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ABSTRACT Clustering is an important data analysis technique, which has been applied to many practical

scenarios. However, many partitioning based clustering algorithms are sensitive to the initial state of cluster

centroids, may get trapped in a local optimum, and have poor robustness. In recent years, particle swarm

optimization (PSO) has been regarded as an effective solution to the problem. However, it has the possibility

of converging to a local optimum, especially when solving complex problems. In this paper, we propose

a hybrid PSO-K-means algorithm, which uses the Gaussian estimation of distribution method (GEDM) to

assist PSO in updating the population information and adopts Lévy flight to escape from the local optimum.

The proposed algorithm is named a GEDM and Lévy flight based PSO-K-means (GLPSOK) clustering

algorithm. Firstly, during initialization, a few particles are initialized using the cluster centroids generated

by K-means, while other particles are randomly initialized in the search space. Secondly, GEDM and

PSO are selected with different probability to update the population information at different optimization

stages. Thirdly, Lévy flight is adopted to help the search escape from the local optimum. Finally, the greedy

strategy is carried out to select the promising particles from the parents and the newly generated candidates.

Experimental results on both synthetic data sets and real-world data sets show that the proposed algorithm

can produce better clustering results and is more robust than existing classic or state-of-the-art clustering

algorithms.

INDEX TERMS Data clustering, K-means, particle swarm optimization, Gaussian estimation of distribution

method, Lévy flight.

I. INTRODUCTION

In recent years, data mining is widely used to find useful pat-

terns and knowledgewhich are hidden inside Large-scale data

from different sources [1]. Clustering is one of the research

hotspots in the field of data mining. It is an unsupervised

learning method and aims to group the objects based on the

The associate editor coordinating the review of this manuscript and

approving it for publication was N. Ramesh Babu .

principle of maximizing the intra-cluster similarity and mini-

mizing the inter-cluster similarity [2]. In the past few decades,

various clustering algorithms [3]–[6] have been proposed.

So far, clustering has been used in a number of applications,

such as image segmentation [7], bioinformatics–gene expres-

sion data analysis [8], and object recognition [9]. Partitioning

based clustering algorithms, such as K-means [10], Fuzzy

C-means (FCM) [6], and K-Harmonic Means (KHM) [11]

are widely used because of their simplicity and efficiency.
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However, these algorithms also present some serious incon-

veniences, i.e., they are sensitive to the initial state of cluster

centroids, may get trapped in a local optimum, and have

poor robustness. The above inconveniences often lead to

unsatisfactory clustering results. Since clustering tasks can

be modeled as optimization problems, it is a natural choice to

solve the clustering problems with optimization algorithms.

So far, many intelligent optimization algorithms such as par-

ticle swarm optimization (PSO) [12], [13], ant colony opti-

mization (ACO) [14], cuckoo search algorithm (CSA) [15],

genetic algorithm (GA) [16], and differential evolution (DE)

[17] have been regarded as effective solutions to clustering

problems.

Among all the optimization algorithms, PSO has received

much attention owing to its simplicity and competitiveness

in finding a better solution [18]. In 2015, Liang et al. [19]

proposed an adaptive clustering-based PSO, which consid-

ered the population topology and individual behavior control

together to balance local and global search in an optimization

process and proved the superiority of the algorithm. Further-

more, among the clustering approaches based on optimization

algorithms, PSO has proven to be a strong competitor [20].

For example, the PSO-based clustering technique was firstly

proposed in [21], where the initial swarm was fed by the

clustering results of K-means. In 2011, Izakian and Abraham

[22] proposed a clustering algorithm based on FCM and PSO,

which applied FCM to the particles in each generation to

improve the fitness of each particle. However, as with almost

all optimization algorithms, the basic PSO algorithm also has

the possibility of converging to a local optimum, especially

when solving complex multimodal problems. In addition,

most PSO-based clustering algorithms have the problem of

low convergence efficiency.

K-means is one of the most classic clustering algorithms

and is widely used for its simplicity and low computation

cost. PSO is an effective global optimization algorithm and

has a strong ability to search for solutions. To take full

advantage of both algorithms and solve the above problems,

we propose a hybrid PSO-K-means algorithm, which adopts

the Gaussian estimation of distribution method (GEDM) and

Lévy flight to improve the performance of the algorithm. The

proposed algorithm is named a GEDM and Lévy flight based

PSO-K-means (GLPSOK) clustering algorithm. Firstly, dur-

ing initialization, a few particles are initialized using the

cluster centroids generated by K-means to ensure that there

are some relatively good particles in the initial swarm, while

other particles are randomly initialized in the search space to

ensure the diversity of the initial swarm. Secondly, we adopt

GEDM to assist PSO in updating the population information.

At the early stage of the optimization process, the GEDM is

selected with a high probability to estimate a better evolu-

tion direction using promising particles. The purpose is to

accelerate the convergence speed. At the later stage of the

optimization process, PSO is used with a high probability to

make full use of the great local search ability of PSO. The pur-

pose is to improve the convergence accuracy. Thirdly, when

the search is stagnant, the Lévy flight strategy is adopted

to generate stagnation disturbance, which can increase the

diversity of the population to help the search escape from the

local optimum. Finally, the greedy strategy is carried out to

select the promising particles from the parents and the newly

generated candidates according to their fitness.

The rest of this paper is organized as follows. Section II

reviews the related work of data clustering based on PSO.

Section III includes the problem definition of clustering.

In Section IV, the proposed clustering algorithm GLPSOK is

described. Section V describes the experimental results and

analysis. In Section VI, we conclude this work and indicate

directions for future research.

II. RELATED WORK

In the past few decades, researchersmade significant progress

in PSO-based data clustering. Depending on the research

method, the research carried out in this respect can be divided

into two categories. The first category is the hybrid clustering

approaches, which combine PSO with traditional clustering

algorithms. The second category is the effective PSO variants

for data clustering.

The goal of the hybrid clustering approaches is to take

full advantage of PSO and traditional clustering algorithms

to get better clustering results. As early as 2003, Merwe

and Engelbrecht [21] proposed the first PSO-based clustering

algorithm, denoted as HPSOK-means in our paper, where the

initial swarmwas fed with the clusters generated byK-means.

In 2008, Ahmadyfard andModares [23] proposed a clustering

algorithm based on PSO and K-means. In this paper, PSO

was adopted for global search at the initial stages of the

optimization process and K-means was used to achieve faster

convergence to an optimum solution when around global

optimum. A hybrid algorithm based on PSO, ACO and k-

means for cluster analysis was proposed in [24] to solve

nonlinear partitioning problems in data clustering. In order

to process the large-scale gene expression data generated

by microarray experiments, Deepthi and Thampi [25] pro-

posed a clustering algorithm, which adopted PSO to search

for the best subset and then used k-means as a wrapper

algorithm to evaluate the obtained subsets. In 2019, Xu et

al. [26] proposed an accelerated two-stage particle swarm

optimization (ATPSO) for clustering not-well-separated data.

In ATPSO, K-means is utilized to accelerate particles conver-

gence during the population initialization. Recently, Liu et al.

[27] proposed an effective algorithm based on K-means and

randomly occurring distributed delayed PSO (RODDPSO)

to group patients from emergency center. To avoid falling

into a local optimum, this algorithm introduced randomly

occurring time-delays to the velocity updating model using

a distributed form. Yang et al. [28] proposed a hybrid clus-

tering algorithm (PSOKHM) combining K-Harmonic Means

(KHM) with PSO and the experimental results indicated the

superiority of the PSOKHM algorithm. A hybrid clustering

algorithm based on KHM, PSO, and GA was proposed in

[29], where PSO was combined with another evolutionary
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algorithm such as GA to enhance the standard PSO. Bouyer

and Hatamlou [1] proposed a new clustering algorithm which

combined KHM with an Improved Cuckoo Search (ICS) and

PSO where ICS was used to help PSO escape from the local

optimum. An improved FCM clustering algorithm based on

PSO was proposed in [30], in which, firstly, each object

in the data set was distributed on the basis of distance to

meet the constraints of FCM. And then, PSO was adopted to

search for a global optimal solution. Zhao et al. [4] proposed

an alternate PSO-based adaptive interval type-2 intuitionistic

Fuzzy C-means clustering algorithm (A-PSO-IT2IFCM) and

used it to solve a problem of image segmentation. With all,

most hybrid clustering algorithms only combine PSO with

traditional clustering algorithms in a simple way. Because

PSO also has the possibility of converging to a local opti-

mum, this kind of approaches cannot completely solve the

problems that the traditional clustering algorithms possess,

like being easily trapped in local optima and having low

accuracy.

In recent years, researchers have proposed various PSO

variants for data clustering. In 2008, Alam et al. [31] pro-

posed a new algorithm called Evolutionary Particle Swarm

Optimization (EPSO), which was based on the evolution of

swarm generations for clustering. The swarm attempted to

dynamically update itself to optimal positions during each

iteration. In 2010, Szabo et al. [32] proposed a Modified

Particle Swarm Clustering (mPSC) algorithm on the basis

of Particle Swarm Clustering (PSC). This work modified

the metaphor of natural social order to decrease the input

parameters of the system and particles velocity’s memory.

The purpose of this paper is to reduce the computational

complexity of PSC, but Szabo has acknowledged that this

improvement is not significant. A version of PSC-based algo-

rithm was proposed by Yuwono et al. [33], in which the

rapid centroid estimation (RCE) was adopted to simplify the

update rules of PSC for clustering. In this algorithm, which

is denoted as PSC-RCE in this paper, each particle represents

the centroid of a cluster, and all particles form a solution of the

problem. By introducing New Substitution Strategy, Particle

Reset, Swarm Strategy, andWhite Noise Update Scheme, this

algorithm improves the efficiency of the clustering process

and could better approximate the global optimal solution.

In general, the PSO variants for data clustering can reduce

the possibility of getting trapped in local optima. However,

this kind of algorithms also has some problems. For example,

in PSO, the update of the population mainly depends on the

current global optimal solution and the individual histori-

cal optimal solution, which often leads to low convergence

efficiency at the early stage of the search and a significant

decrease in population diversity at the later stage of the

search.

In summary, although clustering algorithms based on PSO,

have emerged endlessly, none of them can simultaneously

solve all the three problems of premature convergence, low

convergence efficiency and low clustering accuracy in a sat-

isfactory manner.

III. PROBLEM DEFINITION

Clustering is an unsupervised learning method that aims to

organize each data point in the data set into the corresponding

cluster. It is based on the principle of maximizing the intra-

cluster similarity and minimizing the inter-cluster similarity.

For a given data set χ = {xi}
N
i=1 , xiǫR

D, where N is the

number of data points and D is the dimension of the data to

be clustered, K-means clustering partitions it into K clusters
{

Cj
}K

j=1
by minimizing the sum of the intra-cluster variances

defined as Eq.(1). K-means seeks better solutions by alter-

nately optimizing cluster centroids and the assignment of data

points to clusters.

εsum =
∑K

i=1

∑

x∈Ci

∥

∥x− µi

∥

∥

2
(1)

µi =
1

|Ci|

∑

x∈Ci
x (2)

where µi is the centroid of the cluster Ci, x are objects that

belong to the cluster Ci.

In the context of clustering, the proposed GLPSOK algo-

rithm is used to optimize the cluster centroids. A single

particle represents K cluster centroid vectors. That is, each

particle X t (t = 1, 2, . . . S, where S is the population size) is

constructed as follows:

X t = [C t
1,C

t
2, . . . ,C

t
K ] (3)

C t
k = [M t

k,1,M
t
k,2, . . . ,M

t
k,D] (4)

where C t
k refers to the k-th cluster centroid vector of the

particle X t , M
t
k,d is the d-th dimensional position of the

centroid C t
k , K is the number of clusters, D is the dimension

of the data to be clustered. For example, considering a search

space with K = 3 and D = 3, the particle [2.4, 2.7, 0.3, 1.8,

0.2, 0.8, 2.8, 2.9, 0.4] encodes the centroids [2.4, 2.7, 0.3],

[1.8, 0.2, 0.8] and [2.8, 2.9, 0.4]. For a more general example,

Fig.1 shows the encoding of a solution that is formed by K

centroids, where D = 3. Therefore, a swarm represents a

number of candidate clustering results for the current data

vectors.

A variety of validity metrics have been proposed as the

objective functions of clustering algorithms, such as sum of

Euclid Distance (SED) [34], Mean Squared Error (MSE) [1],

and Jm-index[35]. In this paper, SED has been adopted as

the fitness function of GLPSOK following the suggestion of

Kaufman [34]. For each particle X t , its fitness function SED

is defined as follows:

SED =
∑K

i=1

∑

x∈Ci

∥

∥x− µi

∥

∥ (5)

where µi refers to the centroid vector of cluster Ci within

particle X t , x are objects belonging to the cluster Ci.

IV. PROPOSED GLPSOK ALGORITHM

A. POPULATION INITIALIZATION

For most PSO-based clustering algorithms, two initialization

methods [36] are often adopted. The first method randomly

locates all initial particles throughout the search space. The
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FIGURE 1. Particle representation.

other one randomly chooses K objects from the data set as

the cluster centroids to form the initial particles.

In this paper, a hybrid approach is used. The specific

description is as follows: 5% of the particles in the initial

swarm are initialized with the cluster centroids generated by

K-means. The remaining 95% of the particles are initialized

using the second method described above, i.e., K objects are

randomly chosen from the data set as the centroids to form

the initial particles.

We use K-means’ clustering results to initialize a few

particles in the initial swarm for two reasons: (1) Clustering

results of K-means may not be ideal, but they are much bet-

ter than the randomly obtained initialization results in most

cases. Therefore, this method can guarantee there are some

relatively good particles in the initial swarm; (2) K-means is

one of themost classic, simplest, andmost efficient clustering

algorithms. Initializing particles with the clustering results

of K-means can significantly improve the performance of

clustering at the cost of a little more computational time.

B. UPDATE RULES OF THE POPULATION

In basic PSO, the update of the population mainly depends

on the current global optimal solution and the individual

historical optimal solution, which will lead to low conver-

gence efficiency at the early stage of the search and a sig-

nificant decrease in population diversity at the later stage of

the search. GEDM, whose core is the weighted covariance

matrix, can make full use of promising particles to estimate

a better evolution direction and has the ability to avoid local

optimum. Therefore, we adopt GEDM to improve the perfor-

mance of the proposed clustering algorithm.

1) PARTICLE SWARM OPTIMIZATION

PSO was first proposed by Kennedy and Eberhart in 1995

[12]. This algorithm imitates the process of bird foraging and

guides optimization search by swarm intelligence generated

by cooperation and competition among particles in a swarm.

In PSO, the swarm of particles is considered as a set

of potential solutions, and the fly process of the particles

can be regarded as a search process [37]. Each particle

i is associated with two vectors, i.e., the position vector

X i = [xi,1, xi,2, . . . , xi,n] and the velocity vector V i =

[vi,1, vi,2, . . . vi,n]. Particles search for new solutions by con-

stantly adjusting their positions xi,d . For each particle, it can

remember its individual historical optimal position that it has

searched for, as pbest i, and the current global optimal position

found by the entire particle swarm, as gbest. When the two

optimal positions are found, each particle updates its velocity

and position according to Eq.(6) and Eq.(7), respectively.

vi,d (t + 1) = ω · vi,d (t) + c1 · rand1 · (pbest i,d − xi,d (t))

+c2 · rand2 · (gbestd − xi,d (t)) (6)

xi,d (t + 1) = xi,d (t) + vi,d (t + 1) (7)

where t represents the t-th iteration, d represents the d-th

dimension of the particle, ω is the inertia weight, c1 and c2
are the acceleration constants, rand1 and rand2 are random

numbers randomly distributed in the interval [0, 1].

It has been proved that the performance of PSO can be

improved if the inertia weight ω decreases linearly [38]. The

linearly decreased inertia weight is given as follows:

ω = ωmax − (ωmax − ωmin) ·
t

tmax
(8)

where ωmax and ωmin are the maximal and minimal weights,

respectively; t is the number of the current iteration, and tmax
is the number of the maximum iteration.

2) GAUSSIAN ESTIMATION OF DISTRIBUTION METHOD

The estimation of distribution algorithm (EDA) can estimate

the evolution direction of the promising population using

probabilistic model learning and sampling. Some studies

have shown that EDA has promising performance when deal-

ing with complex optimization problems [39] [40]. GEDM

is the core component of EDA. Therefore, it has been intro-

duced into PSO to estimate the better evolution direction

for the purpose of improving the convergence speed and

enhancing the local optimal avoidance ability of PSO. The

model of GEDM based on the weighted covariance matrix is

as follows.

ωi =
ln(m+ 1) − ln(i)

∑m
i=1 (ln(m+ 1) − ln(i))

(9)

X(t)mean =
∑m

i=1
ωi · X i(t) (10)

Cov(t) =
1

m− 1
·
∑m

i=1
(X i(t) − X(t)mean)(X i(t)

−X(t)mean)
T (11)

X i(t + 1) = Gaussian(X(t)mean,Cov(t))

+rand · (X(t)mean − X i(t)) (12)

In Eq.(9), m is the number of solutions that are selected as

the promising solutions to estimate the evolutionary direction.

The solution, which has a high rank, would have a great

weight when calculating the weighted mean using Eq.(10).

The set of {X1,X2, . . . ,Xm} represents the promising solu-

tions with fitness values ranked from high to low in Eq.(10).

In Eq.(11), Cov(t) is the weighted covariance matrix of the
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promising solutions. When using GEDM, the population

update its position using Eq.(12). The first addend of Eq. (12)

corresponds to Gaussian random walk.

In order to integrate the GEDM and PSO together effec-

tively, the GEDM and PSO are selected with different proba-

bilities at different stages of the optimization process. At the

early stage of the optimization process, the GEDM is selected

with a high probability to estimate the better evolution direc-

tion using promising particles, for the purpose of accelerating

the convergence speed. At the later stage of the optimization

process, PSO is used with a high probability to make full use

of its great local search ability, for the purpose of improving

the convergence accuracy of GLPSOK. The model of the

probability is as follows:

γ = γmax − (γmax − γmin) ·
t

tmax
(13)

where γmax and γmin are the maximal and minimal probabil-

ities to select GEDM, respectively.

3) STAGNATION DISTURBANCE STRATEGY

The Lévy process is a stochastic process of continuous time,

which was first proposed by the French scientist Paul Lévy.

Researchers have found that the behavior of many animals

in nature is consistent with the characteristics of the Lévy

process and have proposed the Lévy flight theory [41] based

on the Lévy process. Lévy flight is an optimal exploration

behavior to search for randomly distributed objects. It is

characterized by long-term random walks with small steps

and occasionally jumping with a large step, which is similar

to the global search and local search features in the intelligent

optimization algorithm. Thus, Lévy flight is widely used by

researchers in various optimization algorithms to generate

random step sizes. In this paper, once the search is stagnant,

the Lévy flight has been adopted to generate disturbance for

the purpose of escaping from the local optimum. The random

walk step of Lévy flight follows a heavy tail probability dis-

tribution, called Lévy distribution, whose exponential form is

as follows:

L(s) ∼ |s|−1−β , β ∈ (0, 2) (14)

where s is the random step size,β is the exponential parameter

that determines the shape of the Lévy distribution. The value

of β is inversely proportional to the generated random step

size. Because the exponential form of Lévy distribution is dif-

ficult to implement using MATLAB programming language,

the method of generating the Lévy flight random search path

proposed by Mantegna [42] is used to generate Lévy flight

random step size in this paper. The model of Lévy flight is as

follows:






















σu =







Ŵ(1 + β) · sin(π ·
β

2
)

Ŵ((1 + β)/2) · β · 2(β−1)/2







1/β

σv = 1

(15)

u ∼ N (0, σ 2
u ) (16)

v ∼ N (0, σ 2
v ) (17)

s =
u

|v|1/β
(18)

where s is the random walk step size, and Ŵ (x) is the gamma

function.

In the search process, the average fitness value of the

promising solutions is used to determine whether the search

is stagnant. If the average fitness value does not change in

three consecutive iterations, the search would be regarded

as stagnant. Once the search process is stagnant, in order

to escape from the local optimum and overcome the pre-

mature convergence of GLPSOK, the Lévy flight strategy

is adopted to generate disturbance to update the population

information. In addition, the stagnation disturbance strategy

can also increase the diversity of the population. The model

of stagnation disturbance strategy based on Lévy flight is as

follows:

X i(t + 1) = X i(t) + randn · Levy(X i(t)) (19)

Levy(X i(t)) = α · s · (gbest − X i(t)) (20)

where randn is a random number following a normal distri-

bution, and α ∈ [−1, 1] is a scale factor.

C. BOUNDARY HANDLING

Some works [43] have shown that boundary handling has a

significant impact on the performance of PSO algorithms,

especially when solving complex problems. In recent years,

many boundary handling schemas [36] have been proposed,

including those based on either periodic, absorbing, invisible,

damping, reflecting, random or zoom. Among the boundary

handling schemas above, the most fundamental and widely

used are random and absorbing schemas. A brief description

of these two fundamental schemas [43] is addressed below.

1) Random Schema: In general, this schema is adopted

as the default setting in PSO programs. If a particle flies

outside any dimension j of the search space, a random value

drawn from a uniform distribution between the lower and

upper boundaries of the dimension j would be assigned as

the corresponding component for the particle, as follows.

X t = [xt,1, . . . , xt,j−1,U (bl; bu), xt,j+1, . . . , xt,n] (21)

where t = 1, 2, . . . , S; S is the population size; bl is the

lower boundary of the j-th dimension of the t-th particle;bu is

the upper boundary of the j-th dimension of the t-th particle;

U (a; b) is a random value drawn from a uniform distribution

between a and b.

2) Absorbing Schema: In this schema, when a particle flies

outside any dimension j of the search space, the component

corresponding to the j-th dimension of the particle is assigned

the boundary of the dimension j.

X t = [xt,1, . . . , xt,j−1, bl (or bu), xt,j+1, . . . , xt,n] (22)

In this paper, the random schema is adopted to handle the

boundary of position to prevent particles from flying out of

the search space. And the absorbing schema is adopted to
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handle the boundary of velocity to prevent particles from

moving too fast.

Finally, the greedy strategy is adopted to select the promis-

ing particles from the parents and the newly generated can-

didates according to the fitness. This step can guarantee

the global convergence efficiency of the proposed GLPSOK

algorithm. This mechanism can fully retain the dominant

particles, which can improve the convergence speed of the

algorithm and obtain better clustering results.

The pseudo code of the proposed GLPSOK is described as

Algorithm 1.

Algorithm 1 The Procedure of GLPSOK

1. Initialize the population (see Sect.IV-A).

2. For each particle, assign each data point to its nearest

cluster Cj(j = 1, 2, . . .K );

3. Calculate the fitness of each particle using Eq.(5);

Update the values for both pbest and gbest;

4. If t < tmax
Execute step 5;

else

Output the gbest one X∗;

End if;

5. Calculate X(t)mean and Cov(t);

6. If the search stagnates

Population is updated using Eq.(19);

Else

If rand > γ

Population is updated using PSO;

Else

Population is updated using GEDM;

End if

End if

7. Boundary control;

8. For each newly generated candidate particle, assign

each data point to its nearest cluster Cj(j = 1, 2, . . .K );

9. Calculate the fitness of each generated candidates;

10. Greedy strategy is adopted to select the promising par-

ticles;

11. Update the values for both pbest and gbest;

12. t = t +1; Execute step 4;

D. COMPUTATION COMPLEXITY ANALYSIS

The computation complexity of GLPSOK is described below.

At the initialization stage (from Step 1 to Step 3), the compu-

tation complexity is O(N ·K ·D·NP), where N is the number

of data points to be clustered, K is the number of clus-

ters, D is the dimension of data points, NP is the number

of particles. The computation complexity of updating the

population (Step 5 and Step 6) is O(K 2·D2·NP), where the

computation complexity of computing X(t)mean and Cov(t)
is O(K ·D·NP) and O(K 2·D2·NP), respectively. The com-

putation complexity of stage from Step 7 to Step 11 is

O(N ·K ·D·NP). The computation complexity of stage from

Step 4 to Step 12 is O(K ·D·NP·(K ·D+N )·tmax), where tmax is

the maximum number of iterations of GLPSOK. LetMaxFEs

be the maximum number of the fitness evaluations of PSO-

based Clustering algorithm. Then, in GLPSOK, MaxFEs =

NP·tmax . Therefore, the overall computation complexity of

GLPSOK can be expressed as O(K ·D·(K ·D+N )·MaxFEs).

Table 1 summarizes the computation complexity of GLPSOK

and eight related algorithms, which are introduced in detail

in Section V as comparison algorithms. In non-PSO-based

clustering algorithms, such as K-means, MinMaxK-means,

and K-Multiple-Means (KMM),MaxFEs represents the max-

imum number of calculations of the objective function of

algorithms. In PSC-RCE, nm is the number of groups in the

swarm. In K-Multiple-Means,m is the number of sub-clusters

and t1 is the number of iterations of the sub-alternating sys-

tem. In the actual program running, the running time of PSO-

based clustering algorithms is much longer than that of non-

PSO-based clustering algorithms. The number of fitness eval-

uations is close or equal toMaxFEs for PSO-based clustering

algorithms and the number of calculations of the objective

function is usually much less than MaxFEs for non-PSO-

based clustering algorithms when the algorithm terminates

after satisfying the algorithm termination condition.

TABLE 1. The computation complexity of GLPSOK and eight related
algorithms.

V. EXPERIMENTAL RESULTS AND ANALYSIS

The proposed GLPSOK is a hybrid clustering algorithm

based on PSO and K-means. In order to evaluate its effective-

ness, we tested it on six synthetic data sets. For the purpose

of proving its superiority, we compared it with eight classic

or state-of-the-art algorithms on five real-word data sets.

The experiments were conducted using the Matlab R2016a

platform on a computer with 1.99 GHz Inter(R) Core (TM)

i7-8565U CPU, 16 GB memory and Windows 10 operating

system.

A. EXPERIMENTAL DATA SETS

Six synthetic data sets and five real-world data sets were

used to evaluate the proposed algorithm. The synthetic data

sets (S1 − S6), which are presented in [47], [48], are gen-

erated using the Gaussian model and shown in Fig. 2a-7a.

These data sets were selected for the following reasons: S1
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shows the asymmetric case where the clusters have differ-

ent shapes and different numbers of data points. S2 − S4
shows the approximately symmetric case where the clus-

ters take the similar shape and have the same numbers of

data points. The difference between S2, S3, and S4 is that

the distance between cluster boundaries decreases in order,

which can help in evaluating the performance of the pro-

posed algorithm on data sets with unclear boundaries. S5
and S6 have been selected to evaluate the performance of

the proposed algorithm on multi-dimensional data sets and

data sets with multiple clusters, respectively. The real-world

data sets (Iris, Wine, Glass, WDBC, and CMC) are obtained

from the famous UCI Machine Learning Repository [49].

These data sets have been selected because they come from

various domains and have been widely used in the field of

machine learning [1] [50]. The information of the synthetic

data sets and real-world data sets are described in Table 2 and

Table 3, respectively. A detailed description of all data sets

is shown below.

TABLE 2. The main properties of the selected synthetic data sets.

TABLE 3. The main properties of the selected real-world data sets.

1) SYNTHETIC DATA SET1 (n = 900, d = 2, k = 3)

This data set consists of three classes, those ones having

400,300, and 200 data points, respectively. These data points

are drawn from three different bivariate Gaussian distribu-

tions with the following parameters:

µ1 = (1, 0), µ2 = (0, 1), µ3 = (0, −1),
∑

1
=

[

0.09 0

0 0.09

]

,
∑

2
=

∑

3
=

[

0.04 0

0 0.04

]

where µi is the mean vector, and 6i is the covariance matrix.

The overall data distribution is shown in Fig.2a. Different

colors in the illustration represent different classes (ground

truths) of the data points.

FIGURE 2. The illustration of S1.

2) SYNTHETIC DATA SET2 (n = 1200, d = 2, k = 4)

This data set consists of four classes, each containing 300 data

points. These data points are drawn from four different bivari-

ate Gaussian distributions with the following parameters:

µ1 = (−1, 0), µ2 = (1, 0), µ3 = (0, 1), µ4 = (0, −1),
∑

1
=

∑

2
=

∑

3
=

∑

4
=

[

0.04 0

0 0.04

]

where µi is the mean vector, and 6i is the covariance matrix.

The overall data distribution is shown in Fig.3a.

FIGURE 3. The illustration of S2.

3) SYNTHETIC DATA SET3 (n = 1200, d = 2, k = 4)

This data set consists of four classes, each containing 300 data

points. These data points are drawn from four different bivari-

ate Gaussian distributions with the following parameters:

µ1 = (−1, 0), µ2 = (1, 0), µ3 = (0, 1), µ4 = (0, −1),
∑

1
=

∑

2
=

∑

3
=

∑

4
=

[

0.09 0

0 0.09

]

where µi is the mean vector, and 6i is the covariance matrix.

The overall data distribution is shown in Fig.4a.

4) SYNTHETIC DATA SET4 (n = 1200, d = 2, k = 4)

This data set consists of four classes, each containing 300 data

points. These data points are drawn from four different bivari-

ate Gaussian distributions with the following parameters:

µ1 = (−1, 0), µ2 = (1, 0), µ3 = (0, 1), µ4 = (0, −1),
∑

1
=

∑

2
=

∑

3
=

∑

4
=

[

0.16 0

0 0.16

]
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where µi is the mean vector, and 6i is the covariance matrix.

The overall data distribution is shown in Fig.5a.

FIGURE 4. The illustration of S3.

FIGURE 5. The illustration of S4.

5) SYNTHETIC DATA SET5 (n = 300, d = 3, k = 4)

This data set consists of four classes, and the mixing ratio

of the four classes is [0.1, 0.2, 0.3, 0.4]. These data points

are drawn from four different tripartite Gaussian distributions

with the following parameters:

µ1 = (0, 0, 0), µ2 = (3, 3, 2),

µ3 = (−3, 3, 1), µ4 = (0, −3, 3),

∑

1
=





1 0 0

0 1 0

0 0 1



,
∑

2
=





2 −1 0

−1 1 0

0 0 1



,

∑

3
=





2 1 0

1 2 0

0 0 1



,
∑

4
=





2 1 0

1 1 0

0 0 2





where µi is the mean vector, and 6i is the covariance matrix.

The overall data distribution is shown in Fig.6a.

6) SYNTHETIC DATA SET6 (n = 500, d = 2, k = 10)

This data set consists of ten classes, each containing 50 data

points. These data points are drawn from ten different bivari-

ate Gaussian distributions with the following parameters:

µ1 = (1, 1), µ2 = (1, 5), µ3 = (1, 9), µ4 = (5, 1),

µ5 = (5, 5), µ6 = (5, 9), µ7 = (9, 1), µ8 = (9, 5),

µ9 = (9, 9), µ10 = (13, 5),
∑

1
=

∑

2
= · · · =

∑

10
=

[

1.1 0

0 1.1

]

where µi is the mean vector, and 6i is the covariance matrix.

The overall data distribution is shown in Fig.7a.

FIGURE 6. The illustration of S5.

FIGURE 7. The illustration of S6.

7) IRIS DATA SET (n = 150, d = 4, k = 3)

Iris is one of the most widely used data sets in the pattern

recognition literature. This data set consists of three classes,

each of which contains 50 data points. Each class refers to a

type of Iris plant.

8) WINE DATA SET (n = 178, d = 13, k = 3)

M.Forina et al. [51] analyzed the chemical composition of

three wines grown in the same region of Italy, hoping to

determine the origins of the wines using chemical analysis.

Wine data set was the analysis result of this experiment which

determined the quantities of 13 constituents found in each of

the three types of wines.

9) GLASS IDENTIFICATION DATA SET (n = 214, = 9, k = 6)

In criminology, some research has been done on the clas-

sification of glass types, because the glass left at the crime

scene can be used as evidence. The Glass Identification Data

Set contains a collection of attributes that are useful for

categorizing glass types. The first attribute in the instances

(objects), the ID number from 1 to 214, is ignored in our

research, so the dimension of the data set is 9 instead of 10.
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10) BREAST CANCER WISCONSIN (Diagnostic) DATA SET (n

= 569, d = 30, k = 2)

This data set is denoted as WDBC in this paper. Features are

computed from a digitized image of a fine needle aspirate

(FNA) of a breast mass. They describe the characteristics of

the cell nuclei present in the image.

11) CONTRACEPTIVE METHOD CHOICE DATA SET (n =

1473, d = 9, k = 3)

This data set is a subset of the 1987 National Indonesia Con-

traceptive Prevalence Survey and is denoted as CMC in this

paper. The woman investigated is either not pregnant or not

sure if she is pregnant. The survey is to predict the current

contraceptive approach (no use, long-term methods, or short-

term methods) of a woman based on her demographic and

socio-economic characteristics.

B. COMPARISION ALGORITHMS

Our proposed algorithm is a hybrid clustering one based on

K-means and PSO. Therefore, we have selected several clas-

sic or state-of-the-art algorithms related to K-means or PSO

to carry out a convenient comparative analysis. In addition,

we also chose a classic hierarchical clustering algorithm,

named BIRCH. Below further details of the comparison algo-

rithms are briefly explained.

1) K-means is one of the most popular clustering

algorithms and the basis of the proposed GLPSOK algo-

rithm. This algorithm partitions the data set into K clus-

ters byminimizing the sum of the intra-cluster variances.

2) MinMaxK-means [45] is an effective K-means variant.

This algorithm assigns weights to the corresponding

clusters according to their variance and optimizes a

weighted version of the objective function of K-means.

Weights are learned together with the cluster assign-

ments through an iterative procedure.

3) K-Multiple-Means (KMM) [46] is the state-of-the-art

multi-prototype clustering algorithm based on K-means,

which organizes the data set with multiple sub-cluster

centroids into specified k clusters.

4) HPSOK-means [21] is the first work to apply PSO to

data clustering. This algorithm uses PSO to find the

centroids of specified k clusters, where the clusters gen-

erated byK-means are used to initialize the initial swarm

of PSO.

5) PSC-RCE [33] is a famous variant of particle swarm

clustering (PSC). This algorithm simplifies the update

rules of PSC, and significantly reduces computational

complexity by improving the efficiency of the particle

trajectories.

6) PSOLF [52] is an Enhanced Particle Swarm Optimiza-

tion with Lévy Flight for global optimization. In order

to prove that our proposed GLPSOK clustering can

outperform other partitioning based clustering methods

that are assisted by present state-of-art PSO variants,

we combine PSOLF and K-means in the same way used

in this paper. The combination of PSOLF and K-means

is denoted as PSOLFK in this paper.

7) PSOSCALF [53] is a state-of-the-art PSO variant. It is

based on sine cosine algorithm and Lévy flight for

solving optimization problems. Similarly, we combine

PSOSCALF and K-means in the same way used in

this paper for the purpose of proving that our proposed

GLPSOK clustering can outperform other partitioning

based clustering methods that are based on present state-

of-art PSO variants. The combination of PSOSCALF

and K-means is denoted as PSOSCALFK in this paper.

8) BIRCH [5] is a classic hierarchical clustering algorithm

which can typically find a good clustering result only

with a single data scan and improve the quality of the

clustering result further with a few additional scans.

The reason that we select BIRCH as the comparison

algorithm is to further prove that GLPSOK can achieve

superior performance over different types of clustering

algorithms.

C. PARAMETER SETTINGS

To ensure the fairness of the experiments, for all PSO-

based algorithms, the maximum number of fitness evalua-

tions (MaxFEs) was set to 30000. As for other algorithms

such as K-means, BIRCH, MinMaxK-means, and KMM, the

maximum number of calculations for their objective func-

tions was also set to 30000. K-means has no additional

parameters. Other parameters of the other seven comparison

algorithms were set as indicated in the corresponding original

papers or as default values. The parameter settings of the

eight algorithms are shown in Table 4. In order to avoid

experimental deviations, each algorithm was run 30 times on

each data set independently.

TABLE 4. Parameter setting.

D. EVALUATION METRIC

In order to evaluate and compare the performance of the

proposed algorithmwith the other six comparison algorithms,

four metrics were selected. The first metric is SED as defined

in Eq.(5). The other three metrics are Normalized Mutual
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Information [54], F-measure [1] and Accuracy [54]. Next,

these metrics are described.

1) NORMALIZED MUTUAL INFORMATION (NMI)

Suppose C represents the set of classes obtained from

the ground truth and C ′ represents the set of clusters

obtained from the algorithm. Their mutual information mea-

sure MI(C,C
′
) is defined as follows:

MI (C,C ′) =
∑

ci∈C,c′j∈C
′

p(ci, c
′
j) · log2

p(ci, c
′
j)

p(ci) · p(c′j)
(23)

where p (ci) and p
(

c′j

)

are the probabilities that an object

randomly selected from the data set belongs to the class ci

and cluster c′j, respectively; and p
(

ci, c
′
j

)

is the probability

that an object randomly selected from the data set belongs to

ci and also belongs to c
′
j. In our experiments, NMI is defined

as follows:

NMI (C,C ′) =
MI (C,C ′)

max(H (C),H (C ′))
(24)

whereH (C) andH
(

C ′
)

are the entropy of C and C ′, respec-

tively; NMI ranges from 0 to 1. NMI = 1 if the C and C
′
are

identical; and NMI= 0 ifC and C
′
are mutually independent.

2) F-MEASURE

Precision and recall are two metrics that have been widely

used in information retrieval and statistics. It is desirable that

the precision and recall are as high as possible. However,

in some cases, the two metrics contradict to each other.

F-measure is an approach to consider precision and recall

together. In clustering, the higher the F-measure is, the better

the clustering performance is. Formally, each class i (as given

by the ground truth of the input data set) is regarded as the set

of ni instances desired for a query; each cluster j (obtained

from the algorithm) is regarded as the set of nj instances

retrieved from a query; nij represents the number of instances

of class i within cluster j. For each class i and cluster j,

F-measure (F), precision (p), and recall (r) are defined by

means of the following equations:

F =
∑

i

ni

n
· maxj {F(i, j)} (25)

F(i, j) =
(b2 + 1) · p(i, j) · r(i, j)

b2 · p(i, j) + r(i, j)
(26)

p(i, j) =
nij

nj
(27)

r(i, j) =
nij

ni
(28)

In Eq.(26), b is assigned 1 to keep equal weights for precision

and recall.

3) ACCURACY (AC)

Given an object xi, let si and ri be the ground truth of xi
and the cluster label obtained by algorithms, respectively. The

definition of AC is as follows:

AC =

∑n
i=1 δ(si,map(ri))

n
(29)

where n is the number of total objects; δ(x, y) is the delta

function that equals 1 if x = y, 0 otherwise; and map (ri) is

the permutation mapping function which maps each cluster

label ri to the equivalent ground truth.

E. RESULTS ON SYNTHETIC DATA SETS

In this section, the experimental results of applying the pro-

posed algorithm GLPSOK on six synthetic data sets are

described.

TABLE 5. Results of GLPSOK on synthetic data sets.

Table 5 shows the overall experimental results (including

the mean and standard deviation (SD) of F-measure and

AC) of the proposed algorithm on six synthetic data sets.

The proposed algorithm was run independently 30 times on

each data set. From the table we can see that the proposed

algorithm achieves good clustering results on all synthetic

data sets, where the F-measure and AC on all data sets are

greater than 0.92, on data set 3 are greater than 0.98, and on

data set 1 and data set 2 are even greater than 0.99.

In addition, Fig.2b, Fig.3b, Fig.4b, Fig.5b, Fig.6b, and

Fig.7b illustrate the clustering results of the proposed algo-

rithm on six synthetic data sets, respectively. Each color in

each figure corresponds to a cluster. Since we only care about

which data points belong to the same cluster and do not care

what color is used to represent a cluster, we have unified the

color representation of the clustering results and ground truth

of each data set to more intuitively observe the clustering

performance. From the figures, we can see that the proposed

algorithm can achieve good clustering results.

F. RESULTS ON REAL-WORD DATA SETS

In this section, we test the performance of GLPSOK on five

real-world data sets from the UCI Machine Learning Repos-

itory and compare it to eight comparison algorithms in terms

of four evaluation metrics, namely, SED, NMI, F-measure,

and AC. For each data set, we ran each algorithm 30 times

independently. Tables 6-10 show the statistical results (Mean

and standard deviation (SD)) obtained by all algorithms on

data set Iris, Wine, Glass, WDBC, CMC, respectively. The

best results are shown in bold.

Table 6 shows the experimental results on data set Iris.

From this table we can see that GLPSOK outperforms the
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TABLE 6. Statistical results obtained by nine algorithms on data set Iris in 30 independent runs.

TABLE 7. Statistical results obtained by nine algorithms on data set Wine in 30 independent runs.

TABLE 8. Statistical results obtained by nine algorithms on data set Glass in 30 independent runs.

TABLE 9. Statistical results obtained by nine algorithms on data set WDBC in 30 independent runs.
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TABLE 10. Statistical results obtained by nine algorithms on data set CMC in 30 independent runs.

FIGURE 8. Box plots of SED, NMI, F-measure and AC obtained by nine algorithms on data set Iris with 30 independent runs.

FIGURE 9. Box plots of SED, NMI, F-measure and AC obtained by nine algorithms on data set Wine with 30 independent runs.

FIGURE 10. Box plots of SED, NMI, F-measure and AC obtained by nine algorithms on data set Glass with 30 independent runs.

other eight algorithms for all evaluation metrics. In addi-

tion, the standard deviation of experimental results obtained

by GLPSOK is very small, which proves that the proposed

algorithm is stable on this data set. Table 7 shows the exper-

imental results on data set Wine. For metrics F-measure

and AC, the proposed algorithm outperforms all other eight

algorithms. For metric SED, PSOSCALFK achieves the

best results, slightly better than our proposed algorithm.

For metric NMI, HPSOK-means achieves the best results,

slightly better than our proposed algorithm. Table 8 shows the
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FIGURE 11. Box plots of SED, NMI, F-measure and AC obtained by nine algorithms on data set WDBC with 30 independent runs.

FIGURE 12. Box plots of SED, NMI, F-measure and AC obtained by nine algorithms on data set CMC with 30 independent runs.

experimental results on data set Glass. For metrics SED, NMI

and AC, the proposed algorithm outperforms all other eight

algorithms. For metric F-measure, KMM achieves the best

results, followed by BIRCH, but only a little better than our

proposed algorithm. Other algorithms all get worse results

than our proposed algorithm. Table 9 shows that the proposed

algorithm outperforms all other comparison algorithms for

all evaluation metrics on data set WDBC. Table 10 shows

that GLPSOK underperforms some other algorithms in most

metrics on the date set CMC. This is because the data in CMC

are categorical values. For example, one of the attributes is

‘‘Wife’s now working?’’ where ‘‘0’’ represents ‘‘not work-

ing’’ and ‘‘1’’ represents ‘‘working’’. However, GLPSOK is

a distance-based clustering algorithm, which is suitable for

continuous numeric data and not suitable for categorical data.

The traditional way to treat categorical attributes as numeric

does not always produce meaningful results because many

categorical domains are not ordered.

To better observe the overall results and robustness of

all algorithms, box plots of SED, NMI, F-measure and AC

obtained by eight algorithms on data set Iris, Wine, Glass,

WDBC, CMC, are shown. According to Fig.8, Fig.9, and

Fig.11, compared with the eight comparison algorithms, the

overall results obtained by GLPSOK are the best on the data

sets Iris, Wine andWDBC. In addition, the whole distribution

of experimental results obtained by our proposed algorithm

is very concentrated, with almost no outliers, indicating that

our proposed algorithm has strong robustness and stability on

these three data sets; From Fig. 10, we can see that GLPSOK

also obtains the best overall results on the data set Glass.

Fig.12 shows that the clustering result of GLPSOK is at

a medium level on data set CMC. In summary, GLPSOK

achieves the best overall results and proved to be very robust.

In order to compare the experimental results more scien-

tifically and comprehensively, the Wilcoxon signed rank test

[55], a non-parametric hypothesis test method, was used for

a paired difference test. This test can quantitatively indicate

whether there is a significant difference in the performance

between algorithms. It is noted that the smaller the value of

SED is, the better the quality of the clustering results will

be. In contrast, the larger the values of NMI, F-Measure

and AC are, the better the quality of the clustering results

will be. With the significance level α = 0.05, the results

of the Wilcoxon signed rank test are shown in Table 11.

The meaning of each symbol in the table is explained as

follows: ‘p-value’ is the probability that the random variable

has values more ‘extreme’ than the currently observed value

under the null hypothesis; ‘w+’ is the sum of the rank greater

than 0; ‘w−’ is the sum of the rank less than 0; R is the result

of the Wilcoxon signed rank test, where ‘+’ means GLPSOK

outperforms other algorithms, ‘−’ means GLPSOK is worse

than other algorithms and ‘=’ means GLPSOK is similar

to other algorithms. As can be seen from Table 11, on the

whole, GLPSOK is significantly better than the other eight

algorithms.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a hybrid PSO-K-means clustering

algorithm that adopts GEDM and Lévy flight strategy to

improve the performance of the algorithm. The experimental

results on six synthetic data sets show that the proposed

algorithm can obtain good clustering results on all synthetic
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TABLE 11. (a)The results of the Wilcoxon signed rank test, with the significance level α = 0.05. (b) The results of the Wilcoxon signed rank test, with the
significance level α = 0.05. (c) The results of the Wilcoxon signed rank test, with the significance level α = 0.05.
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data sets. In addition, the proposed algorithm was compared

with several classic or state-of-the-art clustering algorithms

on five real-word data sets from the UCI Machine Learn-

ing Repository. The experimental results show that the pro-

posed algorithm can achieve better performance than the

six comparison algorithms on real-world data sets and has

strong robustness. However, GLPSOK consumes a lot of time

when dealing with large-scale data set. Future work can be

summarized into two aspects: (1) how to further improve

the convergence efficiency of GLPSOK; (2) how to apply

the proposed GLPSOK algorithm to practical scenarios like

image segmentation, and applications including clustering in

the financial, ecological, and educative domains from data

pressed in natural language texts.
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