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Abstract This study proposed a  hybrid modelling  approach using two methods: support vector 
machines and random subspace to create a novel model namely Random SubSpace based Support 
Vector Machines (RSSVM) for landslide susceptibility assessment. The newly developed model 
was then tested at Wuning area, China to produce landslide susceptibility map. To achieve the 
objective of the study, first a spatial dataset was constructed that includes  a landslide inventory 
map consisting of 445 landslide locations; and various landslide conditioning factors, such as slope, 
aspect, altitude, topographic wetness index (TWI), stream power index (SPI), sediment transport 
index (STI), soil, lithology, normalized difference vegetation index (NDVI), land use, rainfall, 
distance to roads, distance to rivers, distance to faults. Next, the result of RSSVM model was 
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validated using statistical index-based evaluations and receiver operating characteristic curve 
method. Next, to assess the performance of the proposed RSSVM model, a comparison analysis 
was performed with other  existing methods such as ANN (Artificial Neural Network), NB (Naïve 
Bayes) and SVM (Support Vector Machine). In general, the performance of the RSSVM model 
showed higher than the rest of the models for spatial prediction of landslides. The AUC results of 
the applied models are: RSSVM (AUC=0.857), followed by  MLP  (AUC=0.823), SVM model 
(AUC=0.814) and NB model (AUC=0.783). The present study indicates that RSSVM can be used 
for spatial prediction of landslides  and the result is very useful for the lcoal government and people 
lived in the Wuning area. 
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1. Introduction 

Landslide is considered as one of the most widely distributed mass movements in mountainous 
areas all over the world (Pham et al., 2016a). Due to its widespread submerge, unexpected, and 
seasonal characteristics (Vilimek and Smolikova, 2015), landslides always lead to huge risks 
towards human life and economic (Kritikos and Davies, 2015), especially in industrial and other 
social activity such as mining factory, water resources facilities, and hydropower stations (Zhang 
et al., 2015a). Therefore, over the last two decades many scientists have engaged themselves to 
predict the landslide locations spatially  which is critical for development and planning purpose 
(Posner and Georgakakos, 2015). In the formation of landslide, there are many factors play key 
role, some are natural factors, and some are human factors. Accroding to Bandini et al. (2015), the 
human factors are very important and cannot be ignored (Bandini et al., 2015). It is also observed 
that climate change and landslide activities have  some significant relationship (Sewell et al., 2015). 
Some recent studies have revealed that  submarine landslides and turbidity currents may become 
more likely due to future rapid global warming (Chang and Huang, 2015). However, some research 
have indicated that rapid climate change does not necessarily increase the current activity, and thus 
do not provide a direct evidence as a primary triggering factor (Clare et al., 2015). In fact, heavy 
precipitation and snow melting have been witnessed as important indirect triggering factors, due 
to complex hydrogeological relations and an isolated groundwater system. As such it is  difficult 
to determine the triggering parameter especially when it is principally associated with lateral river 
erosion in the landslide toe (Kirschbaum et al., 2015).  

Preparation of a good quality landslide inventory map is very critical in landslide studies. There 
is still an argument and debate among the landslide researchers whether  traditional detection of 
landslides, for example through direct field surveys or remote sensing based analysis is better. 
Both of the aforementioned approach has some merits and demerits such as in the case of field 
investigation which is  highly time consuming and very laborious act, on the other hand satellite 
image processing techniques also need rigorous validation steps to produce an accurate landslide 
inventory map  (Lin et al., 2015). High-resolution imagery is an indispensable data source to model 
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and validate landslide features appropriately (Akcay, 2015). Similarly, selecting landslide 
conditioning factors is also important and a complex process. In this regard, statistical index 
method is generally used for the validation of different landslide conditioning factor sets. It 
describe how strong every single landslide conditioning factor improves or reduces the objective 
function, then is used to find a better input conditioning factor set by excluding some factors 
( Meinhardt et al., 2015). 

In recent years, an extensive application of  GIS and RS technologies have been used to assess 
landslide susceptibility, hazard and risk areas (Pham et al., 2016d; Tan et al., 2015). Meanwhile, 
there are a lot of new methods and techniques have been used in landslide susceptibility mapping, 
for example, step-wise weight assessment ratio (Dehnavi et al., 2015), multivariate adaptive 
regression spline (Wang et al., 2015b), artificial neural network (Pradhan and Lee, 2010; Gelisli 
et al., 2015; Pham et al., 2015b; Arnone et al., 2016), random forest (Trigila et al., 2015), multi-
criteria evaluation (Ahmed, 2015), spatial multicriteria evaluation (SMCE) (Gaprindashvili and 
Van Westen, 2016). However, there still remains a question on the selection of the best method  in 
landslide susceptibility assessment (Goetz et al., 2015; Pham et al., 2015a). So, in order to get the 
most suitable and optimum model, many scientist have used various models in geographically 
located different study area worldwide (Hong et al., 2015; Pham et al., 2016c; Tien Bui et al., 
2016). 

The main objective of the present study is to explore potential application of the novel hybrid 
integration approach of support vector machines and random subspace named RSSVM for 
landslide susceptibility assessment. Random subspace is an integrated algorithms, whereas 
RSSVM is a SVM based Classifier. Performance of the RSSVM model has been evaluated using 
statistical index-based evaluation and receiver operating characteristic curve technique. Besides, 
other method such as ANN (Artificial Neural Network), NB (Naïve Bayes) and SVM (Support 
Vector Machine), have been applied and the results were compared with the  result of the RSSVM 
model. All the aforementioned models were applied in a study  area  located in the Jiangxi province 
(China). The analysis process has been carried out using Weka 3.7.12 and ArcMap10.0. 

2. Models Background 

2. 1. Support Vector Machines 

Support vector machine (SVM) is a supervised learning method and is  widely used in the statistical 
classification and regression analysis (Lee et al., 2015; Pham et al., 2016b). It lead to map vector 
to a higher dimension space, set up in this space there is a maximum separation hyper plane (Feng 
et al., 2016). On the opposite side of the hyper plane, it separates data with two parallel hyper 
planes with each other (Xu et al., 2015). Besides, it separates super flat surface to maximize the 
distance of two parallel hyper-planes (Bezak et al). Assuming that the distance between parallel 
hyper planes or gap, the greater the classifier of the total error is smaller (Wu et al., 2016). The 
main ideas of the SVM can be summarized as two points (Li et al., 2016; Ma et al., 2016): 
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1) It is to solve the problem of linear separable analysis, and in the case of linear inseparable, 
nonlinear mapping algorithms are generally used which makes a low-dimensional input space 
linear sample into a high dimensional feature space linear separable. So, to make the high 
dimensional feature space by using linear algorithm on the nonlinear characteristics of samples 
is possible (Alvioli and Baum, 2016). 

2) It is based on structural risk minimization theory to construct the optimal hyper plane 
segmentation in the feature space (LaHusen et al., 2016). 

3) More details about the SVM algorithm can be seen in XXXXX 

2. 2. Random Subspace Ensemble 

Random subspace is a classic integrated algorithm which was proposed by Ho in 1998 (Tin Kam, 
1998). The algorithm is similar to the bagging algorithm and is randomly selected by the original 
training set to construct the training subset (Kuncheva et al., 2010). But the difference is that, 
Random subspace is randomly selected from the original training set of features (Skurichina and 
Duin, 2001, 2002). Then, the series features a subset of each sub-classifier training at the final 
forecast results obtained by a combination of voting methods (Sun and Zhang, 2007). The 
Performance of the result depends on integrated learning differences, bagging method sub-
categories to get the difference between the sub-classification among different samples of each 
sub-classifier training, and random subspace ensemble learning method to take samples at different 
spatial characteristics to obtain differences between sub-classification (Zhang and Jia, 2007). 

3. Novel Hybrid Integration of Support Vector Machines and Random SubSpace (RSSVM)  

 

The novel hybrid integration of support vector machines and random subspace ensemble (RSSVM) 
for spatial prediction of landslides occurred in the study area is shown in Fig 1. 

(i) Data collection and processing in GIS: The GIS database is generated for establishing 
and verifying the proposed integrated landslide model. The landslide inventory map 
with 445 landslides was randomly split in 70% (311 landslides shown in the yellow 
color) for training the models and the remaining 30% (134 landslides shown in the red 
color) was used for validation purpose (Figure 2). The training and validating sets were 
utilized to construct the landslide model whereas the testing set is employed to verify 
the RSSVM model. For this purpose, fourteen landslide conditioing  factors were 
converted from categorical classes into continuous values by employing the frequency 
ratio method (Bui et al., 2015). Subseqiently,  all the 14 landslide conditioing  factor 
maps and landslide and non-landslide data were  converted to a raster format with a 
resolution of 25 m. 

(ii) Random SubSpace ensemble (RSS) optimization: The algorithm is similar to the 
bagging algorithm are randomly selected by the original training set to construct the 
training subset (Kuncheva et al., 2010). But the difference is that, Random subspace is 
randomly selected from the original training set of features (Skurichina and Duin, 2001, 
2002). Random sub space (RSS) can improve the performance of the SVM classifier 
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through dividing the dataset with a high dimensional feature space to smaller datasets, 
for example in training data. Generally, these ensemble data mining classifiers have a 
better accuracy than a single predictor. These methods, firstly, produce via training the 
dataset base classifications. Secondly, the real classification was done by combining 
the results of base classifiers with the previous base classifier  (Piao et al., 2015). In 
other words, some classifiers are trained on random feature subsets of the data and the 
decisions of these classifiers were combined. After dividing the original feature space 
(FR) into L feature subsets (FS) of p-dimensionality, each subset is submitted to a base 
classifier (BC) in the ensemble. The final decision on the class of the document is 
obtained by combining the decisions of these BCs using a combining rule such as 
majority vote. Since the feature subsets submitted to the BCs are different, parallel 
ensemble is a natural choice (Kuncheva and Plumpton, 2010). By evaluating the fitness 
of each solution, the algorithm gradually explores the solution space and seeks for the 
most desirable set of model’s parameters. 

(iii) Training support vector machines model (SVM): Since, SVM is a supervised learning 
method, a training dataset with input factors and corresponding desired class labels 
must be provided. Based on the training dataset, SVM maps the input data from the 
original input space into a high dimensional feature space using RBF kernel function. 
Accordingly, the algorithm constructs a hyper plane that can separate the input data of 
influencing factors into two distinctive decision regions: "landslide" (Y=1) and "non-
landslide" (Y=-1). When the training process is accomplished, the resulting SVM for 
classifying input patterns is demonstrated. 

(iv) The optimized RSSVM model: the SVM-based optimization process continues until 
the maximum number of generation is reached. When the searching process terminates, 
a desirable set of the RSSVM tuning parameters is identified and it is used to construct 
a classification model for spatial prediction of landslides of the study area. The 
proposed model is ready to predict unseen input patterns in the validation dataset. 

(v) Comparison with data mining techniques: The obtained results from novel hybrid 
integration of support vector machines and random subspace ensemble (RSSVM) were 
compared with other well known data mining techniques such as MLPN (Multiple 
Perceptron Neural Network), NB (Naïve Bayes) and SVM (Support Vector Machine) 
for  spatial prediction of landslides in the study area. Finally, the proposed model is 
ready to predict unseen input patterns in the validation dataset. 
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Fig 1 The flow chart of the proposed RSSVM model 
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4. Experiment and analysis 

4. 1. Description of study region 

The study area is about 3,507 km2 and covers the whole area of the Wuning district. It is located 
in the West part of the Jiangxi province that belongs to the South mountainous area of Mubu, 
between longitudes 114°29′E and 115°27′E, and latitudes 28°53′N and 29°35′N (Fig 2). According 
to the report of geological survey results, Wuning area has found a total of 30 kinds of minerals 
such as Iron, manganese, lead, tungsten, mercury, limestone, and stone and so on. Meantime, in 
recent years, there are lot of mining factory had been built in the Wuning area. 

The study area is situated in the subtropics monsoon climate region. The rainy season is normally 
from April to August. The total average rainfall in three month (April to June) was about 638 mm. 
The largest daily rainfall is more than 100 mm during the rainy season. The dry season is generally 
from September to January with average rainfall is around 65.6 mm/month. The annual average 
rainfall ranges between 578 and 1183 mm with average of 162.4 rainy days. The annual average 
temperature is 16.6 °C, i.e., the highest and lowest average temperatures are 39.1 and -5.2 °C, 
respectively. The annual average sunshine is 1700.5 hours.  
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Fig 2 Landslide location map of Wuning area (China map come from National Geographic 
World Map (ESRI 2010)) 

4. 2. Data Preparation 

4. 2. 1. Historical landslide events 

There are a lot of different methods and techniques being used while constructing  landslide 
inventory map. Those methods are field survey, satellite image interpretation, aerial photograph, 
and historical landslide records (Wang et al., 2015a). However, till date, there are no agreement in 
the among the scientist on the best suitable solo method for producing an accurate landslide 
inventory map (Uhlemann et al., 2016). 

In this research, by combining the field survey with satellite image the landslide inventory map 
was produced. The landslide inventory map for the Wuning area had a total of 445 landslide 
locations which was  provided by the Department of Land and Resources (http://www.cgs.gov.cn), 
the Meteorological Bureau (http://www.weather.org.cn), the Jiangxi Province, China (Fig 3). The 
landslide inventory map shows that the volume of the smallest landslide is 20 m3, the largest is 
96,000 m3, and the average is 1761.3 m3. Four large-sized landslides (>1000 m3) have occurred in 
the study area that has  affected 254 people. These landslides are accounted for 8.1% of the total 
number of landslides. Around 16.0% of the landslides are medium-sized (200–1000 m3) which has 
affected 121 people. Small-sized landslides (<200 m3) has affected 551 people and that accounts 
for 75.9% of the total landslides. All the landslides occurred during and after the heavy rainfalls. 
Around 38.5% of the landslides  were reported when the measured rainfalls were around 100 mm 
per day, whereas the other landslides occurred when the daily rainfall was larger than 105 mm. 

 

Fig 3 Google Earth images showing  landslides of the study area 

4. 2. 2. Landslide conditioning parameters 

In this study, a total of fourteen landslide conditioning factors were selected based on the analysis 
of the landslide inventory map. They are slope, aspect, altitude, topographic wetness index (TWI), 

http://www.cgs.gov.cn/
http://www.weather.org.cn/
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stream power index (SPI), sediment transport index (STI), soil, lithology, normalized difference 
vegetation index (NDVI), landuse, rainfall, distance to roads, distance to rivers, distance to faults.  

A digital elevation model (DEM) for the study area was generated from the ASTER GDEM 
Version 2 (http://gdem.ersdac.jspacesystems.or.jp). A resolution of the DEM is transferred to 25 
× 25 m and based on the DEM, slope, altitude, aspect, TWI, SPI, STI were extracted. The slope 
map was constructed with 6 categories namely: 0–8, 8–15, 15–25, 25–35, 35–45, >45 (Fig 4a). 
The aspect map (Fig 4b) was constructed with nine groups. The altitude map was constructed with 
5 categories as <150, 150–250, 250–400, 400–700, 700–1000,>1000 (Fig 4c). The TWI map in 
this study was constructed with five classes as <5, 5–7, 7–9, 9–11, >11, (Fig 4d). The SPI and STI 
maps were constructed into five categories (Fig 4e and Fig 4f) namely<20, 20–40, 40–70, 70–
100, >100 and <5, 5–20, 20–40, 40–60, >60 respectively. 

The soil map (Fig 4g) was compiled in 1995 by the Institute of Soil Science, Chinese Academy of 
Sciences (ISSCAS) from data of the Office for the Second National Soil Survey of China 
(http://www.issas.ac.cn). 

The lithology map for the study area was obtained from China Geology Survey 
(http://www.cgs.gov.cn). The lithology map (Fig 4h) was categorized into eight groups (A, B, C, 
D, E, F, G, H, I and J).  

The NDVI map with five classes such as <0.05, 0.05–0.1, 0.1–0.15, 0.15–0.2, >0.2 for the study 
area (Fig 4i) was obtained  from the Landsat 7 ETM+ satellite images which were acquired on 10 
December 1999. These images were obtained from Computer Network Information Center of 
Chinese Academy of Sciences (http://www.gscloud.cn). The value of NDVI was calculated using 
the common formula NDVI = (IR − R) / (IR + R), where IR and Red are the near infrared (NIR) 
and red bands, which are from 0.7 to 1 lm and 0.6 to 0.7 lm of the electromagnetic spectrum. 

Land use map was extracted from Landsat 7 ETM+ satellite images, six classes were identified 
such as water, residential area, forest land, bare land, farm land, and grass land. Maximum 
likelihood supervised method was used for the classification with the classification accuracy of 
90.7% (Fig 4j).  

Regarding rainfall, the mean annual precipitation for the period 1960–2012 at 37 rainfall stations 
was used to create the rainfall map which is divided into five classes: <850, 850–950, 950–1050, 
1050–1150, >1150  (Fig 4k) using inverse distance weighted method. The precipitation data were 
extracted from a database from the government of Jiangxi Province Meteorological Bureau 
(http://www.weather.org.cn). A brief description the preparation of each of the landslide 
conditioning factors is given below and is shown in Table.  

Road and river networks were constructed into five groups categories that undercut slopes lager 
than 15° were extracted from the topographic map at a scale of 1:50,000 and used to construct the 
distance to road maps (Fig 4l) and the distance to river maps (Fig 4m),  the group was <50, 50–
100, 100–150,  >150, respectively. The fault lines were extracted from the geological map at a 

http://gdem.ersdac.jspacesystems.or.jp/
http://www.issas.ac.cn/
http://www.cgs.gov.cn/
http://www.gscloud.cn/
http://www.weather.org.cn/
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scale of 1:200,000 and were used to construct the distance to faults map with 7 categories: <200, 
200–400, 400–700, 700–1000, >1000 (Fig 4n). 
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Fig 4 Landslide conditioning factor maps of the study area: (a) slope, (b) aspect, (c) altitude, (d) 
topographic wetness index (TWI), (e) stream power index (SPI), (f) sediment transport index 

(STI), (g) soil, (h) lithology, (i) normalized difference vegetation index (NDVI), (j) landuse, (k) 
rainfall, (l) distance to roads, (m) distance to rivers, (n) distance to faults. 

4. 3. Results and discussions 

4. 3. 1. Feature selection of Linear Support Vector Machine (LSVM) 

Linear Support Vector Machine is a classifier of Support Vector Machine; and it is widely used in 
data mining (Chou et al., 2016). Similar to SVC with parameter kernel=’linear’, but implemented 
in terms of liblinear rather than libsvm, so it has more flexibility in the choice of penalties and loss 
functions and should scale better to large numbers of samples (Franz et al., 2016). This class 
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supports both dense and sparse input and the multiclass support is handled according to a one-vs-
the-rest scheme (Fan et al., 2016; Lora et al., 2016) 

It is very important to evaluate the predictive capability of preparing training dataset using fourteen 
landslide conditioning factors. In this study, the Linear Support Vector Machine method with 
tenfold cross-validation has been used for this purpose. Figure 5 presents  the predictive capability 
of landslide conditioning factors in this study. It is shown that slope angle has the best predictive 
capability in landslide models (AM = 13.8). Rainfall also has very high contribution in landslide 
models (AM = 12.8). TWI (AM = 12) and STI (AM = 11.4) has relatively high contribution in 
landslide models as well. Slope aspect (AM = 10) and distance to road (AM = 9) has the moderate 
contribution in the modelling. Other factors such as distance to faults (AM = 7.3) and distance to 
rivers (AM = 7.2) had almost similar predictive capabilities. Besides, altitude (AM = 5.4), land 
use (AM = 4.9), lithology (AM = 4.9) had shown similar contribution. On the contrary, NDVI 
(AM = 2.3), SPI (AM = 2.1) have low predictive capability, especially soil type (AM = 1.9) has 
the lowest contribution. 

All in all, all fourteen landslide conditioning factors had contribution to landslide models (AM>0). 
All of them wre important in this study, so, all these factors were used in landslide susceptibility 
modeling.  

 

Fig 5 Predictive capability of landslide conditioning factors using LSVM method 

4. 3. 2. Preparation of dataset and training the RSSVM model  

Performance of the RSSVM model significantly depends on the  selection of the calculating 
parameter which is the number of iterations. Thus, a test of the performance of the RSSVM model 
has been accomplished with different number of iterations to filter the optimal parameter. For this 
purpose, ROC curve method has been used to evaluate the performance of the RSSVM.   
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Figure 6 shows the analysis result of ROC curve with various numbers of iterations for training 
and testing the RSSVM model. It can be found that the number of iterations equals to 14 resulting 
the best performance of the RSSVM model. Thus, in the present study, the number of iterations 
has been set to 14 for training the RSSVM classifier in novel classifier framework.  

 

Figure 6 Analysis of ROC curve with various number of iterations for training the RSSVM 
model 

4. 3. 2. Validation of predictive capability of the RSSVM model  

Performance of the RSSVM model for landslide susceptibility assessment using statistical index-
based evaluations is shown in Table 1. It can be seen that the RSSVM model achieved good 
classification of both landslide and non-landslide pixels. Out of these, the performance of the 
RSSVM model for classification of landslide pixels (specificity=79.93%) is better than those of 
non-landslide pixels (specificity=78.18%). 

Besides, in this study, receiver operating characteristic (ROC) curve have also been applied to 
evaluate the general performance of the RSSVM model. The ROC curve is widely used in landslide 
susceptibility mapping. In general, the AUC value varies from 0.5 To 1, if the AUC value equals 
to 1, the result of landslide model is excellent, otherwise, if the AUC value equals to 0.5, the result 
of landslide model is imprecise. Figure 7 and Figure 8 show the results of the RSSVM model for 
landslide susceptibility assessment using ROC curve technique. In this study, the RSSVM model 
executed very well based on the analysis of the ROC curve (AUC = 0.918), additionally, the ROC 
curve for testing the RSSVM model is 0.857 which is reasonably satisfactory. 

Table 1 Performance of the RSSVM model using statistical index based evaluations 

No Parameter Training Testing 

1 TP 397.00 172.00 
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2 TN 462.00 172.00 
3 FP 116.00 48.00 
4 FN 51.00 48.00 
5 Positive predictive value (%) 77.39 78.18 
6 Negative predictive value (%) 90.06 78.18 
7 Sensitivity (%) 88.62 78.18 
8 Specificity (%) 79.93 78.18 
9 Accuracy (%) 83.72 78.18 

 

Fig 7 Analysis of ROC curve for training the RSSVM model 
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Fig 8 Analysis of ROC curve for testing the RSSVM model 

4. 3. 3. Comparison of the RSSVM model with popular landslide models  

In this study, other popular well known landslide models such as Multiple Perceptron Neural 
Network, Naïve Bayes, and Support Vector Machine, have been applied and compared with the 
result of the proposed hybrid model. 

Multiple Perceptron Neural Network (MLPN): artificial neural networks are an information 
processing technique based on the way biological nervous systems, such as the brain, process 
information (Satorra and Bentler, 2001). The true power and advantage of neural networks lies in 
their ability to represent both linear and non-linear relationships and to learn these relationships 
directly from the data being modeled (Gutiérrez and Lizaga, 2016). Traditional linear models are 
simply inadequate when it comes to modeling data that contains non-linear characteristics (Ye and 
Chen, 2001). Neural networks are being applied to an increasing large number of real world 
problems (Wang et al., 2016). Their primary advantage is that they can solve problems that are too 
complex for conventional technologies; problems that do not have an algorithmic solution or for 
which an algorithmic solution is too complex to be defined (Leung et al., 2000). In general, neural 
networks are well suited to problems that people are good at solving, but for which computers 
generally are not. These problems include pattern recognition and forecasting, which requires the 
recognition of trends in data (Ogneva-Himmelberger et al., 2009). The most common neural 
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network model is the multiple perceptron. This type of neural network is known as a supervised 
network because it requires a desired output in order to learn (Moore and Sawyer, 2016). The goal 
of this type of network is to create a model that correctly maps the input to the output using 
historical data so that the model can then be used to produce the output when the desired output is 
unknown (Webster et al., 2016). The multiple perceptron neural network and many other neural 
networks learn using an algorithm called back propagation (Shi et al., 2016). With back 
propagation, the input data is repeatedly presented to the neural network. With each presentation 
the output of the neural network is compared to the desired output and an error is computed 
(Ciurleo et al., 2016). This error is then fed back (back propagated) to the neural network and used 
to adjust the weights such that the error decreases with each iteration and the neural model gets 
closer and closer to producing the desired output (Gutiérrez and Lizaga, 2016). This process is 
known as "training". 

Naïve Bayes (NB): Bayesian network is a directed acyclic graph with probability annotation, each 
node in the graph represent a random variables, two nodes in the graph if there is an arc, said the 
two nodes corresponding to the probability of a random variable is dependent, conversely indicates 
that two independent random variables is conditions (Pirdavani et al., 2014a; Pirdavani et al., 
2014b). An arbitrary nodes in the network of X has a corresponding Conditional Probability Table 
(Conditional aim-listed Probability Table, CPT), nodes X in his father to get all the possible values 
of the Conditional Probability (Chen et al., 2012). If nodes are without father X, then X CPT for 
the prior probability is distribution (Wei and Qi, 2012). Bayesian network structure of the nodes 
and the CPT define the probability distribution of each variable in the network. Naive bayes model 
has been originated through classical mathematics theory and has a solid mathematical foundation, 
and the stability of the classification efficiency (Zhang et al., 2011). At the same time, the NBC 
model requires only a few estimated parameters, less sensitive to missing data, algorithm is simpler 
(Zhang and Mei, 2011). In theory, NBC model of minimum error rate is compared with other 
classification methods (Hadayeghi et al., 2010). But in fact is not always the case, this is because 
the NBC model assumptions are independent of each other between attribute, this assumption is 
often not established in practical application, this brought certain influence to the correct 
classification of NBC model (Koutsias et al., 2010). More in the number of attributes or attribute 
correlation between larger, NBC model classification efficiency than the decision tree model. If 
the attribute correlation is small, NBC model the performance of the most good (Sharma et al., 
2011). Naive Bayes theorem is a kind of unsupervised learning with no iteration, learning 
efficiency is high, and easy to implement under the large sample size will have better performance 
(Lukawska-Matuszewska and Urbanski, 2014). But because of the conditional independence 
assumption is too strong, assumption features, associated with the condition of the characteristics 
of the input vector of scenarios do not apply (Martinez-Fernandez et al., 2013). 

Using the results from analyzing the performance of ROC curve for different landslide models 
(Figure 9), it can be found that the RSSVM model (AUC = 0.857) has the highest performance, 
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followed by the SVM model (AUC = 0.814), MLPN model (AUC = 0.823) and NB model (AUC 
= 0.783) respectively. 

 

Fig 9 Comparison of predictive capability of landslide models 

4. 3. 4. Delineating landslide susceptibility maps 

In this study,  311 landslides were used for training data (70%) and 134 landslides were used for 
validation data (30%). First, the training data set of the SVM and NB models were run in the Weka 
3.7.12 software. The polygon of the study area in ArcGIS 10.2 was then converted to raster with a 
pixel size of 25 × 25 meter similar for all conditioning factors. The raster polygon was sampled in 
the GIS with all conditioning factors, and this layer is the test dataset to use in the Weka for 
landslide susceptibility mapping. Consequently, according to the samples for each point raster of 
the study area, a probability of landslide incidence was obtained and transferred to the GIS and 
landslide susceptibility map for the RSSVM model produced. Ultimately, the range of values of 
the susceptibility map was classified into five categories based on natural break classification 
method including very low susceptibility (VLS), low susceptibility (LS), moderate susceptibility 
(MS), high susceptibility (HS) and very high susceptibility (VLS) (Dai and Lee, 2002). Landslide 
susceptibility map of the RSSVM models are given in Figure 10. 
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Fig 10 Landslide susceptibility map using the RSSVM model 

Table 5 Landslide density on landslide susceptibility map 

Class LSIs intervals 
Pixels of 

class 
Pixels of 
landslides 

% Class 
% 

Landslides 
Landside Density 

(LD) 

Very low (0.019 - 0.153) 1431546 0 25.47 0.00 0 
Low (0.153 - 0.301) 1330357 7 23.67 3.57 0.15 
Moderate (0.301 - 0.459) 1145280 23 20.37 11.73 0.58 
High (0.459 - 0.622) 984530 56 17.51 28.57 1.63 
Very high (0.622 - 0.939) 729472 110 12.98 56.12 4.32 

5. Conclusions 
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Landslide is a most dangerous and huge destructive disaster all over the world. Therefore, landslide 
susceptibility mapping is very important for local government and town planners. Many scientists 
have utilized different methods to carry out landslide susceptibility map in various regions 
worldwide. However, until now there is still no agreement with the best method or model in 
landslide susceptibility modeling. So, the current study aimed to find some new ensemble method 
to achieve this target.  

In this study, a novel hybrid integration approach was used by integrating  support vector machines 
and random subspace for landslide susceptibility assessment. This is an integration of support 
vector machines and random subspace ensemble. The result shows that the RSSVM model 
performs very well in landslide susceptibility mapping in Wuning area (China). The predictive 
capability of a base classifier of RSSVM is significant improved through the newly proposed 
RSSVM model. In comparison with ANN (Multiple Perceptron Neural Network), NB (Naïve 
Bayes) and SVM (Support Vector Machine), the RSSVM model has the best performance. Overall, 
the landslide susceptibility map of these models is very useful for land use planning and decision 
making in Wuning area. 
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