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Abstract: Effective and reliable load forecasting is an important basis for power system planning and

operation decisions. Its forecasting accuracy directly affects the safety and economy of the operation

of the power system. However, attaining the desired point forecasting accuracy has been regarded as

a challenge because of the intrinsic complexity and instability of the power load. Considering the

difficulties of accurate point forecasting, interval prediction is able to tolerate increased uncertainty

and provide more information for practical operation decisions. In this study, a novel hybrid system

for short-term load forecasting (STLF) is proposed by integrating a data preprocessing module,

a multi-objective optimization module, and an interval prediction module. In this system, the training

process is performed by maximizing the coverage probability and by minimizing the forecasting

interval width at the same time. To verify the performance of the proposed hybrid system, half-hourly

load data are set as illustrative cases and two experiments are carried out in four states with four

quarters in Australia. The simulation results verified the superiority of the proposed technique and

the effects of the submodules were analyzed by comparing the outcomes with those of benchmark

models. Furthermore, it is proved that the proposed hybrid system is valuable in improving power

grid management.

Keywords: short-term load forecasting; interval prediction; lower upper bound estimation; artificial

intelligence; multi-objective optimization algorithm; data preprocessing

1. Introduction

Load forecasting is of upmost significance and affects the construction and operation of power

systems. In the preparation of the power system planning stage, if the load forecasting result is lower

than the real demand, the installed and distribution capacities of the planned power system will be

insufficient. The power generated will not be able to meet electricity demand of the community it

serves, and the entire system will not be able to operate in a stable manner. Conversely, if the load

forecast is too high, it will result in power generation, transmission, and distribution, at a larger scale,

that cannot be fully used in the real power system. The investment efficiency and the efficiency of

the resource utilization will be reduced in this situation. Therefore, effective and reliable power load

forecasting can promote a balanced development of the power system while improving the utilization

of energy. There are various power load forecasting methods and, commonly, load forecasting is

classified into short-term, medium-term, and long-term, based on the application field and forecasting
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time. Among these categories, short-term load forecasting (STLF) is an essential tool for the planning

and operation [1,2] of energy systems and it has thus been a major area of research during the past

few decades.

According to existing research, concern mostly focuses on the point forecasting of STLF.

Additionally, the relative algorithms can be mainly classified into three major categories: traditional

statistical techniques, computational intelligent methods, and multimodule hybrid models [3].

In the early stages of research, traditional statistical techniques were extensively employed for

point forecasting of STLF, such as linear regression methods [4,5], exponential smoothing [6], Kalman

filters [7], and other linear time-series models. In general, most of the traditional statistical approaches

have been involved in linear analysis and have mainly considered linear factors in time series. However,

the short-term load series are a mixture of multiple components which include linear and non-linear

factors. Therefore, the traditional statistical approaches encounter difficulties when dealing with the

STLF, and the forecasting accuracy is often unsatisfactory. With the development of machine learning

and artificial intelligence, an increased number of non-linear computational intelligent methods have

been applied to STLF, such as neural network models (NN) [8,9], expert systems [10] and support

vector machines (SVM) [11,12]. These approaches have been proved to have advantages in dealing

with the non-linear problems of STLF compared to traditional statistical methods, thereby eliciting

improved performances in most cases. Most importantly, a key point that influences the performance

of computational intelligent methods is the setting of related parameters in algorithms. At this time,

efficient hybrid models appeared. In hybrid models, different modules were introduced to improve

the performance and accuracy of STLF [13–19]. Among existing reviews in the literature, two popular

and efficient modules include the data preprocessing and optimization modules. In the case of the

data preprocessing modules, a multiwavelet transform was used in combination with a three-layer

feed-forward neural network to extract the training data and predict the load in [13]. Fan et al. [14] used

empirical mode decomposition (EMD) to decompose electric load data, generating high-frequency

series and residuals for the forecasting of support vector regression (SVR) and autoregression (AR),

respectively. The results showed that the hybrid methods can perform well by eliciting good forecasting

accuracy and interpretability. In the case of the optimization modules, AlRashidi et al. [15] employed

the particle swarm optimizer (PSO) to fine-tune the model parameters, and the forecasting problem

was presented in a state space form. Wang et al. [16] proposed a hybrid forecasting model combining

differential evolution (DE) and support vector regression (SVR) for load forecasting, where the DE

algorithm was used to choose the appropriate parameters for SVR.

However, as mentioned above, the current research on STLF mainly concentrates on point

forecasting in which the accuracy is usually measured by the errors between the predicted and the

target values. With power system growth and the increase in its complexity, point forecasting might

not be able to provide adequate information support for power system decision making. An increasing

number of factors, such as load management, energy conversion, spot pricing, independent power

producers and non-conventional energy, make point forecasting undependable in practice. In addition

to the fact that most of these point forecasting models do not elicit the required precision, they are

also not adequately robust. They fail to yield accurate forecasts when quick exogenous changes occur.

Other shortcomings are related to noise immunity, portability, and maintenance [20].

In general, point forecasting cannot properly handle uncertainties associated with load datasets

in most cases. To avoid such imperfection, interval prediction (IP) of STLF is an efficient way to

deal with the forecast uncertainty in electrical power systems. Prediction intervals (PIs) not only

provide a range in which targets are highly likely to be covered, but they also provide an indication of

their accuracy, known as the coverage probability. Furthermore, the PIs can take into account more

uncertain information and the result of (PIs) commonly form a double output (upper bounds and

lower bounds) which can reflect more uncertain information and provide a more adequate basis for

power system planning.
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With the development of artificial intelligence technology, the interval prediction methods based

on NN have been proved to be efficient techniques. According to existing research, the popular

techniques for constructing PIs are Bayesian [21], delta [22], bootstrap [23], and mean–variance

estimation [24]. In the literature, the Bayesian technique [25] is used for the construction of NN-based

PIs. Error bars are assigned to the predicted NN values using the Bayesian technique. Even if the

theories are effective in the construction of PIs, the calculation of the Hessian matrix will result in

the increase of model complexity and computation cost. In [26], the delta technique was applied to

construct PIs for STLF, and a simulated annealing (SA) algorithm was introduced to improve the

performance of PIs through the minimization of a loss function. In [27], according to bootstrap, error

output, resampling, and multilinear regression, were used with STLF for the construction of confidence

intervals with NN models. In [24], a mean–variance estimation-based method used NN to estimate

the characteristics of the conditional target distribution. Additive Gaussian noise with non-constant

variance was the key assumption of the method for PI construction.

Considering most of the existing research studies of PIs by NN mentioned above, the PIs were

usually calculated depending on the point forecasting. The NNs were first trained by minimizing

an error-based cost function, and the PIs were then constructed depending on the outcomes of

trained and tuned NNs. It may be questionable to construct PIs in this way. Furthermore, it is

a more reasonable way to output the upper and lower bounds directly [28]. Compared with the

Bayesian, delta, and bootstrap techniques, this approach can output the PIs without being dependent

on point prediction. However, in traditional research approaches, the cost function mainly aims at

guaranteeing coverage probability (CP). However, a satisfactory coverage probability can be achieved

easily by assigning sufficiently large and small values to the upper and lower bounds of the PIs.

Thus, the prediction interval width (PIW) is another key characteristic which needs to be considered

fully. These two goals, that is, achieving a higher CP and a lower PIW, should be considered in

a comprehensive manner when the NN parameters are determined.

Therefore, in this study, a hybrid, lower upper bound estimation (LUBE) based on multi-objective

optimization is proposed. The requirements for higher CP and lower PIW constitute a typical

case of the Pareto optimization problem. In the present study, a significant and valid approach

was used to solve the Pareto optimization problem is the multi-objective optimization [29]. There

are many algorithms in the literature for solving multi-objective optimizations. For the GA,

the most well-regarded multi-objective algorithm is the non-dominated sorting genetic algorithm

(NSGA) [30]. Other popular algorithms include the multi-objective particle swarm optimization

(MOPSO) [31,32], multi-objective ant colony optimization (MOACO) [33], multi-objective differential

evolution (MODE) [34], multi-objective grasshopper optimization (MOGO) [35], multi-objective

evolution strategy (MOES) [36], multi-objective sine cosine (MOSC) [37], and multi-objective ant

lion [38]. All these algorithms are proved to be effective in identifying non-dominated solutions for

multi-objective problems. According to the “no free lunch theorem” for optimization [39,40], there is

no algorithm capable of solving optimization algorithms for all types of problems. This theorem

logically proves this and proposes new algorithms, or improves the current ones.

In this study, to achieve a better performance in STLF, one of the novel recurrent neural networks,

the Elman neural network (ENN) [41], is applied to construct the structure of a modified LUBE.

The Elman neural network has already been extensively used in time-series forecasting [42–44].

As a type of recurrent neural network, ENN exhibits superiority on the time delay information

because of the existence of the undertaking layer which can connect hidden NN layers and store the

historical information in the training process. This structure design of NN commonly leads to a better

performance in time-series forecasting.

In traditional STLF, most of the methods construct the training set of the model directly using the

original data. However, data in the natural world often receives a lot of noise interference, which will

cause more difficulties for desired STLF. Furthermore, improving the signal-to-noise ratio of the

training dataset will help the effective training of the model. Amongst the existing denoising methods,
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empirical mode decomposition (EMD) [45] is extensively used, which is an adaptive method introduced

to analyze non-linear and non-stationary signals. In order to alleviate some reconstruction problems,

such as “mode mixing” of EMD, some other versions [46–48] are proposed. Particularly, the problem

of different number of modes for different realizations of signal and noise need to be considered.

Summing up the above, in this study, a hybrid interval prediction system is proposed to solve

the STLF problem based on the modified Lower and Upper bound estimate (LUBE) technique,

by incorporating the use of a data preprocessing module, an optimization module, and a prediction

module. In order to verify the performance of the proposed model, we choose as the experimental case

the power loads of four states in Australia. The elicited results are compared with those from basic

benchmark models. In summary, the primary contributions of this study are described below:

(1) A modified LUBE technique is proposed based on a recurrent neural network, which is able to

consider previous information of former observations in STLF. The contest layer of ENN can

store the outputs of a former hidden layer, and then connect the input layer in the current period.

Comparison of the traditional interval predictive model with the basic neural network, this

mechanism can improve the performance of time series forecasting methods, such as STLF.

(2) A more convincing optimization technique based on multi-objective optimization is proposed

for LUBE. In LUBE, besides CP, PIW should also be considered in the construction of the cost

function. In this study, the novel multi-objective optimization method MOSSA is employed in

the optimization module to balance the conflict between higher CP and lower PIW, and to train

the parameters in ENN. With this method, the structure of neural networks can provide a better

performance in interval prediction.

(3) A novel and efficient data preprocessing method is introduced to extract the valuable

information from raw data. In order to improve the signal noise ratio (SNR) of the input data,

an efficient method is used to decompose the raw data into several empirical modal functions

(IMFs). According to the entropy theory, the IMFs with little valuable information are ignored.

The performance of the proposed model trained with processed data improves significantly.

(4) The proposed hybrid system for STLF can provide powerful theoretical and practical support

for decision making and management in power grids. This hybrid system is simulated and

tested depending on the abundant samples involving different regions and different times,

which indicate its practicability and applicability in the practical operations of power grids

compared to some basic models.

The rest of this study is organized as follows: The relevant methodology, including data

preprocessing, Elman neural network, LUBE, and multi-objective algorithms, are introduced in

Section 2. Section 3 discusses our proposed model in detail. The specific simulation, comparisons

and analyses of the model performances are shown in Section 4. In order to further understand the

features of the proposed model, several points are discussed in Section 5. According to the results of

our research, conclusions are outlined in Section 6.

2. Methodology

In this section, the theory of the hybrid interval prediction model is elaborated, and the

methodology of the components in hybrid models, including complete ensemble empirical mode

decomposition with adaptive noise (CEEMDAN), Elman neural networks, LUBE, and MOSSA,

are explained in detail.

2.1. Data Preprocessing

The EMD technique [45] usually decomposes a signal into several numbers of IMFs. For each

IMF, the series have to fulfill two conditions: (i) the number of extrema (maxima and minima)

and the number of zero-crossings must be equal or differ at most by one; and (ii) the local mean,

defined as the mean of the upper and lower envelopes, must be zero. In order to alleviate mode



Energies 2018, 11, 1561 5 of 30

mixing, the EEMD [46], defines the “true” modes as the average of the corresponding IMFs obtained

from an ensemble of the original signal plus different realizations of finite variance white noise.

But incompletion of decomposition still exists, and the number of modes will be different due to

the noise added. Taking these short comes into account, CEEMDAN is proposed. The details are

described as follows: let Ek(·) be the operator which produces the kth mode obtained by EMD and w(i)

be a realization of white noise with N (0, 1). And then the process of CEEMDAN can be expressed as

several stages:

1st step. For every i = 1, . . . , I decompose each x(i) = x + β0w(i) by EMD, until the first mode is

extracted and compute d̃1 by:

d̃1 =
1

I

I

∑
i=1

di
1 = d1 (1)

2nd step. At the first stage (k = 1) calculate the first residue as r1 = x − d̃1.

3rd step.Obtain the first mode of r1 + β1E1(w
i) , i = 1, . . . I, by EMD and define the second

CEEMDAN mode as:

d̃2 =
1

I

I

∑
i=1

E1(r1 + β1E1(w
(i))) (2)

4th step. For k = 2, . . . K calculate the kth residue:

rk = r(k−1) − d̃k (3)

5th step. Obtain the first mode of rk + βkEk(w
(i)) , i = 1, . . . , I, by EMD until define the (k + 1)th

CEEMDAN mode as:

d̃(k+1) =
1

I

I

∑
i=1

E1(rk + βkEk(w
(i))) (4)

6th step. Go to 4th step for the next k.

Iterate the steps 4 to 6 until the obtained residue cannot be further decomposed by EMD, either

because it satisfies IMF conditions or because it has less than three local extremums. Observe that,

by construction of CEEMDAN, the final residue satisfies:

rK = x −
K

∑
k=1

d̃k (5)

with K being the total number of modes. Therefore, the signal of interest x can be expressed as:

x =
K

∑
k=1

d̃k + rk (6)

which ensures the completeness property of the proposed decomposition and thus providing an exact

reconstruction of the original data. The final number of modes is determined only by the data and the

stopping criterion. The coefficients βk = εkstd(rk) allow the selection of the SNR at each stage.

The CEEMDAN method can add a limited number of self-use white noises at each stage, which can

achieve almost zero reconstruction error with fewer average times. Therefore, CEEMDAN can

overcome the “mode-mixing” phenomenon existing in EMD, and can also solve the incompleteness of

EEMD decomposition and reduce the computational efficiency by reducing the reconstruction error by

increasing the number of integrations.
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2.2. Elman Neural Network (ENN)

As an important branch of deep learning, recurrent neural networks have been widely used in

academic and industrial fields. The common neural network mainly consists of three layers: input

layer, hidden layer and output layer. For the hidden layer, the input information only comes from the

input layer. For a recurrent neural network, the input information of the hidden layer will not only

come from the input layer, but also from the hidden layer itself and the output layer.

In various structures of the recurrent neural network, Elman neural network (ENN) [49] is typical

structure in which the lags of hidden layer are delivered into the current hidden layer by a new layer

called the context layer. This structure takes the former information of the hidden layer into account

and commonly has a better performance in the time-series forecasting such as STLF, wind speed

forecasting, financial time-series forecasting. The structure is showed in Figure 1.

The context layer can feed back the hidden layer outputs in the previous time steps and neurons

contained in each layer are used to transmit information from one layer to another. The dynamics of

the change in hidden state neuron activations in the context layer is as follows:

Si(t) = g(
K

∑
k=1

VikSk(t − 1) +
j

∑
j=1

Wij Ij(t − 1)) (7)

where Sk(t) and Ij(t) denote the output of the context state and input neurons, respectively; Vik and

Wij denote their corresponding weights; and g(·) is a sigmoid transfer function. The other related

theories such as feed-forward and back propagation are similar with the common back propagation

neural network.

= =

= − + −∑ ∑

⋅

Figure 1. The structure of the lower bound and upper bound estimation (LUBE) based on the Elman

neural network.

2.3. Lower Bound and Upper Bound Estimation (LUBE)

In the literature, the traditional interval prediction commonly attempts to construct the PI based

on the point prediction. The upper bound and the lower bound are calculated according to the

forecasting value and the confidence level. The accuracy of the point forecasting has played a key role

in the accuracy of the PI. In this paper, we introduce a novel method of interval prediction called lower

bound and upper bound estimation (LUBE). This method directly outputs the lower bound and the
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upper bound of PI depending on the multi-output neural network. The structure we employed in this

paper is shown in Figure 1.

The output of the normal LUBE structure [50] just consist of two neurons which denote the upper

bound and the lower bound, while the outputs in our structure of LUBE consist of three neurons.

The first output corresponds to the upper bound of the PI, the second output denotes the predicted

value, and third output approximates the lower bound of the PI. In the literature, the PI construction

techniques attempt to estimate the mean and variance of the targets for construction of PIs. In contrast

to existing techniques, the proposed method tries to directly approximate upper and lower bounds of

PIs based on the set of inputs. Therefore, in the training process, loss function of this LUBE method

based on neural network should be set according to the key criterion of PIs (CP and PIW).

2.4. Multi-Objective Optimization Algorithm

The multi-objective optimization algorithm has been widely used to solve multi-objective

optimization problem. In this paper, a novel multi-objective optimization algorithm named

Multi-Objective Salp Swarm Algorithm (MOSSA) is introduced.

2.4.1. Multi-Objective Optimization Problem

In multi-objective optimization, all of the objectives are optimized simultaneously. The main

concern is formulated as follows:

Minimize : F(X) = { f1(X), f2(X), . . . , fo(X)} (8)

Subject to : gi(X) ≥ 0, i = 1, 2, . . . , m (9)

hi(X) = 0, i = 1, 2, . . . , p (10)

lbi ≤ xi ≤ ubi, i = 1, 2, . . . , n (11)

where o is the number of objectives, m is the number of inequality constraints, p is the number of

equality constraints, and lbi is the lower bound of the ith variable, and ubi is the upper bound of the

ith variable. With one objective we can confidently estimate that a solution is better than another

depending on comparing the single criterion, while in a multi-objective problem, there is more than

one criterion to compare solutions. The main theory to compare two solutions considering multiple

objectives is called Pareto optimal dominance as explained in [51].

There are two main approaches for solving multi-objective problems: a priori and a posteriori [52].

In the priori method, the multi-objective problem is transformed to a single-objective problem by

aggregating the objectives with a set of weights determined by experts. The main defect of this method

is that the Pareto optimal set and the front need to be constructed by re-running the algorithm and

changing the weights [53]. However, the a posteriori method keeps the multi-objective formulation in

the solving process, and the Pareto optimal set can be determined in a single run. Without any weight

to be defined by experts, this approach can approximate any type of Pareto optimal front. Because

of the advantages of a posteriori optimization over the a priori approach, the focus of our research is

aimed at a posteriori multi-objective optimization.

2.4.2. Multi-Objective Salp Swarm Algorithm (MOSSA)

As an a posteriori multi-objective optimization, MOSSA [54] is similar to some swarm

multi-objective optimization algorithm such as MOPSO [31], MOACO [33] and MOGO [35].

By simulating the biological behavior of ecological communities, the optimal solution is achieved.

Salps belong to the family of Salpidae and have transparent barrel-shaped body. Their tissues are

highly similar to jellyfishes. They also move very similar to jellyfish, in which the water is pumped

through body as propulsion to move forward. In deep oceans, salps often form a swarm called a salp

chain. The main concern about salps in MOSSA is their swarming behavior.
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To mathematically model the salp chains, the population is first divided to two groups: leader

and followers. The leader is the salp at the front of the chain, whereas the rest of salps are considered

as followers. As the name of these salps implies, the leader guides swarm and the followers follow

each other.

Similar to other swarm-based techniques, the position of salps is defined in an n-dimensional

search space where n is the number of variables of a given problem. Therefore, the positions of all

salps are stored in a two-dimensional matrix called x. It is also assumed that there is a food source

called F in the search space as the swarm’s target.

Definition 1. To update the position of the leader the following equation is proposed:

x1
j =

{
Fj + c1

((
ubj − lbj

)
c2 + lbj

)
c3 ≥ 0

Fj − c1

((
ubj − lbj

)
c2 + lbj

)
c3 < 0

(12)

where x1
j shows the position of the first salp (leader) in the jth dimension, Fj is the position of the food source in

the jth dimension, ubj indicates the upper bound of jth dimension, lbj indicates the lower bound of jth dimension,

c1, c2, and c3 are random numbers. Equation (12) shows that the leader only updates its position with respect to

the food source.

Definition 2. The coefficient c1 is the most important parameter in the Salp swarm algorithm (SSA) because it

balances exploration and exploitation is defined as follows:

c1 = 2e−( 4l
L )

2

(13)

where l is the current iteration and L is the maximum number of iterations.

The parameter c2 and c3 are random numbers uniformly generated in the interval of [0, 1]. In fact,

they dictate if the next position in jth dimension should be towards positive infinity or negative infinity

as well as the step size.

Definition 3. To update the position of the followers, the following equations is utilized depending on Newton’s

law of motion:

xi
j =

1

2
aijt

2 + v0t (14)

where i ≥ 2, xi
j shows the position of ith follower salp in jth dimension, t is time, v0 is the initial speed,

and aij =
vij−v0

t where vij =
xij−x0

t , i ≥ 2, j ≥ 1.

Because the time in optimization is iteration, the discrepancy between iterations is equal to 1,

and considering v0 = 0, this equation can be expressed as follows:

xi
j(t) =

1

2

(
xi

j(t−1) + xi−1
j(t−1)

)
(15)

where i ≥ 2 and xi
j(t)

show the position of ith follower salp in jth dimension at t-th iteration.

According to the mathematical emulation explained above, the swarm behavior of salp chains

can be simulated vividly.

When dealing with multi-objective problems, there are two issues that need to be adjusted for

SSA. First, MOSSA need to store multiple solutions as the best solutions for a multi-objective problem.

Second, in each iteration, SSA updates the food source with the best solution, but in the multi-objective

problem, single best solutions does not exist.
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In MOSSA, the first issue is settled by equipping the SSA algorithm with a repository of food

sources. The repository can store a limited number of non-dominated solutions. In the process of

optimization, each salp is compared with all the residents in repository using the Pareto dominance

operators. If a salp dominates only one solution in the repository, it will be swapped. If a salp

dominates a set of solutions in the repository, they all should be removed from the repository and the

salp should be added in the repository. If at least one of the repository residents dominates a salp in the

new population, it should be discarded straight away. If a salp is non-dominated in comparison with all

repository residents, it has to be added to the archive. If the repository becomes full, we need to remove

one of the similar non-dominated solutions in the repository. For the second issue, an appropriate way

is to select it from a set of non-dominated solutions with the least crowded neighborhood. This can

be done using the same ranking process and roulette wheel selection employed in the repository

maintenance operator. The pseudo code of MOSSA is showed in Algorithm 1:

Algorithm 1. Pseudo-code of MOSSA.

1 Set the hyper-parameter: 

2 Max_iter:  Maximum of iteration 

3 ArchiveMaxSize: Max capacity of archive (repository) 

4 Dim: The number of parameters on each salp  

5 Ub and lb: The upper bound and the lower bound of salp population 

6 Obj_no: The objective number to be estimated 

7 Initialize the salp population ( 1,2,..., )
i

x i n=  depending on the ub and lb 

8 Define the objective function (loss function): @ Ob_func 

9 While (end criterion is not met) 

10  Calculate the fitness of each search agent (salp) with Ob_func 

11  Determine the non-dominated salps 

12  Update the repository considering the obtained non-dominated salps 

13  If (the repository become full) 

14   Call the repository maintenance procedure to remove one repository resident 

15   Add the non-dominated salp to the repository 

16  End If 

17  Choose a source of food from repository: F = SelectFood (repository) 

18  
Update c1 by 

2
4

1
2

l

Lc e

 − 
 =  

19  For each salp ( i
x ): 

20   If (i==1): 

21    

Update the position of the leading salp by:

( )( )
( )( )

1 2 3
1

1 2 3

0

0

j j j j

j

j j j j

F c ub lb c lb c
x

F c ub lb c lb c

 + − + ≥= 
− − + <

 

22   Else: 

23    Update the position of the leading salp by: ( )1

( ) ( 1) ( 1)

1

2

i i i

j t j t j t
x x x

−
− −= +  

24   End If 

25  End For 

26  Amend the salps based on the upper and lower bound of variables 

27 End While 

28 Return repository 
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3. Proposed Interval Prediction Model for Short-Term Load Forecasting (STLF)

In this paper, we proposed a hybrid model for interval prediction based on the data preprocessing,

multi-objective optimization algorithm and LUBE to solve the problem of STLF. This hybrid model

consist of two stages: data de-noising and model prediction.

In the first stage, the main task is to refine the original data. The raw power load data is affected by

many internal and external factors in the collection process. Therefore, a lot of unrelated information

is integrated in the data. Several pieces of information will further affect the quality of the power

load data, and increase the difficulty of accurate forecasting of the power load. In the neural network

model, the performance of the model is directly affected by the quality of the data. As a type of

machine learning algorithm, the neural network uses its multilayered structure to learn the relevant

interdependencies of the data and determine the structural parameters of the prediction model, so as

to achieve fitting and forecasting. However, if the input set of the model contains too much noise and

“false information”, the model will be seriously affected in the training process, and some problems

will emerge, such as the overfitting problem. Therefore, we introduced CEEMDAN to eliminate useless

information in the raw data. As mentioned above, CEEMDAN can decompose the data series into

several IMFs with different frequencies, as shown in Figure 2. Because the IMFs are extracted with

envelope curves depending on the extremum, some of the IMFs have higher frequencies, just as the

first few IMFs that are shown in Figure 2. In addition, the other IMFs also have lower frequencies and

represent the trend factors, thereby formulating the vital basis for time-series prediction. In the actual

operations, we can remove the IMFs with higher frequencies, which effectively represent noise to refine

the original data. In order to determine which IMFs ought to be abandoned, we calculated the entropy

of each IMF and removed the IMFs with lower entropy. After the denoising process, the refined data

are transferred to next stage as the input data for training in the predictive model.

In the second stage, the main interval prediction model was proposed. In our hybrid interval

prediction model, the PI is output dependent on LUBE, which is based on the multi-output of the

Elman neural network (E–LUBE). In the training process, the input set of E–LUBE is constructed as

indicated in Formula (16), while the output set is constructed as indicated in Formula (17), where m and

s respectively denote the number of features and the numbers of samples, and α denotes the interval

width coefficient. In the case of the STLF problem, m indicates the number of previous time-points that

we use to forecast the predictive value.

Input set :




x1 x2 · · · xm

x2 x3 · · · xm+1
...

...
. . .

...

xs xs+1 · · · xs+m




(16)

Output set :




xm+1 × (1 − α)

xm+2 × (1 − α)
...

xm+s+1 × (1 − α)

xm+1

xm+2
...

xm+s+1

xm+1 × (1 + α)

xm+2 × (1 + α)
...

xm+s+1 × (1 + α)




(17)

According to a trained model, when a new series Xi, i = 1, . . . , m, is input into the model, Xm+1 with

an upper bound XU
m+1 and a lower bound XL

m+1 will be output. This is the basic mechanism of interval

prediction for STLF in this study. However, in traditional multi-output neural networks, the loss

function is always the mean-square-error (MSE), which is a key criterion for point forecasting. In this

study, we introduced two new criteria (PIW and CP) to construct the loss function, considering the

main purpose of our interval prediction. The traditional neural network parameters were determined

by using a gradient descent algorithm, but for two of the set criteria, the calculation of the gradient
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was difficult. Therefore, we employed MOSSA to realize the multi-objective parameter optimization.

Furthermore, the optimization problem can be expressed as,

argmin

{
PIW(θ)
1/CP(θ)

(18)

where θ is a set of parameters in E–LUBE, including the weight and bias.

When the parameters are determined in the training process, the entire model can be applied to

the test set to verify the performance of interval prediction.

θ

θ





θ

 

0.05α = α

Figure 2. Forecasting flowchart of the proposed hybrid model.

4. Simulations and Analyses

In order to validate the performance of the proposed hybrid model in STLF, four electrical load

datasets collected from four states in Australia are used in our research. The four states include

New South Wales (NSW), Tasmania (TAX), Queensland (QLD) and Victoria (VIC), and the specific

location is showed in Figure 3. The experiments in this study consist of two parts: experiment I

and experiment II. For experiment I, the load data of four states are modeled with interval width

coefficient α = 0.05, and for the experiment II, the interval width coefficient α is set as 0.025 for further

analysis. In order to verify the superiority of the proposed hybrid model, several benchmark models

which include basic LUBE (LUBE), LUBE with Elman neural network (E–LUBE), E–LUBE with point

optimization (PO–E–LUBE), E–LUBE with interval optimization (IO–E–LUBE), and models integrated

with CEEMDAN, are exhibited. For persuasive comparability and fairness, the hyper-parameters in

each model are consistent, as shown in Table 1. All experiments have been carried out in MATLAB
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2016a on a PC with the configuration of Windows 7 64-bit, Inter Core i5-4590 CPU @ 3.30GHz,

8GB RAM.

 

−

Figure 3. Data description of experiments. (a) Location of sample sites; (b) Division of train set and

test set; (c) Structure of input set and output set; and (d) Entropy of each IMF).

Table 1. Related parameters in hybrid model.

Submodels and Parameters Value

Elman Neural Network (ENN)

Inputnum 6
Hiddennum 13
Outputnum 3
Train.epoch 500

Train.lr 0.1
Train.func “Adam”

Complete ensemble empirical mode
decomposition with adaptive noise (CEEMDAN)

Nstd 0.2
NR 200

Maxiter 100

Multi-objective salp swarm algorithm (MOSSA)

Dim 754
Lb −2
Ub 2

Obj_no 2
Pop_num 50
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4.1. Data Descriptions

For each state, we considered the data using half an hour interval in four quarters. The data

used in this paper can be obtained on the website of Australian energy market operator (http://www.

aemo.com.au/). We chose data from the whole of 2017 from 1 January 2017 0:30 am to 31 December

2017 0:00 am to construct dataset. In each state, the total sample number is 17,520. For each quarter,

the number of samples were 4320, 4358, 4416, 4416 respectively. In order to control the comparability,

we selected 1200 samples to test the trained model, and used the rest in each quarter to train the models.

The proportion of train sets versus the test sets was approximately equal to 3:1. The description of

the data characteristics are shown in Figure 4. Considering the structure of the neural network in this

study, we set six input neurons, 13 hidden neurons, and three output neurons. Specifically, the output

set was formulated in accordance with Formula (17).

During data preprocessing, the input data were divided into several IMFs depending on

CEEMDAN, as displayed in Figure 2. According to the energy entropy of each IMF shown in Figure 3,

we ignored the IMFs which contained high frequencies, and summed the rest of the IMFs to reconstruct

the input set, as shown in Figure 1.

 

θ
=

= ∑

Figure 4. Boxplot of the entire set of data samples.

4.2. Performance Metrics

In order to comprehensively assess the performance of the models, some metrics were employed.

These metrics primarily focused on the coverage of the real value in the prediction interval and the

width of the interval.

4.2.1. Coverage Probability

Coverage probability [50] is usually considered as a basic feature of PIs and CP is calculated

according to the ratio of the number of target values covered by PIs:

CP =
1

m

m

∑
i=1

θi (19)

http://www.aemo.com.au/
http://www.aemo.com.au/
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where m denotes the number of samples, and θi is a binary index which measures whether the target

value is covered by PIs:

θi =

{
1 , yt

i ∈ [L̂i, Ûi]

0 , yt
i /∈ [L̂i, Ûi]

(20)

where yt
i denote the ith target value and L̂i, Ûi represent the ith lower bound and the upper

bound, respectively.

A larger CP means more targets are covered by the constructed PIs and a too small CP indicates

the unsatisfied coverage behaviors. To have valid PIs, CP should be larger or at least equal to the

nominal confidence level of PIs. Furthermore, in this paper, CP is also an important factor in the

process of parameter optimization by the multi-objective optimization algorithm.

4.2.2. Prediction Interval (PI) Normalized Average width and PI Normalized Root-Mean-Square Width

In research studies on interval prediction, more attention is usually paid to CP. However, if the

lower and upper bounds of the PIs are expanded from either side, any requirement for a larger CP

can be satisfied, even for 100%. However, in some cases, a narrower interval width is necessary for

a more precise support for electric power supply. Therefore, the width between the lower and upper

bounds should be controlled so that the PIs are more convincing. In this study, the prediction interval

width (PIW) is another factor in the process of parameter optimization. With CP and PIW, two objects

compose the solution space within which the Pareto solution set is estimated.

In order to eliminate the impact of dimension, some relative indexes should be introduced to

improve the comparability of width indicators. Inspired by the mean absolute percentage error

(MAPE) in point forecasting, we employed PI normalized average width (PINAW) and PI normalized

root-mean-square width (PINRW) [50]:

PINAW =
1

mR

m

∑
i=1

(Ui − Li) (21)

PINRW =
1

R

√
1

m

m

∑
i=1

(Ui − Li)
2 (22)

where R equals to the maximum minus minimum of the target values. Normalization by the range R

is able to improve comparability of PIs constructed using different methods and for different types

of datasets.

4.2.3. Accumulated Width Deviation (AWD)

Accumulated width deviation (AWD) is a criterion that measure the relative deviation degree, and

it can be obtained by the cumulative sum of AWDi [55]. The calculation formula of AWD is expressed

as Equations (23) and (24), where α denotes the interval width coefficient and Ii represents the i-th

prediction interval.

AWDi =





L
(α)
i −zi

U
(α)
i −L

(α)
i

, zi < L
(α)
i

0, zi ∈ I
(α)
i

zi−U
(α)
i

U
(α)
i −L

(α)
i

, zi > U
(α)
i

(23)

AWD(α) =
1

n

n

∑
i=1

AWDα
i (24)
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4.3. Experiment I: Cases with Larger Width Coefficients

In this experiment, we set the interval width coefficient α = 0.05, which is equivalent to setting

the output to [0.95 × X, X, 1.05 × X] for a single sample in the training process of the neural network.

Based on this structure, the PIs can be output given an input test set. In order to guarantee the diversity

of the samples, we studied four different quarterly data for four different states.

The models involved in our research can be divided into three groups for better explanations for

the impact of different components. The first group included LUBE and E–LUBE, and the difference

between them were the structures of the neural network. The structure of LUBE consisted of three

layers which were similar to the traditional BP neural network. Moreover, in the E–LUBE, an extra

context layer was added to the structure so that we could validate the impact of the context layer

in prediction by comparing the performance of these two models. The second group included the

PO–E–LUBE and IO–E–LUBE, and the difference between them included the optimization algorithm

in the training process. PO–E–LUBE used the error and variance of point prediction to construct

the cost function in MOSSA, whereby the target of minimizing the cost function effectively denotes

a requirement for better prediction accuracy. In addition, IO–E–LUBE employed the CP and PIW of

the interval prediction to construct the cost function in multi-objective optimization, while the target

of minimizing such a cost function denoted the requirements for a better performance in interval

coverage, which is more rational for our goal of interval prediction. The comparison between such

models can reflect the influence of different cost functions in the parameter optimization process.

Furthermore, in the first group, the parameters of the neural network are determined by a conventional

gradient descent algorithm, and in the second group, the parameters are determined by a heuristic

optimization algorithm. Therefore, the impact of different optimization algorithms can be shown by

comparing the models in different groups. In addition, in the third group, the data preprocessing is

introduced. Based on the models in the first two groups, CEEMDAN was used to refine the input

dataset. The results of the models in this group will display the effect of data preprocessing in the

hybrid model.

The simulation results are shown in Tables 2 and 3. Also shown in Figure 5 are the principal

indices of interval prediction, namely, CP and PINAW. Based on the conducted comparisons referred

to earlier, several conclusions can be inferred:

(1) By comparing the models in the first group, we can conclude that the E–LUBE is superior to

LUBE in most cases, such as the fourth quarter in NSW and the first quarter in TAX, as shown in

Table 2 and Figure 5. The CP of E–LUBE reached 87.17%, while the CP of LUBE was 72.36% for

the fourth quarter in NSW. The rate of improvement was more than 15% with the maintenance of

PINAW and PINRW. However, in some cases, the improvement is not remarkable, such as the

fourth quarter in QLD, as shown in Table 3 and Figure 5. The performances of these two models

are almost the same. In general, the performance of E–LUBE is better than LUBE, which means

that E–LUBE with an extra context layer can improve the performance. In theory, the context

layers are able to provide more information compared to previous outputs of hidden layers.

This superiority has been proved in our experiments. However, owing to the instability of the

parameters in the neural network, the improvement is not adequately remarkable in a few cases.

(2) In terms of the optimization methods, and according to the results shown in Figure 5, and Tables 2

and 3, the CPs of the second group (PO–E–LUBE and IO–E–LUBE) perform better than E–LUBE

in most cases. E–LUBE uses the gradient descent algorithm, which is sensitive to the initialization,

in order to obtain the parameters in NN. Furthermore, the models in the second group use the

heuristic swarm optimization algorithm which can synthesize the initialization results using

an adequate population size. Thus, the models in the second groups should have elicited better

performances in theory unless the random initializations of E–LUBE are perfect. Moreover, within

the second group, IO–E–LUBE has a larger CP value than PO–E–LUBE, with low levels of PINAW

and PINRW. It is just the influence of the cost function that makes such a difference. The main
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object of the interval prediction is a larger CP value along with a narrow width. Therefore, the IO

should have an advantage

(3) Incorporation of CEEMDAN in the hybrid models is improved the performances significantly

because of the denoising preprocessing. In most cases, the CPs are larger than 80% and

90%, which means more than 80% target load values are covered by the predicted intervals.

Furthermore, in some cases, the CPs can reach 100%, such as the second and third quarters

in NSW, and the second quarter in QLD. Such accuracy can ensure that the power supply

meets the demand. Compared with the original LUBE and E–LUBE, the hybrid model we

proposed (CEEMDAN–IO–E–LUBE) elicited a significant improvement in the elicited results of

interval prediction.

(4) With a larger width coefficient, the CPs of our models were almost satisfactory. The smallest

CP was more than 70%, and the largest CP was able to reach 100%, which is perfect for interval

prediction in STLF. However, the PINAW and PINRW were almost all larger than 10, and even

reached the value of 20 in second quarter in QLD. But the proposed model still outperforms

other models.

(5) Considering the accumulated width deviation (AWD), for a larger width coefficient, the proposed

model (CEEMDAN-IO-E-LUBE) has a smaller AWD compared with other benchmark models

in most cases. According to the definition of AWD, a smaller AWD means more target values

fall into the predicted intervals. For the results in which the target values are over the bounds,

the deviations are relatively small. In this experiment, the AWDs of the proposed model are

satisfactory in most case. For some cases, the AWDs is even closed to 0, which means almost all

target load values fall into the predicted intervals. According to these predicted intervals, load

dispatch will be more rational.

 

Figure 5. Performance of different samples with the width coefficient 0.05.
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Table 2. Results of different models with α = 0.05 for sample in New South Wales (NSW) and Tasmania (TAX).

Models Criterion (%)

NSW
First Quarter Second Quarter Third Quarter Fourth Quarter

CP PINAW PINRW AWD CP PINAW PINRW AWD CP PINAW PINRW AWD CP PINAW PINRW AWD

LUBE 72.66 12.13 12.90 0.030 89.22 17.20 18.01 0.020 75.88 16.97 17.14 0.022 72.36 12.23 13.85 0.085
E-LUBE 72.75 12.00 12.92 0.037 86.08 17.37 18.20 0.023 74.00 16.14 16.41 0.025 87.17 12.10 13.58 0.021

PO-E-LUBE 79.67 11.80 12.58 0.010 92.42 17.25 17.83 0.007 82.75 14.98 15.29 0.049 89.75 11.26 12.86 0.033
IO-E-LUBE 83.00 11.72 12.50 0.032 96.50 17.19 17.68 0.003 83.42 14.96 15.25 0.115 90.25 10.62 11.65 0.015

CEEMDAN-E-LUBE 83.25 11.67 12.36 0.021 97.83 17.10 17.90 0.002 91.25 14.75 15.28 0.007 92.08 10.48 11.23 0.022
CEEMDAN-PO-E-LUBE 86.08 11.52 12.24 0.099 97.83 16.66 17.26 0.002 98.33 14.47 14.99 0.005 93.92 10.46 10.97 0.043
CEEMDAN-IO-E-LUBE 93.58 11.36 12.24 0.016 100.00 16.27 16.66 0.000 100.00 14.18 15.72 0.000 95.75 8.28 10.26 0.007

TAX
First Quarter Second Quarter Third Quarter Fourth Quarter

CP PINAW PINRW AWD CP PINAW PINRW AWD CP PINAW PINRW AWD CP PINAW PINRW AWD

LUBE 88.93 20.84 21.25 0.624 77.68 18.75 19.57 0.533 96.88 18.93 19.21 0.021 94.85 28.33 28.71 0.015
E-LUBE 94.17 20.63 21.10 0.020 78.08 17.45 18.97 0.127 97.58 18.17 18.80 0.008 96.00 25.04 25.52 0.016

PO-E-LUBE 94.75 20.12 20.63 0.009 78.50 16.55 17.61 0.136 97.67 17.94 18.45 0.011 97.25 25.13 25.48 0.007
IO-E-LUBE 95.92 20.29 20.65 0.007 78.33 14.38 15.74 0.257 97.42 17.96 18.60 0.006 97.33 24.67 24.98 0.008

CEEMDAN-E-LUBE 98.50 19.98 20.36 0.005 85.83 16.64 16.93 0.032 99.00 17.35 18.82 0.001 98.92 23.48 23.69 0.002
CEEMDAN-PO-E-LUBE 99.00 19.92 20.31 0.001 87.92 16.01 16.30 0.034 99.75 17.11 18.56 0.001 99.58 24.79 25.04 0.002
CEEMDAN-IO-E-LUBE 99.08 19.98 20.30 0.006 88.17 17.25 17.75 0.046 99.25 17.37 19.04 0.001 99.25 24.20 24.49 0.001
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Table 3. Results of different models with α = 0.05 for sample in Queensland (QLD) and Victoria (VIC).

Models Criterion (%)

QLD
First Quarter Second Quarter Third Quarter Fourth Quarter

CP PINAW PINRW AWD CP PINAW PINRW AWD CP PINAW PINRW AWD CP PINAW PINRW AWD

LUBE 94.82 19.47 20.12 0.012 96.58 20.86 21.75 0.004 92.78 19.58 20.11 0.002 99.33 19.69 20.47 0.001
E-LUBE 95.50 17.29 18.38 0.007 96.50 20.96 21.54 0.003 95.17 19.32 19.85 0.001 99.33 19.10 19.80 0.000

PO-E-LUBE 98.83 17.58 18.42 0.001 96.67 20.57 21.07 0.003 97.83 19.07 19.54 0.001 99.75 19.38 20.24 0.001
IO-E-LUBE 99.17 17.03 17.77 0.006 96.78 20.18 21.86 0.003 97.42 18.79 19.27 0.002 99.75 18.53 19.04 0.000

CEEMDAN-E-LUBE 99.75 18.17 18.88 0.000 99.83 20.69 21.60 0.000 99.92 19.32 19.86 0.000 99.83 19.49 20.10 0.000
CEEMDAN-PO-E-LUBE 99.50 18.26 18.97 0.001 99.83 20.19 21.71 0.000 99.92 19.42 19.93 0.000 99.83 19.26 19.80 0.000
CEEMDAN-IO-E-LUBE 99.25 16.96 17.67 0.002 100.00 20.17 21.66 0.000 99.92 19.17 19.53 0.000 99.92 18.42 18.90 0.001

VIC
First Quarter Second Quarter Third Quarter Fourth Quarter

CP PINAW PINRW AWD CP PINAW PINRW AWD CP PINAW PINRW AWD CP PINAW PINRW AWD

LUBE 70.85 9.77 10.62 0.042 90.25 17.85 18.37 0.351 83.42 13.61 14.29 0.013 70.22 7.58 7.90 0.018
E-LUBE 72.08 9.41 10.29 0.020 91.92 16.66 17.41 0.127 85.33 13.25 14.02 0.008 73.67 7.04 7.87 0.016

PO-E-LUBE 76.00 9.41 10.40 0.009 92.75 15.82 16.34 0.136 85.17 13.09 14.12 0.011 76.50 6.94 7.84 0.007
IO-E-LUBE 78.83 9.18 10.18 0.007 95.75 16.61 17.32 0.257 85.58 12.82 13.91 0.006 76.25 7.04 8.22 0.008

CEEMDAN-E-LUBE 78.42 9.29 10.72 0.005 98.83 15.40 16.33 0.032 88.17 12.58 13.30 0.001 80.92 7.23 8.01 0.002
CEEMDAN-PO-E-LUBE 82.67 9.22 10.43 0.001 98.75 17.12 18.12 0.034 91.67 12.70 13.57 0.001 80.50 7.07 7.93 0.002
CEEMDAN-IO-E-LUBE 83.25 9.21 10.13 0.002 99.92 17.00 18.01 0.036 94.08 13.17 13.79 0.001 82.08 6.90 7.78 0.001
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4.4. Experiment II: Cases with Smaller Width Coefficients

In this experiment, we set the interval width coefficient α = 0.025, which means we set the

output to be [0.925 × X, X, 1.025 × X] for a single sample in the training process of the neural network.

With a narrow width coefficient, the lower and upper bounds were closer to the target value in the

training process, which can provide more valuable information in practice. However, a narrow bound

might lead to the increase of CP. Thus, a smaller width coefficient requires the models to have better

predictive properties. The results of this simulation are shown in Tables 4 and 5, and in Figure 6.

Correspondingly, the following conclusions can be drawn:

(1) As Table 4 and Figure 6 show, the distinction of the models is similar to experiment I. The CPs of

the original LUBE and E–LUBE are the smallest among the models in our simulation, and our

proposed model CEEMDAN–IO–E–LUBE elicits the best performance

(2) For some benchmark models in this experiment, with a narrow bound in the training process,

the performance was not adequately satisfactory. As the cases of the third quarter in NSW denote

and the second quarter in TAX show the CPs of LUBE and E–LUBE are close to 50%, which is not

conclusive in practice. However, based on the hybrid mechanism we proposed, the performances

were improved significantly. The minimum CP values of CEEMDAN–IO–E–LUBE can reach 70%,

and the maximum is close to 100%, such as in the third quarter in QLD. Such results show that

the predicted intervals can better cover actual electricity demand data and economize spinning

reserve in power grid.

(3) With a smaller width coefficient, the CPs decreased while the PINAW and PINRW are reduced.

For the benchmark models, the results mostly display smaller CPs and larger PINAW or PINRW.

However, the proposed model is able to demonstrate larger CPs with smaller PINAW and PINRW

values, which is equivalent to a good performance in interval prediction. In some cases, the CP

values were larger than 95% with PINAW and PINRW values less than 10. In such cases, the CPs

are satisfactory and the widths of the PIs are most appropriate.

(4) In terms of AWD in this experiment, the proposed model still showed a relatively small

AWD compared with other benchmark models, which means the proposed model has a better

performance at predicted accuracy. Compared with experiment I, the AWDs in this experiment

are bigger. For a smaller width coefficient, the predicted interval will be narrower, which means

there will be more target points falling outside the intervals. In some situations, a narrower

predicted interval is necessary. The proposed model is able to provide a better performance on

the condition of the requirement of a narrower predicted interval of electric load.

4.5. Comparisons and Analyses

According to the comparison of the above two experimental results, the width coefficient has

a significant influence on performance, as shown in Figure 7. From one perspective, for most models,

a coefficient with a larger width may lead to a larger and more satisfactory CP value, but the index

about the width of PI may not be desired. From another perspective, for most models, a narrower

width coefficient may elicit the desired PINAW and PINRW values, but the CP is not good enough.

Considering such a situation, the proposed models alleviate the contradiction. Even though the

CP value of the proposed model will decline when the width coefficient decreases, comprehensive

performance is satisfactory. In some exceptional cases, owing to the complexity and instability of the

datasets, the performance of the proposed models is not adequate, as the description in Figure 3 shows.
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Figure 6. Performance of different samples with the width coefficient 0.025.

Figure 7. Interval prediction plot of partial samples in NSW.
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Table 4. Results of different models with α = 0.025 for sample in NSW and TAX.

NSW
First Quarter Second Quarter Third Quarter Fourth Quarter

CP PINAW PINRW AWD CP PINAW PINRW AWD CP PINAW PINRW AWD CP PINAW PINRW AWD

LUBE 58.20 6.56 6.92 0.360 70.66 9.08 9.60 0.163 44.85 7.82 8.75 0.531 60.42 7.52 11.83 0.158
E-LUBE 58.58 5.76 6.50 0.286 70.83 9.23 9.82 0.120 46.92 7.60 8.26 0.276 60.75 7.37 12.10 0.146

PO-E-LUBE 67.50 6.00 6.51 0.061 73.67 8.41 8.79 0.027 52.33 7.82 8.64 0.515 76.08 5.66 6.60 0.126
IO-E-LUBE 67.67 5.91 6.51 0.138 73.08 8.58 8.38 0.062 51.00 7.75 8.02 0.231 77.42 5.44 6.07 0.161

CEEMDAN-E-LUBE 69.50 5.80 6.67 0.149 82.50 7.77 8.07 0.057 67.25 7.89 8.65 0.049 77.92 5.37 5.91 0.120
CEEMDAN-PO-E-LUBE 69.75 5.83 6.13 0.118 94.25 7.84 8.86 0.095 86.75 7.28 7.75 0.084 85.67 4.93 5.40 0.069
CEEMDAN-IO-E-LUBE 70.50 5.68 6.24 0.085 96.17 7.96 8.60 0.002 87.25 7.48 7.64 0.014 86.67 4.63 5.13 0.083

TAX
First Quarter Second Quarter Third Quarter Fourth Quarter

CP PINAW PINRW AWD CP PINAW PINRW AWD CP PINAW PINRW AWD CP PINAW PINRW AWD

LUBE 70.61 11.52 11.83 0.187 45.78 8.84 10.80 0.534 76.87 9.78 10.85 0.126 72.31 12.61 14.04 0.120
E-LUBE 72.08 10.14 10.39 0.163 51.42 8.67 9.25 0.774 74.67 9.32 9.86 0.073 76.58 12.83 13.65 0.097

PO-E-LUBE 73.08 10.29 11.00 0.099 53.50 7.65 8.87 0.188 76.42 9.04 9.33 0.085 78.75 12.11 12.40 0.050
IO-E-LUBE 74.67 9.65 10.32 0.090 52.67 8.50 9.40 0.278 79.08 8.90 9.75 0.137 78.25 12.60 13.27 0.065

CEEMDAN-E-LUBE 88.08 10.11 10.51 0.036 72.75 9.27 9.71 0.179 90.00 8.53 8.84 0.011 86.25 11.57 11.79 0.018
CEEMDAN-PO-E-LUBE 88.08 10.04 10.24 0.019 72.00 8.57 8.82 0.194 91.50 8.60 8.89 0.009 90.75 11.56 11.84 0.013
CEEMDAN-IO-E-LUBE 88.08 9.78 10.21 0.015 74.25 8.46 8.97 0.171 93.42 8.79 8.30 0.013 91.08 11.49 11.84 0.018
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Table 5. Results of different models with α = 0.025 for sample in QLD and VIC.

Models Criterion (%)

QLD
First Quarter Second Quarter Third Quarter Fourth Quarter

CP PINAW PINRW AWD CP PINAW PINRW AWD CP PINAW PINRW AWD CP PINAW PINRW AWD

LUBE 70.55 9.94 10.82 0.158 72.75 10.44 10.98 0.069 73.36 9.97 10.35 0.075 85.39 9.83 10.76 0.009
E-LUBE 74.75 9.29 10.00 0.024 74.42 10.13 10.43 0.065 77.58 9.57 9.87 0.058 87.17 9.77 10.01 0.008

PO-E-LUBE 80.42 8.71 9.10 0.064 78.08 10.82 11.27 0.049 80.75 9.67 9.89 0.045 90.42 10.11 10.57 0.008
IO-E-LUBE 86.83 8.26 9.71 0.309 78.33 10.16 11.61 0.072 80.50 9.50 9.75 0.046 89.17 9.66 10.11 0.003

CEEMDAN-E-LUBE 82.75 9.54 9.88 0.156 94.50 10.79 11.23 0.012 91.58 9.70 10.18 0.003 93.42 9.25 10.20 0.004
CEEMDAN-PO-E-LUBE 91.00 8.72 9.01 0.085 95.58 10.54 11.01 0.008 98.75 9.77 10.21 0.002 95.17 9.07 9.39 0.003
CEEMDAN-IO-E-LUBE 91.42 8.41 8.77 0.048 95.25 10.13 11.17 0.004 99.75 9.64 9.91 0.002 95.33 8.52 8.84 0.003

VIC
First Quarter Second Quarter Third Quarter Fourth Quarter

CP PINAW PINRW AWD CP PINAW PINRW AWD CP PINAW PINRW AWD CP PINAW PINRW AWD

LUBE 50.16 5.39 6.83 0.882 70.03 8.25 8.80 0.537 68.91 6.55 7.03 0.622 50.06 3.55 4.10 0.486
E-LUBE 56.75 5.10 6.59 0.923 72.33 8.10 8.63 0.596 70.67 6.63 7.04 0.692 50.00 3.47 4.14 0.575

PO-E-LUBE 62.75 4.83 5.77 0.312 76.25 8.34 8.91 0.081 70.67 6.71 7.31 0.609 50.25 3.53 4.04 0.127
IO-E-LUBE 66.75 4.63 5.47 0.805 79.25 7.82 8.79 0.131 70.00 6.54 7.03 0.013 49.50 3.44 5.22 0.226

CEEMDAN-E-LUBE 60.00 4.75 5.28 0.433 75.83 8.04 8.31 0.059 73.42 6.64 7.04 0.038 54.50 3.68 4.45 0.262
CEEMDAN-PO-E-LUBE 65.83 4.64 5.35 0.123 83.50 8.66 9.27 0.127 78.92 6.98 7.32 0.033 53.25 4.00 4.93 0.473
CEEMDAN-IO-E-LUBE 68.25 4.56 5.64 0.081 94.08 7.93 8.23 0.044 85.75 6.18 6.70 0.043 69.33 3.44 4.45 0.161
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5. Discussion

In this section, we discuss some factors which may have an effect on the performances of the

proposed models in order to improve the practicability of our hybrid model. The factors involved

mainly include the features of the datasets and the setting of the hyperparameters in the algorithm.

5.1. Dataset Features

The feature and quality of the datasets have a significant effect on the performance of the

prediction models. In STLF, the data shows periodicity and volatility. The periodicity is attributed

to the regularity in the actual use of electricity, and the volatility is attributed to the randomness and

occasional use of electricity. Therefore, the linear component and the non-linear components operate

simultaneously during the forecasting of the model. Specifically, some outliers may have a negative

effect in the process of prediction.

As Figure 4 shows, the dataset features of the different samples are various. According to the

boxplot theory, the data points that are larger than Q3 + 1.5IQR or smaller than Q1 − 1.5IQR are

regarded as outliers. For the first and fourth quarters in NSW, and the first and fourth quarters in VIC,

the distributions of the datasets displayed a number of outliers. Additionally, the results of the models

shown in Tables 2–5 demonstrate that the model performance of the sample whose distribution is not

desired may be unremarkable. These outliers are important factors that lead to such results, even if the

CEEMDAN model has been applied in data preprocessing.

Another set of data features that may cause an unsatisfactory result are the non-linear

characteristics of the dataset. It is well known that in traditional research, the prediction of regular and

linear time series are easy to reach the desired accuracy. However, unstable and non-linear time series

are more difficult to forecast in spite of the applications of novel models, such as the case of machine

learning algorithms. A method used to measure the instability of data series is the recurrence plot

(RP) [56]. A recurrence plot is an advanced technique of non-linear data analyses. It is the visualization

(or a graph) of a square matrix in which the matrix elements correspond to those times at which the

state of the dynamical system recurs. Stationary systems will deliver homogeneous recurrence plots,

and unstable systems cause changes in the distribution of recurrence points in the plot, which is visible

and identifiable by the brightened areas. In this study, we selected VIC as an example to verify the

influence of instability. Before drawing the recurrence plot, the time delay and the dimension of the

embedded matrix were determined by the C–C method. Depending on the “CRP Toolbox” released by

Norbert Marwan [57], the recurrence plot of the four datasets of the different quarters in VIC is shown

in Figure 8.

−

Figure 8. Cont.
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Figure 8. Recurrence plot of the samples obtained from the four quarters in VIC.

As the figure shows, the second and third quarters in VIC display relatively homogeneous

distributions, while other quarters display isolated brightened areas. According to the theory of the

recurrence plot, the instabilities of the former two samples are weaker, and the other two samples

reveal stronger instabilities. Furthermore, we can conclude that the performances of the forecasting

models shown in Table 5 are remarkable when the dataset is relatively stable, while the unstable

dataset results in an unsatisfactory performance, which cannot be avoided.

5.2. Sensitivity Analysis

The hybrid model proposed in this study is based on the structure of the neural network shown

in Figure 1. In the hybrid model, the hyperparameter is a key factor that influences the model’s

performance. In most studies on machine learning, the setting of the hyperparameters always depends

on trials or empirical knowledge. This is the reason why many experimental results cannot be

reproduced and why a considerable amount of time and energy is spent on tuning parameters

in industrial applications. At present, there is no absolute method to determine the values of all

types of hyperparameters. In this study, we also mainly relied on experiences and trials to set the

hyperparameters, as shown in Table 1. Among the hyperparameters, several parameters need to

be highlighted.

The first one is the number of salp populations in MOSSA. In the swarm heuristic optimization

algorithm, the number of swarms is usually a vital factor that needs to be considered. A larger

population might provide a larger probability to reach the best individual, but exceeding the desired

population may cause an increase in the complexity of the algorithm, which is related to the number of

algorithmic iterations. Considering the number of parameters in our proposed model, the population

numbers that ranged from 10 to 100 with a step of 10 were evaluated. As a result, we selected the

number 50 as the population number (as shown in Table 6) after comprehensively considering the time

complexity and model performance.

The second type of hyperparameters that need to be emphasized are the upper and lower bounds

of individual parameters in MOSSA. In our simulation, the datasets were normalized within the range

of −1 to 1 in order to avoid the influence of dimension and improve the training speed. Therefore,

the absolute value of weights and thresholds of neural networks in the training process will not be

too large. As Table 6 shows, we set the initial upper and lower bounds to 2 and −2 according to

the experiment trials. Excessive range limits may increase the difficulty of searching for the best

parameters with a limited number of iterations. Furthermore, the algorithm that operates based on a

small range may not elicit the optimal solution.
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Table 6. Sensitivity analysies results of different hyper-parameters.

Metrics
The Number of Salp Populations in MOSSA

10 20 30 40 50 60 70 80 90 100

CP 95.21 95.32 97.01 96.66 98.69 98.33 98.50 97.85 97.46 98.10
PINAW 17.34 17.63 13.52 13.89 13.10 13.02 13.64 14.05 13.82 13.72
PINRW 18.28 18.05 14.18 14.35 13.84 13.75 14.36 14.92 14.67 14.53
Time(s) 425 452 472 524 548 593 668 734 869 10.45

Metrics
The Initial Threshold of Parameters

[−0.5, 0.5] [−1, 1] [−2, 2] [−3, 3] [−5, 5]

CP 97.65 98.84 99.00 98.26 96.89
PINAW 14.36 12.82 12.80 13.12 13.68
PINRW 15.32 13.46 13.42 13.94 14.36
Time(s) 433 450 461 453 484

5.3. Consistency Analysis

In this section, in order to verify the consistency of our proposed model, new datasets involving

latest dates are introduced. In addition, several basic compared models including long short-term

memory (LSTM) networks, function fitting neural networks (FITNET), and least squares support

vector machine (LSSVM) which have been proved to provide good results for STLF are employed to

verify the advantages of the proposed model.

We chose NSW and VIC randomly as examples. The new datasets are collected from 1 January

2018 0:30 am to 30 May 2018 0:00 am and the total number of samples is 7152. The samples in the

second quarter in NSW and the fourth quarter in VIC are chosen as compared datasets. According to

the results shown in Table 7, the proposed model also has a good performance on the new datasets.

The CP is almost 90%, which means the predicted interval can cover 90% target load value. The

consistency of the proposed can be guaranteed, and the change of the dates of dataset will not risk

altering the final conclusion.

Considering different basic models for STLF, we chose three widely used artificial intelligence

models (LSTM, FITNET, and LSSVM) as comparators to verify the superiority. As shown in Table 7,

the proposed models provide a larger CP and smaller PINAW compared with the other three models.

In particular, LSTM reveals desired narrower PINAW and PINRW, but the CPs are not satisfactory.

Moreover, the proposed model outperformed than other basic models in AWD. Therefore, the proposed

approach have a distinct advantage in the performance of short-term power load interval forecasting.

It is able to provide a satisfactory CP and restrict the interval width at the same time, which is the most

important aspect of superiority of the proposed model.

Table 7. Consistency analysis results of some basic models and new datasets.

Models
NSW-2018-NEW VIC-2018-NEW

CP PINAW PINRW AWD Time(s) CP PINAW PINRW AWD Time(s)

Proposed 89.58 15.51 16.58 0.023 593.29 89.08 11.50 12.66 0.065 564.55
LSSVM 78.67 15.95 17.64 0.677 495.32 86.67 12.16 13.01 0.026 486.85
FITNET 72.08 16.25 17.24 0.043 405.52 74.33 11.66 12.95 0.087 300.72
LSTM 44.00 5.47 5.92 0.382 1199.04 59.83 5.28 5.79 0.250 947.78

Models
NSW-2017-2Q VIC-2017-4Q

CP PINAW PINRW AWD Time(s) CP PINAW PINRW AWD Time(s)

Proposed 100.00 16.27 16.66 0.000 543.20 82.08 6.90 7.78 0.001 526.39
LSSVM 94.42 16.67 17.12 0.038 409.24 71.58 7.60 10.59 0.097 435.50
FITNET 94.33 15.83 17.29 0.012 402.12 74.33 7.88 8.94 0.076 504.31
LSTM 70.67 6.01 6.37 0.101 753.60 65.33 3.10 3.55 0.248 732.21



Energies 2018, 11, 1561 26 of 30

On the other hand, in order to obtain a better performance and accuracy, the proposed approach is

more complex. The algorithm with higher complexity often takes longer in practice. As Table 7 shows,

compared with LSSVM and FITNET, the execution times of the proposed model are longer, which is

the major disadvantage. However, with the development of hardware, the operational capability of

computer can be improved, and the execution time can be reduced. Furthermore, as a kind of artificial

intelligence technique, the fine-tuning of hyper-parameters in the proposed model will take time,

which is a common situation in academic and industrial fields.

5.4. Further Research Prospect

This paper proposes a hybrid interval prediction model to predict the power load intervals.

Compared with other basic models, this model has achieved good results in terms of coverage, interval

width, and deviation error of the prediction interval. The model can obtain relatively high coverage

under the condition of relatively narrow interval width, and the interval obtained can accurately

reflect the changes of future short-term power load and provide more accurate and reliable support for

power dispatch. On the other hand, for datasets with more complex changes and non-linear features,

although the performance of proposed model is improved compared with the traditional models, it

is still not ideal in some cases. For the unfavorable results caused by the characteristics of datasets,

we may explore the following two aspects in future:

(a) Finding and improving prediction methods that can better solve the non-linear characteristics of

electrical loads, and improving the performance of predictive models in complex situations;

(b) Fully analyzing the relevant characteristics in the power load data, selecting different models

for different characteristics, and using ensemble learning to integrate and enhance the

prediction results.

6. Conclusions

STLF is the basic work of power system planning and operation. However, the power load has

regularity and certain randomness at the same time, which increases the difficulty of desired and

reliable STLF. Moreover, compared with the prediction of specific points, interval prediction may

provide more information for decision making in STLF. In this study, based on LUBE, we developed

a novel hybrid model including data preprocessing, a multi-objective salp algorithm, and E–LUBE.

In theory, such a hybrid model can reduce the influence of noise in a dataset and the parameter

optimization process is more effective and efficient in E–LUBE.

In our proposed approach, we used a multi-objective optimization algorithm to search for the

parameters of the neural network and reconstructed the cost function with double interval criterions

instead of point criterions (such as MSE) in the traditional method. As Tables 2–5 show, by comparing

it with traditional methods, the proposed approach provides a higher CP and a lower interval width at

the same time, which makes up for the lower CP and higher interval width of traditional methods.

In order to verify the performance of the proposed model and validate the impact of the constituent

components in a hybrid model, we collected 16 samples involving four states using four quarters in

Australia, and set several model comparisons in experiments

Furthermore, according to the comparison and analyses results, the conclusions are summarized

as follows: (a) an efficient data preprocessing method was applied herein. Depending on the

decomposition and reconstruction, this method can significantly improve the model performance

in STLF. (b) Compared to the traditional prediction models based on neural networks, the newly

developed E–LUBE method has an advantage in terms of comprehensive performance in interval

prediction. It can be validated that the context layer with the information of the former hidden layer

can improve model performance. (c) The introduction of the novel multi-objective algorithm MOSSA

optimized the process of parameter search. The new cost function was based on a double-objective

interval index that outperformed the traditional single-objective point error index (such as MSE) in

interval prediction. (d) For STLF based on the E–LUBE mechanism, the width coefficient is an important
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factor. A larger width coefficient may lead to satisfactory CPs, and a smaller width coefficient may

result in a satisfactory interval width. Therefore, in practice, the decision maker needs to adjust the

width coefficient for specific demands. For example, we chose the width coefficient with a minimum

interval width at the same time that the minimum demand of CP was guaranteed. (e) No matter

how complex is the dataset, the proposed model always provides the best performance compared to

benchmark models. However, because of the complexity of the data itself, some of the performance is

not remarkable. In general, the proposed model provided a desired result in most cases.

Furthermore, in a power grid operator the proposed method has a strong practical application

significance. A highly accurate forecasting method is one of the most important approaches used

in improving power system management, especially in the power market [58]. In actual operation,

for secure power grid dispatching, a control center has to make a prediction for the subsequent

load. According to historical data, the dataset for the predictive model involved can be constructed.

The results of the predictive model are able to provide the upper bound and lower bound of the load

at some point in the future. Depending on the upper bound and lower bound, the control center

can adjust the quantity of electricity on each charging line. Therefore, such a hybrid approach which

can provide more accurate results can ensure the safe operation of the power grid and improve the

economic efficiency of power grid operation.
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Abbreviation

STLF Short-term load forecasting

PI Prediction intervals

PIW Prediction intervals width

PINAW PI normalized average width

ENN Elman neural network

SNR Signal to noise ratio

IMF Intrinsic mode function

Nstd Noise standard deviation

Pop_num Total population number

Maxiter The maximum number of iterations

CEEMDAN The complete ensemble empirical mode decomposition with adaptive noise

NN Neural networks

CP Coverage probability

LUBE Lower upper bound estimation

PINRW PI normalized root-mean-square width

Dim Individual parameter dimension

EMD Empirical mode decomposition

MSE Mean square error

NR Number of realizations

RP Recurrence plot

MOSSA Multi-objective salp swarm algorithm

E-LUBE Lower upper bound estimation with ENN
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