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ABSTRACT Accurate short-term prediction of the natural gas load is of great significance to the operation
and allocation of the pipeline network. Because the short-term natural gas load has obvious nonlinearity and
randomness, the traditional regression model is difficult to predict accurately. Therefore, this paper proposes
a hybrid prediction model that integrates an improved whale swarm algorithm (IWOA) and relevance vector
machine (RVM). In addition, empirical mode decomposition (EMD), approximate entropy (ApEn), and C-C
method are introduced to aid the calculation. In this paper, the IWOA is used to test the four functions and
compared with the other five algorithms. The results show that the convergence accuracy and convergence
speed of the new algorithm are higher than other algorithms, indicating that it has better global optimization
ability. Second, the IWOA-RVMmodel is used to predict the supply data of two natural gas stations in Anhui
Province, China. The prediction results are compared with the five algorithms including RBFNN, GRNN,
ELMANNN, LSSVM, and SMOSVM. The results show that: 1) through the test of four functions, IWOA
has better ability to jump out of local optimum, has higher optimization performance, and the calculation
speed is at a medium level and 2) compared with other models, the IOWA-RVMmodel has higher prediction
accuracy when the amount of data is larger or smaller, but the calculation time is relatively long, but the
calculation time is acceptable in engineering.

INDEX TERMS Short-term, natural gas demand, prediction, relevance vector machine, improved whale
swarm algorithm.

I. INTRODUCTION

According to BP’s World Energy Outlook in 2018, global
energy demand is still showing a clear upward trend, and
renewable energy is growing at the fastest rate. However,
by 2040, although the proportion of primary energy demand
has declined, oil, natural gas and coal still account for about
70% of the energy market, of which natural gas is growing
much faster than oil and coal. At present, the global energy
structure is undergoing a transition period. Natural gas, as a
clean and efficient energy source, plays an important role in
the energy system.

The associate editor coordinating the review of this manuscript and
approving it for publication was Haruna Chiroma.

Nowadays, with the popularity of big data, many
enterprises use the collected data to forecast and analyze.
Especially for natural gas system, accurate demand forecast-
ing can not only make the national energy macro-control
more reasonable, but also make the management of pipeline
network more effective. Especially in the context of rapid
development of blockchain technology, accurate predic-
tion is helpful to implement scheduling [1]. Moreover,
accurate prediction is also crucial for the management of
long-distance pipelines [2]. Natural gas demand forecasting
can be divided into long-term forecasting, medium-term fore-
casting, short-term forecasting and ultra-short-term forecast-
ing according to the time length. Because gas load forecasting
has a high degree of nonlinear characteristics and prediction
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is more difficult, more scholars pay more attention to related
research.
Natural gas load forecasting models can be divided into

two types: traditional models and intelligent models. There
are many well-known statistical models, including RW
model, TC model, ARX model [3], OLS model, ARIMA
model, SARIMAX model [4], ARIMAX model [5], and
hybrid prediction model based on ARMA and GA [6].
Although these statistical models are easily to realize, they
still have inherent disadvantages, that is, they are theoreti-
cally linear. They are not only difficult to deal with complex
non-linear problems, but also difficult to obtain satisfactory
prediction performance.
However, in recent years, more and more scholars began

to study intelligent algorithms, such as fuzzy theory mod-
els [7], support vector machine (SVM) models [8], [9], and
neural network (NN) [10]–[15]. Among them, SVM model
has remarkable prediction performance, especially in the case
of small amount of data [16]. However, the SVM model
also faces many challenges, which greatly affect the fore-
casting accuracy, such as the selection of the kernel function
and its embedded parameters, the determination of appro-
priate penalty parameters and the suitable cross-validation
process [9]. Therefore, in [17], an improved SVM algo-
rithm is proposed, which is based on the combination of
FNF (false neighbors filtered) and SVRLP (support vec-
tor regression local predictor). Compared with FNF-SVRLP
model, the prediction accuracy of SVRLP model, autore-
gressive moving average model and artificial neural net-
work model is lower. In [18], a structure-calibrated support
vector regression (SC-SVR) model is proposed to forecast
the gas demand. Compared with least squares SVM model
and dynamic back propagation neural network (BPNN), this
model has the lower error. Reference [19] presents a gas
demand model which combines multi-neural network and
multi-wavelet transform. Compared with the combination of
three NN forecasting model without MT and any single NN
forecast model, the proposed forecasting model has higher
accuracy. In [20], a coupled gas demand forecasting model
combines genetic algorithm and NN is developed. The input
variable parameters of this coupling model are rainfall, rela-
tive humidity, temperature and wind speed. The results show
that this prediction model has good accuracy in indexes of
absolute deviation and correlation coefficient. In [21], authors
proposed an appropriate combinational method of improved
BPNN and real-coded GA for Shanghai’s gas demand pre-
diction. The prediction results based on this combination
method are superior to several different combination fore-
casting models. In [22], authors proposed a hybrid model
which is a wavelet BPNN optimized by GA and overcomes
the problems of the traditional BP algorithm. In [23], authors
take the gas demand in Szczecin (Poland) as an example, and
presents the forecasting results using multilayer perceptron
model (MLP) among ANNs. In the process of forecasting,
some major factors including weather and calendar are input
into the prediction model. The prediction results indicate

that the MLP 22-36-1 model has good prediction accuracy.
In [24], authors uses a novel fractional time delayed grey
model with grey wolf optimization algorithm to forecast the
natural gas demand in Chongqing, China, it shows this new
model has better prediction than other reference models.

These research papers abovementioned enrich the contents
of STNGLP, not only including new forecastingmethodology
proposed, but also containing novel hybrid or combined mod-
els proposed. However, these proposed artificial intelligent
models and relevant hybrid or combined models also suffer
from several embedded shortcomings, such as difficult to
determine suitable network structure [25], time consuming,
low convergent speed, and trapping into local optimal solu-
tion [26]. Therefore, looking for novel forecasting models is
still an important issue. Although intelligent algorithms have
more advantages than traditional algorithms, they also have
some unavoidable disadvantages, such as long computation
time, slow convergence speed, easy to converge prematurely,
etc. Therefore, the optimization prediction model is still a hot
research topic.

In order to obtain higher accuracy and stability at the same
time, this paper proposes a novel hybrid prediction system
which includes EMD, AE and PSR, RVM, and IWOA. This
system consists of three modules: the whole algorithm mod-
ule, the improved whale optimization algorithm module, and
the evaluation module. EMD technique is applied to decom-
pose data containing imfs and residue. In order to shorten
the calculation time and improve the calculation efficiency,
the entropy values of imf and residual error are calculated by
acoustic emission method. CC method is used to calculate
the ED and ODT of each Nimf in the data. According to the
ED and ODT of each Nimf in the data, the phase space of
each Nimf is reconstructed. After verifying the validity of
the proposed IWOA model, a hybrid prediction RVM-IWOA
(i.e. RVM optimized by IWOA) model is established and
applied to the prediction of natural gas demand in the whole
algorithm module. IWOA is tested on four test functions and
compared with five optimization algorithms in the improved
whale optimization module: COA, FOA, IGOA, IPSOA and
WOA. Finally, the evaluation module including evaluation
criteria is used to evaluate the prediction results.

The rest of this paper is arranged as follows.
Sections 2 describe in detail the methods used in this study.
Sections 3 give a novel hybrid forecast system detailly.
Moreover, effective model checking method is described in
Section 4. Three experimental results and their corresponding
analysis are given in Section 5. The discussions are intro-
duced in Section 6. Finally, the last Section 7 presents the
conclusions of this paper.

II. THEORIES

A. RELEVANCE VECTOR MACHINE (RVM)

In 2000, Micnacl E. Tipping proposed a sparse probability
model similar to SVM (Support Vector Machine), called
relevance vector machine, which is a new supervised learning
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method. Comparedwith SVM, the biggest advantage of RVM
is that it greatly reduces the computational complexity of
the kernel function and overcomes the shortcoming that the
selected kernel function must satisfy Mercer condition.
For a given input set {xn}Nn=1 and corresponding output set

{tn}
N
n=1, the RVM model can be defined as follows:

tn =

N
∑

i=1

wiϕi (x)+ w0 + ξn (1)

where w is the weight vector, w = (w0,w1,. . .wN ); ζn is
assumed to be independently sampled from a zero-mean
Gaussian distribution; ϕi(x) is the nonlinear basis function.

Assuming that tn is independent of each other, the like-
lihood estimation of training sample set {xn, tn}

N
n=1 can be

written as follows:

p
(

t|w, σ 2
)

=
(

2πσ 2
)−0.5N

exp
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It will be analytically convenient to introduce a Gaussian
prior distribution for w:

p (w|α) =

N
∏

i=0

N
(

wi|0, α
−1
i

)

(3)

where α is the N +1 dimensional hyperparameter vector.
According to the Bayesian principle, the posterior proba-

bility distribution of all unknown parameters is:

p
(

w|t, α, σ 2
)

= (2π )
−(N+1)

2

∣

∣

∣

∑

∣

∣

∣

−0.5
gexp

{

−(w− µ)T
∑−1
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(4)

where the posterior covariance matrix is:
∑

=
(

σ−2ψTψ + A
)−1

µ = σ−2
∑

ψT t

A = diag (α0, α1, x, αN ) (5)

The formulas for calculating the hyperparameter α and
variance σ 2 are:

αnewi =
γi

µ2
i

(6)

(

σ 2
)new

=
‖t − ψµ‖2

N −
N
∑

i=0
γi

(7)

where µi is the i-th posterior average weight; Nii is the i-th
diagonal element of the posterior covariance matrix; N is the
number of sample data; γi = 1 − αiψi,i.

Given a new input value x∗, the probability distribution of
the corresponding output follows a Gaussian distribution, i.e.:

p
(

t∗|t, αMP, σ
2
MP

)

= N
(

t∗|y∗, σ
2
∗

)

(8)

The average predicted value is:

y∗ = µTϕ (x∗) (9)

B. IMPROVED WHALE OPTIMIZATION

ALGORITHM (IWOA)

In 2016, Mirjalili proposed WOA [27], a new heuristic opti-
mization that mimics humpback whale hunting. In WOA,
each humpback whale represents a viable solution. In marine
activities, humpback whales have a special way of hunting
called bubble-net hunting. The traditional WOA algorithm
includes three models: encircling prey, bubble-net attacking
method and search for prey. The specific theories are as
shown in literature [28]–[30].

Compared to other optimization algorithms, WOA is sim-
ple to operate and requires fewer parameters to adjust, only
A and C. The adaptive change strategy of search vector A
enables WOA to have a good balance of development and
exploration capabilities and better local optimal avoidance.
However, it is precisely because of the random mechanism of
A thatWOAhas the disadvantages of slow convergence speed
and low convergence precision. Moreover, in WOA, it is
unreasonable to set the probability of contraction surrounding
mechanism and the spiral position update (A and C) to 0.5.
Therefore, this paper optimizes the traditional WOA to over-
come the original shortcomings. The steps of the improved
WOA algorithm are:

Step 1: Adaptive search surrounding mechanism and

spiral position

The search surrounding mechanism is a rough search, and
the spiral position is a detailed search within the current
range. In the original WOA, the values of both mechanisms
were 50%. However, in the early stage of the search, a broader
rough search should be performed to cover the entire search
space as much as possible to determine the overall direction
of the optimal solution. In the later stage, a more precise
search should be performed on a smaller scale and as close
as possible to the true optimal solution to improve search
efficiency. The adaptive search surrounding mechanism and
the spiral position are defined as:

pt+1 =

{

p0 t = 1

pta+ pmin t > 1
(10)

p
′

t = 1 − pt (11)

a = e
[

−30 × (t/Tmax)
S
]

(12)

where p0 is the initial probability of the adaptive contraction
surrounding mechanism; pt and pt+1are probabilities of con-
traction surrounding mechanism of generation t-th and gen-
eration (t+1)-th, respectively; pmin is the minimal probability
of contraction surrounding mechanism, pt ’ is the probability
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FIGURE 1. Overall forecasting model.

of updating the spiral position of the t-th generation; t is the
current number of iterations; Tmax is the maximum iterations;
S = 2.

Step 2: Introducing jump behavior

In order to improve the search ability of WOA from var-
ious aspects, this paper introduces the jumping behavior of
whales. Although whales that are some distance away from
the true optimal solution may be subject to interference from
local optimal solutions, the fitness value will not change.
When the whale’s jumping behavior is introduced, the whale
tries to separate the current local optimum from the region by
randomly changing the position of the whale to reach a local
minimum.

The whale’s jumping behavior is achieved by: after N iter-
ations of the WOA, if the difference in the objective function
value of the optimal whale is less than the present value
between the two iterations, then some whales are randomly

selected for jumping. The formula is:

Xi (t + 1)

=Xi(t)+c (1−2rand) (max (Xall)−max (Xall))
/

2 (13)

where c is the jumping coefficient; Xall are all whale sets.

C. EMD, APEN AND C-C METHOD

This paper introduces EMD, ApEn and C-C method to assist
in the implementation of the model. Among them, EMD
can handle static signals and non-stationary signals, and
has strong adaptive decomposition ability. Therefore, it has
been widely used in many fields such as electric power,
medicine, transportation and machinery. Its related theory
and implementation methods are shown in the literature [31].
ApEn is more common in engineering applications and is an
important nonlinear dynamic parameter proposed by Pincus
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TABLE 1. Pseudo code of IWOA algorithm.

for measuring the complexity of time series. The smaller
the sample data, the more stable the value. The approxi-
mate entropy is related to the complexity of the time series.

The greater the probability of generating a new pattern,
the more complex the time series, and the greater the entropy.
In the predictive model, ApEn is used to re-integrate the
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FIGURE 2. Data from two natural gas gate stations. (a) Lixin station; (b) Sanshibu station.

decomposed components and reconstruct the phase space of
the re-integrated components [32]. C-C method is used to
determine the optimal delay time and embedding dimension,
and then the original time series can be reconstructed in
phase space [33]. The prediction model architecture is shown
in Fig. 1.

D. ERROR EVALUATION

In order to quantitatively evaluate the validity and accuracy of
the new hybrid prediction model, RMSE (root mean square
error), MAE (mean absolute error) andMAPE (average abso-
lute error percentage) are considered respectively.

RSME =

√

√

√

√

N
∑

t=1

(

ŷ (t)−y (t)
)2
/N (14)

MAE =

√

√

√

√

N
∑

t=1

∣

∣ŷ (t)−y (t)
∣

∣/N (15)

MAPE =

(

N
∑

t=1

∣

∣

(

ŷ (t)−y (t)
)

/y (t)
∣

∣

)

/N (16)

where N is the total number of training or test set; ŷ
(t) and y (t) is the forecast value and the actual value,
respectively.

III. CASE STUDY

A. BASIC DATA

Data from Lixin (33.16, 116.19) and Sanshibu (31.86,
117.32) gas gate stations in Anhui Province, China are
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TABLE 2. Statistical indicators of two groups of data.

FIGURE 3. Convergence curves of six algorithms for four functions. (a) RF; (b) SF; (c) AF; (d) GF.

TABLE 3. The result comparison of four test functions by using CSA, AFSA, IGOA, IPSOA, WOA AND IWOA.

FIGURE 4. Prediction results of components of Lixin gate station training set. (a) Nimf 1; (b) Nimf 2; (c) Nimf 3; (d) Nimf 4.

collected in this paper. Lixin gate station has a small amount
of data. Its training set size is 336, covering 28 days, and
the test set size is 24, covering 2 days. The other set
of data is large, from Sanshibu gate station, the training

set size is 2040, covering 175 days, and the test set size
is 120, covering 10 days. The two groups of data are
shown in Fig. 2, and their statistical indicators are shown
in Table 2.
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FIGURE 5. Prediction results of components of Lixin gate station test set. (a) Nimf 1; (b) Nimf 2; (c) Nimf 3; (d) Nimf.

TABLE 4. Entropy of each component.

B. EXPERIMENTAL OBJECTIVE AND TOOL

This paper conducts two experiments for different objectives.
The first (experiment 1) is to test the improved WOA, which
includes convergence speed and calculation time. In this
paper, four functions are used to test the optimization perfor-
mance of the algorithms, the test functions include: Rastrigin
function (RF), Schaffer function (SF), Ackley function (AF)
and Griewank function (GF). The test results were compared
with the other five algorithms, including: whale optimiza-
tion algorithm (WOA), cat swarm algorithm (CSA), artificial
fish swarm algorithm (AFSA), improved genetic algorithm
(IGA), and improved particle swarm optimization algorithm
(IPSOA). In order to ensure fairness, the six algorithms use
the same experimental parameters, that is, the population
size is 16 and the maximum number of iterations is 50. The
specific parameters are shown in Appendix 1. In addition,

100 experiments are performed due to the randomness of the
algorithm in the calculation process.

The second (experiment 2) is to test the accuracy of
the prediction model, based on the data of the two gate
stations, and compare the prediction error with the other
five models, including: radical basis function neural network
(RBFNN), general regression neural network (GRNN), least
squares support vector machine (LSSVM), Elman neural
network (ELMANNN) and sequential minimal optimization
support vector machine (SMOSVM). In this experiment, con-
sidering the natural gas load has a high degree of nonlinearity
with time, the EMD method is used to decompose the data
into a series of imf and a residual trend term. In order to
make predictions more efficiently, the complexity of each imf
component and residual is evaluated by ApEn, and each imf
component is combined with one remainder according to the
calculation result of entropy. The parameters of EMD and
APEN are shown in Appendix 2.

Before making predictions, in order to reduce the impact
between different data dimensions, normalization is required
and denormalization is performed before the final prediction
results are generated. The formula is as follows:

xanor =
(ymax − ymin) (xbnor − xbnor min)

(xbnor max − xbnor min)
+ ymin (17)

where ymax and ymin is 1 and -1, respectively, xanor is the
data after normalization; xbnormax is the maximum value
before normalization; xbnormin is the minimum value before
normalization.

TABLE 5. Results of six algorithms for the test set of the lixin gate station (large amount of data).

TABLE 6. Results of six algorithms for the test set of the sanshibu gate station (small amount of data).
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FIGURE 6. Prediction results after data integration in Lixin gate station test set.

FIGURE 7. Prediction results of components of Sanshibu gate station training set. (a) Nimf 1; (b) Nimf 2; (c) Nimf 3; (d) Nimf 4.

All experiments are completed in MATLAB 2018. The
computer is a Windows 10 (64 bit) operating system. It is
configured as Intel Core at 2.60 GHz, i7 6700 processor, and
random-access memory at 32.00 GB.

IV. EXPERIMENT RESULTS AND DISCUSSIONS

A. EXPERIMENT 1 (ALGORITHM TEST)

Fig. 3 and Table 3 show the test results of these six algorithms
for the four functions. It can be seen that:
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FIGURE 8. Prediction results of components of Sanshibu gate station test set. (a) Nimf 1; (b) Nimf 2; (c) Nimf 3; (d) Nimf 4.

(1) The optimal solution of the four functions obtained by
the IWOA algorithm is closest to the true optimal solution,
and the error in the solution of the Schaffer function is less
than 0001.

(2) When the number of iterations is less than 20,
the IPSOA and WOA algorithms can converge, but the
obtained optimal solutions are still very different from the real
optimal solutions. In this case, they can be considered to have
premature convergence problems. The other four algorithms
do not have this problem.

(3) IWOA’s calculation time for the four functions is
shorter than CSA and AFSA, but longer than IGA, IPSOA
andWOA, indicating that the calculation speed is at amedium
level.

(4) The convergence curve of IWOA is steeper than that of
WOA, CSA, AFSA, IGA and IPSOA, and the convergence
accuracy is higher than the other five algorithms.

B. EXPERIMENT 2 (PREDICTION PERFORMANCE)

The data of Lixin gate station and Sanshibu gate station
are decomposed by EMD and ApEn methods. It can be
seen that the approximate entropy of each instrinsic mode
function (imf) component decreases with the decrease of the
frequency of the imf component, which indicates that the
complexity of the components from high frequency to low
frequency decreases, and the approximate entropy of some
adjacent imf components has little difference. Therefore,
in order to reduce the computational scale, the adjacent imf
components with little difference in approximate entropy are
merged to form new instrinsic mode function (Nimf), and the
results are shown in Table 4.

Fig. 4 and Fig. 5 show the training set and test set predic-
tion results of each part of the Lixin gate station after data
decomposition. Fig. 7 and Fig. 8 show the training set and
test set prediction results of each part of the Sanshibu gate
station after data decomposition. Tables 5-6 and Figs. 6, 9
summarize the error and correlation analysis of the test set
data of the Lixin gate station and the Sanshibu gate station
after integration. The following conclusions can be drawn:

(1) For the Lixin gate station, it can be seen from Figs. 4
(training set for Lixin gate station) and 5 (test set for Lixin

TABLE 7. Calculating time of gas load prediction in lixin gate station.

TABLE 8. Calculating time of gas load prediction in sanshibu gate station.

gate station) that the predicted results of the RBFNN are
more volatile than IWOA-RVM, ELMANNN, LSSVM, and
SMOSVM.

(2) It can be seen from Table 5 (test set for Lixin gate
station) and Table 6 (test set for Sanshibu gate station) that
IWOA-RVM has the smallest RSME,MAE andMAPE in the
six models, and has the largest PCC, indicating that the new
model can make more accurate predictions when the amount
of data is small or large.

(3) It can be seen from Fig. 7 (training set for Sanshibu gate
station) that the RBFNN has a severe deviation at some points
in the prediction of Nimf 1 and Nimf 4, while the GRNN
remains unchanged in the prediction of Nimfs 2-4. However,
it can be seen from Fig. 8 (test set for Sanshibu gate station)
that LSSVM, RBFNN and GRNN will remain unchanged in
the prediction of different data sets, that is, they are quite
different from the actual data.

C. DISCUSSION ON MODEL EFFICIENCY

From IV.B, it is concluded that the IWOA-RMV model has
higher prediction accuracy. This paper also needs to discuss

VOLUME 7, 2019 88227



W. Qiao et al.: Novel Hybrid Prediction Model for Hourly Gas Consumption in Supply Side

FIGURE 9. Prediction results after data integration in Sanshibu gate station test set.

TABLE 9. Test functions.

the efficiency of the model, because the computational
efficiency is also a very important factor in the predic-
tion. Tables 7 and 8 show the calculating time required
for the prediction of natural gas load at two gate stations.

It can be seen that the computating time of IWOA-RVM
model is much longer than that of the other five algo-
rithms, but this time (several hours) is acceptable in
engineering.
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TABLE 10. The parameters in 5.2.

V. CONCLUSIONS AND FUTURE WORK

This paper proposes a model that combines IWOA and RVM
for short-time gas demand prediction. The improved WOA
algorithm solves the problem of premature convergence of
the original WOA and can obtain the global optimal solution.
Through the algorithm test and the comparison of prediction
results, the following conclusions are drawn: (1) Through the
test of four functions, IWOA has better ability to jump out of
local optimum, has higher optimization performance, and the
calculation speed is at a medium level. (2) Compared with
other models, the IOWA-RVM model has higher prediction
accuracy when the amount of data is larger or smaller, but the
calculation time is relatively longer, but the calculation time
is acceptable in engineering.
From the research of this paper, it is found that although

the calculation time of the proposed algorithm can meet
the engineering requirements, it is still necessary to focus
on improving the computational efficiency in future work.
In addition, although the model proposed in this paper has
higher prediction accuracy in the case of larger and smaller
data amount, it does not discuss themost suitable data amount
range, which is also the future work content.

APPENDIX

APPENDIX 1

See Table. 9.

APPENDIX 2

See Table. 10.
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