12 shows the residual

curve before and after GPS outage 1. The negative sign on

the X axis indicates that this time occurred before the GPS

outage. −40s refers to 40 seconds before the interruption.

As shown in Fig. 12, the curve corresponding to 0s-60s is the

residual curve during GPS outage. The curve corresponding

to the rest of the time on X axis represents the positioning

curve when GPS is not interrupted. During GPS outage,

the position error of the proposed algorithm is significantly

reduced.

The vehicle travels in a straight line during

GPS outage 2. As shown in Fig. 13, compared with EKF,

the other three methods have achieved good results. The

FIGURE 12. The curve of positioning residuals.

FIGURE 13. Performance during GPS outage 2 in test 3.

MAX of ELM/IMM-EKF is 17.34m less than the EKF,

which gives the validity of the ELM/IMM-EKF method.

After further pre-processing the inertial navigation data,

its MAX reduces 19.45m compared to ELM/IMM-EKF.

It is further explained that the pre-processing algorithm

EMD-WD can effectively improve the positioning accuracy.
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TABLE 6. Improvement result for the proposed method.

FIGURE 14. Performance during GPS outage 3 in test 3.

Compared with EKF, RBF/EKF, ELM/IMM-EKF and the

proposed algorithm improves by 59.44%, 47.90%, and

35.96%, respectively.

The vehicle passes through the overpass during GPS out-

age 3. As shown in Fig. 14, it can be clearly seen from

the figure that the positioning performance of EKF is the

worst. Compared with the other three methods, the proposed

algorithm achieves higher precision. Both theMAX andRMS

of the proposed algorithm are reduced. The MAX and RMS

of the RBF/EKF are 58.69m and 26.07m respectively. The

proposed algorithm is 15.99m and 8.79m respectively.

The vehicle passes through the bridge during GPS outage

4. Fig. 15 is the positioning result during GPS outage 4.

It can be clearly seen from the figure that the positioning

FIGURE 15. Performance during GPS outage 4 in test 3.

performance of the EKF is the worst, and other methods have

a certain improvement. The error of the three methods is

slowly accumulating, but the proposed algorithm tends to be

flat. Its MAX and RMS are the smallest, 18.92m and 9.94m,

respectively.

The vehicle travels in a straight line during GPS outage 5.

As shown in the Fig. 16, it can be seen from the figure that

compared with EKF method, the other three methods have

achieved better results. The MAX of the proposed algo-

rithm is 27.22m, the MAX of EKF is 64.58m, the MAX

of RBF/EKF is 55.36m, and the MAX of ELM/IMM-EKF

is 40.03m. The MAX of the proposed method is 50.83%

less than RBF/EKF, which proves that EMD-WD/IMM-

EKF/ELM is more effective than RBF/EKF. Moreover,
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FIGURE 16. Performance during GPS outage 5 in test 3.

FIGURE 17. Performance during GPS outage 6 in test 3.

by comparing the positioning results of EMD-WD/IMM-

EKF/ELM and ELM/IMM-EKF it can further verified the

effectiveness of EMD-WD.

The vehicle passes through the curved street during GPS

outage 6. Fig. 17 is the positioning result during GPS out-

age 6. The MAX of EMD-WD/IMM-EKF/ELM is 19.35m,

and the MAX of EKF, RBF/EKF and ELM/IMM- EKF

are 60.97m, 47.88m, and 38.09m, respectively. The MAX

decreased by 68.26%, 59.59%, and 49.20%, respectively.

It can be seen from Table 5 and Fig.11 to Fig. 17 that the

proposed method can achieve accurate and reliable position-

ing regardless of the change of the external environment. The

main reason for the improvement is because not only ELM

has more learning ability, but also two processing methods

were used to improve the accuracy of the ELM training

samples. EMD-WD effectively suppresses random noise in

inertial data. IMM-EKF improves the output of Kalman filter.

They improve the effectiveness ofmodeling and achievemore

effective compensation for INS position error. In order to

quantify the comparison between the proposed method and

the other three methods, table 6 compares theMAX and RMS

error reduction between the proposed method and the other

three methods, and the performance improvement against the

other three methods.

VII. CONCLUSION

The experimental parameters are analyzed offline and

the hybrid fusion algorithm is real-time. The simulation

experiment uses MATLAB 2016 software. Multiple simu-

lation experiments were performed on a laptop computer

(8G, Intel Core i7-3612QM CPU @ 2.10GHz 2.10GHz),

and the corresponding program running time was statisti-

cally analyzed. In terms of real-time evaluation, with the

above-mentioned software and hardware configuration, for

the algorithm proposed in this paper, the statistical results

show that the entire system takes 0.018951s to complete a

recursion. The frequency of INS strapdown solution is set

to 20Hz and the frequency of GPS to correct INS is set to

1Hz. Therefore, the proposed method meets the real-time

requirements of combined positioning systems. We can claim

the effectiveness of the algorithm proposed in this paper.

However, when different equipment and experimental envi-

ronments are used, we do not claim that the parameters of

this article are set to the best combination.

This paper mainly studies the low-cost, high-reliability

MEMS INS/GPS information fusion algorithm, and the pro-

posed method can achieve accurate positioning during GPS

outages. Based on the original wavelet threshold de-noising,

a new wavelet threshold de-noising based on EMD is pro-

posed, which is called EMD-WD. And the interactive multi-

model algorithm is introduced into EKF, which is IMM-EKF.

Finally, this paper optimizes the new intelligent architecture

based on ELM. During GPS outages, we also provide a

fast, accurate and continuous navigation solution. When the

GPS is available, IMM-EKF fuses GPS and de-noised INS

data to correct INS position errors. At the same time, INS

position information and the outputs of IMM-EKF are used

to train ELM. During GPS outages, ELM is used to predict

the INS position errors. The performance of the proposed

integrated positioning method is very competitive for using

low cost MEMS INS/GPS. This method can be used in all

environments, including frequent GPS outages in urban envi-

ronments. This method has been verified in the road tests, and

the results show the effectiveness of the proposed method.
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