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Nature-inspired algorithms attract many researchers worldwide for solving the hardest optimization problems. One of the newest
members of this extensive family is the bat algorithm. To date, many variants of this algorithm have emerged for solving continuous
as well as combinatorial problems. One of the more promising variants, a self-adaptive bat algorithm, has recently been proposed
that enables a self-adaptation of its control parameters. In this paper, we have hybridized this algorithm using di�erent DE strategies
and applied these as a local search heuristics for improving the current best solution directing the swarm of a solution towards the
better regions within a search space. 
e results of exhaustive experiments were promising and have encouraged us to invest more
e�orts into developing in this direction.

1. Introduction

Optimization has become more and more important, espe-
cially during these times of recession. It has been established
throughout practically all spheres of human activities, for
example, �nances, industries, sport, pharmacy, and so forth.
In each of these spheres, a goal of the optimization is to �nd
the optimal input parameters according to known outcomes
and a known model. 
is model represents a problem to be
solved and transforms input parameters to output outcomes.
Essentially, the optimal input parameters must be properly
evaluated in order to determine the quality of a solution.
Indeed, an objective function is used that mathematically
describes this quality. In the praxis, the value of the objective
function can be either minimized or maximized. For exam-
ple, when buying a car either the minimum cost min(�(�))
or maximum comfort max(�(�)) is interesting objective
for a potential buyer, where �(�) denotes the objective
function. Using the equation min(�(�)) = max(−�(�)),
the maximization problem can be transformed into a min-
imization one, and vice versa. 
e function expressed in
this way is also named as �tness function in evolutionary
computation community. In place of the objective function,
the minimization of the �tness function is assumed in this
paper.

Most of the problems arising in practice today are NP-
hard. 
is means that the time complexity of an exhaustive
search algorithm running on a digital computer which checks
all solutions within a search space increases exponentially by
increasing the instance size as determined by the number
of input parameters. In some situations, when the number
of input parameters increases to a certain limit, it can
be expected that a user never obtains the results from
the optimization. As a result, algorithms solving the NP-
problems approximately have arisen in the past. Although
these algorithms do not �nd the exact optimal solution,
in general, their solutions are good enough in practice.
For instance, the well-known algorithms for approximately
solving the hardest problems today are

(i) arti�cial bee colony (ABC) [1],

(ii) bat algorithm (BA) [2],

(iii) cuckoo search (CS) [3],

(iv) di�erential evolution (DE) [4],

(v) �re�y algorithm (FA) [5, 6],

(vi) particle swarm optimization (PSO) [7],

(vii) many more [8].

Hindawi Publishing Corporation
e Scientific World Journal
Volume 2014, Article ID 709738, 12 pages
http://dx.doi.org/10.1155/2014/709738



2 
e Scienti�c World Journal


e developers of the above-mentioned algorithms were
typically inspired by nature in a development phase. Namely,
each nature-inspired algorithmmimics the natural behaviors
of speci�c biological, chemical, or physical systems in order
to solve particular problems using a digital computer. Most
of the inspiration from nature emanates from biology. 
e
greatest lasting impression on the developers has been le� by
Darwin’s evolution [9]. Darwin observed that nature is not
static and therefore the �tter individuals have more chances
of surviving within the changing environments. Holland in
[10] connected this adaptive behavior of the natural systems
to arti�cial systems that simulate their behavior by solving
the particular problems (also optimization problems) on the
digital computers.

Optimization algorithms are controlled by algorithm
parameters that can be changed deterministically, adaptively,
and self-adaptively [11]. Deterministic parameters are altered
by using some deterministic rules (e.g., Rechenberg’s 1/5
success rule [12]). In contrast, adaptively controlled param-
eters are subject to feedback from the search process that
serves as an input to the mechanism used which determines
the direction and magnitude of the change [11]. Finally,
the self-adaptively controlled parameters are encoded into
a representation of the solution and undergo the actions of
variation operators [13].


is paper focuses on the adaptation and hybridization
of a swarm intelligence algorithm. Swarm intelligence (SI)
belongs to an arti�cial intelligence discipline (AI) which �rst
became popular over the last decade and still is [14]. It is
inspired by the collective behavior of social swarms of ants,
termites, bees, and worms, �ock of birds, and schools of �sh
[15]. Although these swarms consist of relatively unsophis-
ticated individuals, they exhibit coordinated behavior that
directs the swarms towards their desired goals. 
is usually
results in the self-organizing behavior of the whole system,
and collective intelligence or swarm intelligence is in essence
the self-organization of such multiagent systems, based on
simple interaction rules.


e bat algorithm (BA) is one of the younger members of
this family which was developed by Yang [16]. It is inspired
by the microbats that use an echolocation for orientation
and prey seeking. 
e original bat algorithm employs two
strategy parameters: the pulse rate and the loudness. 
e
former regulates an improvement of the best solution, while
the latter in�uences an acceptance of the best solution. Both
mentioned parameters are �xed during the execution of the
original bat algorithm. In the self-adaptive bat algorithm
(SABA) developed by Fister et al. [17] these parameters are
self-adaptive. 
e aim of this self-adaptation is twofold. On
the one hand, it is very di�cult to guess the valid value of
the parameter at the beginning of the algorithm. On the
other hand, this value depends on the phase in which the
search process is. 
is means that the parameter setting at
the beginning of the search process can be changed when this
process reaches maturity. In this paper, a further step forward
has been taken.

Hybridization with local search heuristics has now been
applied in order to further improve the results of the SABA
algorithm. Domain-speci�c knowledge can be incorporated

using the local search. Although the local search is as yet an
ingredient of the original bat algorithm it can be replaced by
di�erent DE strategies [18]. Indeed, the further improvement
of the current best solution is expectedwhichwould direct the
swarm intelligence search towards the more promising areas
of the search space. As a result, the hybrid self-adaptive bat
algorithm (HSABA) that was applied to a benchmark suite
consisting of ten well-known functions from the literature
was developed. 
e results of HSABA obtained during
extensive experiments showed that the HSABA improved the
results of both the original BA and the SABA. Moreover,
the results were also comparable with the other well-known
algorithms, like �re�y (FA) [5], di�erential evolution (DE)
[19], and arti�cial bee colony (ABC) [20].


e structure of this paper is as follows. Section 2 presents
an evolution of the bat algorithms from the original BA via
the self-adaptive SABA to the hybrid self-adaptive HSABA
algorithm. Section 3 describes the experimental work, while
Section 4 illustrates the obtained results in detail. 
e paper
concludes by summarizing the performed work and outlines
directions for the further development.

2. Evolution of Bat Algorithms


e results of experiments regarding the original bat algo-
rithm showed that this algorithm is e�cient especially when
optimizing the problems of lower dimensions. In line with
this, Eiben and Smith in [11] asserted that 2-dimensional
functions are not suitable for solving with the population-
based stochastic algorithms (like evolutionary algorithms and
swarm intelligence), because these can be solved optimally
using traditional methods. On the other hand, these kinds
of algorithms could play a role as general problem solvers,
because they share the same performances when averaged
over all the discrete problems. 
is fact is the essence of the
so-calledNo-Free Lunch (NFL) theorem [21]. In order for this
theorem to prevail, there are almost two typical mechanisms
for improving the performance of the population-based
algorithms as follows:

(i) self-adaptation of control parameters,

(ii) hybridization.


e former enables the control parameters to be changed dur-
ing the search process in order to better suit the exploration
and exploitation components of this search process [22],
while the latter incorporates the problem-speci�c knowledge
within it.

In the rest of this paper, �rstly the original BA algorithm
is presented in detail, followed by describing the applica-
tion of a self-adaptive mechanism within the original BA
algorithm which leads to the emergence of a self-adaptive
BA algorithm SABA. Finally, a hybridization of the SABA
algorithm is broadly discussed which obtains a hybridized
SABA algorithm named the HSABA.

2.1. �e Original Bat Algorithm. 
e original BA is a
population-based algorithm, where each particle within the
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Input: Bat population x
i
= (��1, . . . , ���)� for � = 1, . . . , ��,MAX FE.

Output:
e best solution xbest and its corresponding value �
min

= min (� (x)).
(1) init bat();
(2) eval = evaluate the new population;
(3) �

min
= �nd best solution(xbest); {initialization}

(4) while termination condition not meet do
(5) for � = 1 to �� do
(6) y = generate new solution(x�);
(7) if rand(0, 1) > 	� then
(8) y = improve the best solution(xbest)
(9) end if {local search}
(10) if �new = evaluate new solution(y);
(11) eval = eval + 1;
(12) if �new ≤ �� and �(0, 1) < � � then
(13) x� = y; �� = �new;
(14) end if {simulated annealing}
(15) �

min
= �nd the best solution(xbest);

(16) end for
(17) end while

Algorithm 1: Pseudocode of the original bat algorithm.

bat population represents the candidate solution. 
e candi-

date solutions are represented as vectors xi = (��1, . . . , ���)�
for � = 1 ⋅ ⋅ ⋅ �� with real-valued elements ���, where each
element is drawn from interval ��� ∈ [��� ⋅ ⋅ ⋅ ���]. 
us, ���
and ��� denote the corresponding lower and upper bounds,
and�� determines a population size.


is algorithm consists of the following main compo-
nents:

(i) an initialization,

(ii) a variation operation,

(iii) a local search,

(iv) an evaluation of a solution,

(v) a replacement.

In the initialization, the algorithm parameters are initial-
ized, then, the initial population is generated randomly, next,
this population is evaluated, and �nally, the best solution in
this initial population is determined. 
e variation operator
moves the virtual bats in the search space according to
the physical rules of bat echolocation. In the local search,
the current best solution is improved by the random walk
direct exploitation heuristics (RWDE) [23]. 
e quality of
a solution is determined during the evaluation of solution.

e replacement replaces the current solution with the newly
generated solution regarding the some probability. 
is
component is similar to the simulated annealing [24], where
the new solution is accepted by the acceptance probability
function which simulates the physical rules of annealing.
e
pseudocode of this algorithm is presented in Algorithm 1.

In Algorithm 1 the particular component of the BA algo-
rithm is denoted either by function name when it comprises
one line or by a comment between two curly brackets when
the components are written within a structured statement

and/or it comprises more lines. In line with this, the ini-
tialization comprises lines 1–3 in Algorithm 1, the variation
operation line 6 (function generate new solution), the local
search lines 7–9, the evaluation of the solution (function
evaluate new solution in line 10), and the replacement lines
12–14. In addition, the current best solution is determined in
each generation (function �nd best solution in line 15).


e variation operation which is implemented in func-
tion generate new solution moves the virtual bats towards
the best current bat’s position according to the following
equations:

�(	)� = �min + (�max − �min)� (0, 1) ,
k
(	+1)
� = k

	
� + (x	� − best)�(	)� ,

x
(	+1)
� = x

(	)
� + k

(	+1)
� ,

(1)

where �(0, 1) is a random number drawn from a Gaussian
distribution with zero mean and a standard deviation of
one. A RWDE heuristics [23] implemented in the function
improve the best solution modi�es the current best solution
according to the following equation:

x
(t) = best + ��(	)� �(0, 1) , (2)

where �(0, 1) denotes the random number drawn from
a Gaussian distribution with zero mean and a standard
deviation of one, � being the scaling factor and �(	)� the
loudness.

A local search is launched with the probability of pulse
rate 	�. As already stated, the probability of accepting the new
best solution in the component save the best solution con-
ditionaly depends on loudness � �. Actually, the original BA
algorithm is controlled by two algorithm parameters: the
pulse rate 	� and the loudness � �. Typically, the rate of
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pulse emission 	� increases and the loudness � � decreases
when the population draws nearer to the local optimum.
Both characteristics imitate natural bats, where the rate of
pulse emission increases and the loudness decreases when
a bat �nds a prey. Mathematically, these characteristics are
captured using the following equations:

�(	+1)� = ��(	)� , 	(	)� = 	(0)� [1 − exp (−��)] , (3)

where � and � are constants. Actually, the � parameter
controls the convergence rate of the bat algorithm and
therefore plays a similar role as the cooling factor in the
simulated annealing algorithm.

In summary, the original BA algorithm is based on a PSO
algorithm [7] which is hybridized with RWDE and simulated
annealing heuristics. 
e former represents the local search
that directs the bat search process towards improving the
best solution, while the latter takes care of the population
diversity. In other words, the local search can be connected
with exploitation, while simulated annealing uses the explo-
ration component of the bat search process. 
e exploitation
is controlled by the parameter 	 and exploration by the
parameter�. As a result, the BA algorithm is able to explicitly
control the exploration and exploitation components within
its search process.

2.2. �e Self-Adaptive Bat Algorithm. Almost two advantages
can be expected when the self-adaptation of control parame-
ters is applied to a population-based algorithm [11]:

(i) control parameters need not be set before the algo-
rithm’s run,

(ii) the control parameters are adapted during the run to
the �tness landscape de�ned by the positions of the
candidate solutions within the search space and their
corresponding �tness values [25].

Normally, the self-adaptation is realized by encoding the
control parameters into representation of candidate solutions
and letting them undergo an operation of the variation
operators. In this way, the self-adaptation of the BA control
parameters (the loudness and the pulse rate) is considered.


is means that the existing representation of the can-

didate solutions consisting of problem variables x(	)� =(�(	)�1 , . . . , �(	)��) is widened by the control parameters�(	+1) and	(	+1) to
x
(	)
� = (�(	)�1 , . . . , �(	)��, �(	), 	(	))�, for � = 1 ⋅ ⋅ ⋅ ��, (4)

where �� denotes the population size. 
e control parame-
ters are modi�ed according to the following equations:

�(	+1) = {�(	)�� + rand0 (�(	)�� − �(	)�� ) if rand1 < �1,�(	) otherwise, (5)

	(	+1) = {	(	)�� + rand2 (	(	)�� − 	(	)�� ) if rand3 < �2,	(	) otherwise. (6)

Note that the parameters �0 and �1 denote the learning
rates that were set, as �0 = �1 = 0.1, while rand� for � = 1 ⋅ ⋅ ⋅ 4
designate the randomly generated value from interval [0, 1].


e self-adapting part of the SABA algorithm is per-
formed by the generate the new solution function (line 6 in
Algorithm 1). Note that the control parameters are modi�ed
in this function according to the learning rates �0 and �1.
In the case �0 = �1 = 0.1, each 10th candidate solution
is modi�ed on average. 
e modi�ed parameters in�uence
the application of the local search and the probability of
the replacement. 
e replacement function preserves the
problem variables as well as the control parameters.


is self-adapting function was inspired by Brest et al. [4]
who proposed the self-adaptive version of DE, better known
as jDE. 
is self-adaptive algorithm improves the results of
the original DE signi�cantly by continuous optimization.

2.3.�eHybrid Self-Adaptive Bat Algorithm. 
epopulation-
based algorithms, like evolutionary algorithms and swarm
intelligence, can be seen as some kind of general problem
solvers, because they are applicable for all classes of optimiza-
tion problems. 
us, their results con�rm the so-called No-
Free Lunch (NFL) theorem by Wolpert and Macready [21].
According to this theorem any two optimization algorithms
are equivalent when their performances are averaged across
all possible problems.

In order to circumvent the NFL theorem by solving
a speci�c problem, domain-speci�c knowledge must be
incorporatedwithin the algorithm for solving it.
e domain-
speci�c knowledge can be incorporated by the bat algorithm
within each of its components, that is, an initialization, a
variation operator, a local search, an evaluation function, and
a replacement.

Although the SABA algorithm signi�cantly outper-
formed the results of the original BA algorithm, it su�ers
from a lack of incorporated domain-speci�c knowledge of
the problem to be solved. 
is paper focuses on hybridizing
the SABA using a novel local search heuristics that better
exploits the self-adaptation mechanism of this algorithm.

e standard “rand/1/bin” DE strategy and three other DE
strategies focusing on the improvement of the current best
solution were used for this purpose, where the modi�cation
of the local search in a hybrid self-adaptive BA algorithm
(HSABA) is illustrated in Algorithm 2.


e local search is launched according to a threshold
determined by the self-adapted pulse rate 	� (line 1). 
is
parameter is modi�ed by each 10th virtual bat, on average.

e local search is an implementation of the operators
crossover and mutation borrowed from DE [19]. Firstly,
the four virtual bats are selected randomly from the bat
population (line 2) and the random position is chosen within
the virtual bat (line 3). 
en, the appropriate DE strategy
modi�es the trial solution (lines 4–9) as follows:

�
 = {DE Strategy, if rand (0, 1) ≤ CR ∨ � = �,�(	)in otherwise, (7)

where the DE Strategy is launched according to the proba-
bility of crossover CR. 
e term � = � ensures that almost
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Input: Population x
i
= (��1, . . . , ���, �, 	)� for � = 1, . . . , ��.

Output: Trial solution y = (�1, . . . , ��, �, 	)�.
(1) if rand(0, 1) > 	� then
(2) 	�=1,...,4 = ⌊rand(0, 1) ∗ �� + 1⌋ ∧ 	1 ̸= 	2 ̸= 	3 ̸= 	4;
(3) � = rand(1, �);
(4) for � = 1 to � do
(5) if ((rand (0, 1) < CR) || (� == �)) then
(6) �
 = DE Strategy(�, �, 	1, 	2, 	3, 	4);
(7) end if
(8) � = (� + 1)%(� + 1);
(9) end for {DE Strategies}
(10) end if

Algorithm 2: Modi�cation in hybrid self-adaptive BA algorithm
(HSABA).

Table 1: Used DE strategies in the HSABA algorithm.

DE/rand/1/bin �� = ��1,� + ! ⋅ (��2,� − ��3,�)
DE/randToBest/1/bin �� = ��,�+!⋅(best�−��,�)−!⋅(��1,�−��2,�)
DE/best/2/bin �� = best�+!⋅(��1,�+��2,�−��3,�−��4,�)
DE/best/1/bin �� = best� + ! ⋅ (��1,� − ��2,�)

one modi�cation is performed on the trial solution. 
e
DE Strategy function is presented in Algorithm 3.

Although more di�erent DE strategies exist today, we
have focused mainly on those that include the current best
solution in the modi�cation of the trial solution. 
ese
strategies are presented in Table 1. Note that the suitable DE
strategy is selected using the global parameter strategy.


e strategies illustrated in the table that use the best
solution in the modi�cation operations, that is, “rand-
ToBest/1/bin,” “best/2/bin,” and “best/1/bin,” typically direct
the virtual bats towards the current best solution. 
us, it
is expected that the new best solution is found when the
virtual bats move across the search space directed by the best
solution.
e “rand/1/bin” represents one of the most popular
DE strategies today that introduces an additional randomness
into a search process. Obviously, it was used also in this study.

3. Experiments


e goal of our experimental work was to show that the
HSABA outperforms the results of the original BA as well
as the self-adaptive SABA algorithms, on the one hand,
and that these results were comparable with the results of
other well-known algorithms, like �re�y (FA) [5], di�erential
evolution (DE) [19], and arti�cial bee colony (ABC) [20]. All
the mentioned algorithms were applied to a function opti-
mization that belongs to a class of combinatorial optimization
problems.

Function optimization is formally de�ned as follows. Let
us assume a �tness function �(x), where x = (�1, . . . , ��)
denotes a vector of � design variables from a decision space�� ∈ ". 
e values of the design variables are drawn from the
interval �� ∈ [#$�, %$�], where #$� ∈ R and %$� ∈ R are their

corresponding lower and upper bounds, respectively. 
en,
the task of function optimization is to �nd the minimum of
this objective function.

In the remainder of this paper, the benchmark function
suite is presented, then the experimental setup is described,
and �nally, the con�guration of the personal computer (PC)
on which the tests were conducted is clari�ed in detail.

3.1. Benchmark Suite. 
e benchmark suite was composed of
ten well-known functions selected from various publications.

e reader is invited to check deeper details about test func-
tions in the state-of-the-art reviews [26–28]. 
e de�nitions
of the benchmark functions are summarized in Table 2 which
consists of three columns denoting the function tag �, the
function name, and the function de�nition.

Each function from the table is tagged with its sequence
number from �1 to �10. Typically, the problem becomes
heavier to solve when the dimensionality of the benchmark
functions is increased. 
erefore, benchmark functions of
more dimensions needed to be optimized during the experi-
mental work.


e properties of the benchmark functions can be seen
in Table 3 which consists of �ve columns: the function tag �,
the value of the optimal solution �∗ = �(�∗), the optimal
solution �∗, the function characteristics, and domain. One
of the more important characteristics of the functions is
the number of local and global optima. According to this
characteristic the functions are divided into either unimodal
or multimodal. 
e former type of functions has only one
global optimum,while the latter is able to havemore local and
global optima throughout the whole search space. Param-
eter domain limits the values of parameters to the interval
between their lower and upper bounds. As a matter of fact,
these bounds determine the size of the search space. In order
tomake the problemsheavier to solve, the parameter domains
weremore widely selected in this paper than those prescribed
in the standard publications.

3.2. Experimental Setup. 
e characteristics of the HSABA
were observed during this experimental study.
en, the best
parameter setting was determined. Finally, the results of the
HSABA were compared with the results of the original BA
and self-adaptive SABA algorithms. 
e results of the other
well-known algorithms, like FA, DE, and ABC, were also
added to this comparative study. Note that the best parameter
settings for each particular algorithm were used in the tests,
except BA algorithms, where the same setup was employed
in order to make the comparison as fair as possible. All the
parameter settings were found a�er extensive testing.

During the tests, the BA parameters were set as follows:
the loudness �0 = 0.5, the pulse rate 	0 = 0.5, minimum
frequency �max = 0.0, and maximum frequency �max =2.0. 
e same initial values for 	0 and �0 were also applied
by SABA and HSABA, while the frequency was captured
from the same interval � ∈ [0.0, 2.0] as by the original
bat algorithm. 
us, the values for loudness are drawn

from the interval �(	) ∈ [0.9, 1.0] and the pulse rate from

the interval 	(	) ∈ [0.001, 0.1]. 
e additional parameters
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Input: �th position in the trial solution, indexes of virtual bats �, 	1, 	2, 	3, 	4.
Global: Population x

i
= (��1, . . . , ���, �, 	)� for � = 1, . . . , ��, STRATEGY.

Output:Modi�ed value of the trial solution &.
(1) switch (STRATEGY)
(2) case DE/rand/1/bin:
(3) & = ��1,
 + ! ∗ (��2,
 − ��3,
);
(4) case DE/randToBest/1/bin:
(5) & = ��,
 + ! ∗ (best
 − ��,
) − ! ∗ (��1,
 − ��2,
);
(6) case DE/best/2/bin:
(7) & = best
 + ! ∗ (��1,
 + ��2,
 − ��3,
 − ��4,
);
(8) case DE/best/1/bin:
(9) & = best
 + ! ∗ (��1,
 − ��2,
);
(10) end switch
(11) return &;

Algorithm 3: DE Strategy function.

Table 2: De�nitions of benchmark functions.

� Function name De�nition

�1 Griewangk’s function � (x) = − 
∏
�=1

cos( ��√�) + 
∑
�=1

�2�4000 + 1
�2 Rastrigin’s function �(x) = � ∗ 10 + 
∑

�=1
(�2� − 10 cos(26��))

�3 Rosenbrock’s function �(x) = 
−1∑
�=1

100 (��+1 − �2� )2 + (�� − 1)2
�4 Ackley’s function �(x) = 
−1∑

�=1
(20 + 8−208−0.2√0.5(�2�+1+�2� ) − 80.5(cos(2���+1)+cos(2���)))

�5 Schwefel’s function �(x)= 418.9829 ∗ � − �∑
�=1

�� sin(√@@@@��@@@@)
�6 De Jong’s sphere function �(x) = �∑

�=1
�2�

�7 Easom’s function �(x) = −(−1)�( �∏
�=1

cos2 (��)) exp[− �∑
�=1
(�� − 6)2]

�8 Michalewicz’s function �(x) = − �∑
�=1

sin(��)[sin(��2�6 )]2⋅10

�9 Xin-She Yang’s function �(x) = ( �∑
�=1

@@@@��@@@@) exp[− �∑
�=1

sin (�2� )]
�10 Zakharov’s function �(x) = �∑

�=1
�2� + (12

�∑
�=1

���)
2

+ (12
�∑
�=1

���)
4

Table 3: Properties of benchmark functions.

� �∗ �∗ Characteristics Domain

�1 0.0000 (0, 0, . . . , 0) Highly multimodal [−600, 600]�2 0.0000 (0, 0, . . . , 0) Highly multimodal [−15, 15]�3 0.0000 (1, 1, . . . , 1) Several local optima [−15, 15]�4 0.0000 (0, 0, . . . , 0) Highly multimodal [−32.768, 32.768]�5 0.0000 (0, 0, . . . , 0) Highly multimodal [−500, 500]�6 0.0000 (0, 0, . . . , 0) Unimodal, convex [−600, 600]�7 −1.0000 (6, 6, . . . , 6) Several local optima [−26, 26]�8 −1.80131 (2.20319, 1.57049)1 Several local optima [0, 6]�9 0.0000 (0, 0, . . . , 0) Several local optima [−26, 26]�10 0.0000 (0, 0, . . . , 0) Unimodal [−5, 10]
1Valid for 2-dimensional parameter space.




e Scienti�c World Journal 7

controlling behavior of DE strategies were set as ! = 0.01
and CR = 1.0. Both parameters had a great in�uence on the
results of the HSABA algorithm, while this setting initiated
the best performance by the self-adaptive SABA framework
hybridized with DE strategies.

FA ran with the following set of parameters: � = 0.1,L = 0.2, and � = 0.9, while DE was con�gured as follows: the
ampli�cation factor of the di�erence vector ! = 0.5 and the
crossover control parameter CR = 0.9. In the ABC algorithm,
the onlooker bees represented 50% of the whole colony, while
the other 50% of the colony was reserved for the employed
bees. On the other hand, the scout bee was generated when
its value had not improved in 100 generations. In other words,
the parameter #�M�NO was set to the value 100.

Each algorithm in the tests was run with a population size
of 100. Each algorithm was launched 25 times. 
e obtained
results of these algorithms were aggregated according to their
best, the worst, the mean, the standard deviation, and the
median values reached during 25 runs.

3.3. PC Con�guration. All runs were made on HP Compaq
with the following con�gurations.

(1) Processor: Intel Core i7-2600 3.4 (3.8) GHz.

(2) RAM: 4GB DDR3.

(3) Operating system: Linux Mint 12.

Additionally, all the tested algorithms were implemented
within the Eclipse Indigo CDT framework.

4. The Results

Our experimental work consisted of conducting the four
experiments, in which the following characteristics of the
HSABA were tested:

(i) an in�uence of using the di�erent DE strategies,

(ii) an in�uence of the number of evaluations,

(iii) an in�uence of the dimensionality of problems,

(iv) a comparative study.

In the �rst test, searching was performed for the most
appropriate DE strategy incorporated within the HSABA
algorithm.
is strategy was then used in all the other exper-
iments that followed. 
e aim of the second experiment was
to show how the results of the HSABA converge according
to the number of �tness function evaluations. Dependence
of the results on the dimensionality of the functions to be
optimized is presented in the third experiment. Finally, the
results of the HSABA were compared with the original BA
and self-adaptive SABA algorithms as well as the other well-
known algorithms, like FA, DE, and ABC.

In the remainder of this paper, the results of the experi-
ments are presented in detail.

4.1. In
uences of Using the Di�erent DE Strategies. In this
experiment, the qualities of four di�erent DE strategies

that were implemented within the HSABA algorithm were
observed. 
e outcome of this experiment had an impact
on the further tests, because all the tests that followed
were performed with the most promising DE strategy found
during the experiment. In linewith this, each of theDE strate-
gies, that is, “rand/1/bin,” “randToBest/1/bin,” “best/2/bin,”
and “best/1/bin,” was tested by optimizing the benchmark
function suite. 
e results of function optimization were
averaged a�er 25 runs and are illustrated in Figure 1.


is �gure is divided into six diagrams, two for each
observed dimension of the function. Each diagram repre-
sents the progress of the optimization in percent on the�-axis, where 100% denotes the corresponding number of
�tness function evaluations (e.g., 10,000 for 10-dimensional
functions), while the value of the �tness function is placed
alongside the �-axis.

In summary, the “best/2/bin” strategy achieved the best
result when compared with the other three strategies, on
average. Interestingly, the “rand/1/bin” strategy was the most
successful when optimizing the function �4 of dimension� = 10. 
is behavior was in accordance with the character-
istics of this function, because highly multimodal functions
demand more randomness during the exploration of the
search space.

4.2. In
uence of the Number of Evaluations. A long-term lack
of improvement regarding the best result during the run was
one of the most reliable indicators of the stagnation. If the
�tness value did not improve over a number of generations,
this probably means that the search process got stuck within
a local optimum. In order to detect this undesirable situation
during the run of HSABA, the �tness values were tracked at
three di�erent phases of the search process, that is, at 1/25,
at 1/5, and at the �nal �tness evaluation. 
us, HSABA runs
with the “best/2/bin” strategy and parameters as presented in
Section 3.2. 
e results of this test are collated in Table 4.

It can be seen from Table 4 that HSABA successfully
progressed towards the global optimum according to all
benchmark functions, except �7 which fell into a local
optimum very quickly and did not �nd any way of further
improving the result.

4.3. In
uence of the Dimensionality of the Problem. 
e aim
of this experiment is to discover how the quality of the results
depends on the dimension of the problem, in other words, the
dimensionality of the functions to be optimized. In line with
this, three di�erent dimensions of the benchmark functions� = 10, � = 30, and � = 50 were taken into account. 
e
results of the tests according to �vemeasures are presented in
Table 5.

In this experiment, it was expected that the functions
of the higher dimensions would be harder to optimize and
therefore the obtained results would be worse. 
e results in
Table 5 show that our assumption held for the average �tness
values in general, except for function �9, where optimizing
this function of dimension� = 10 returned the worst �tness
value as by functions of dimensions� = 30 and� = 50.
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Figure 1: Impact of DE strategies on the results of optimization.
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Table 4: Detailed results (� = 10).
Evals. Meas. �1 �2 �3 �4 �5

4.00P + 02
Best 1.62P − 005 8.02P − 003 1.47P + 000 1.33P + 001 1.63P + 000
Worst 1.03P + 00 3.14P + 02 3.58P + 005 2.00P + 001 1.42P + 003
Mean 4.05P − 01 8.99P + 01 1.75P + 004 1.84P + 001 3.94P + 002
StDev 2.27P − 01 5.87P + 01 7.10P + 001 2.00P + 001 1.68P + 002
Mean 3.81P − 01 8.06P + 01 7.14P + 004 2.47P + 000 4.64P + 002

2.00P + 03
Best 7.90P − 06 6.77P − 03 2.32P − 002 8.39P − 003 4.56P − 003
Worst 2.18P − 01 8.96P + 01 2.47P + 001 2.00P + 001 7.77P + 001
Mean 2.91P − 02 1.54P + 01 5.00P + 000 1.01P + 001 1.52P + 001
StDev 1.52P − 02 1.00P + 01 2.01P + 000 9.49P + 000 7.34P + 000
Mean 5.36P − 02 2.19P + 01 6.12P + 000 7.09P + 000 1.79P + 001

1.00P + 04
Best 4.87P − 07 7.33P − 07 5.51P − 004 1.05P − 003 1.75P − 004
Worst 1.19P − 01 2.22P + 01 8.82P + 000 2.00P + 001 1.65P + 001
Mean 9.35P − 03 5.81P + 00 7.13P − 001 7.14P + 000 2.52P + 000
StDev 1.88P − 04 9.71P + 00 8.03P − 003 6.56P + 000 5.65P − 002
Mean 2.41P − 02 6.07P + 00 2.43P + 000 6.22P + 000 4.88P + 000

Evals. Meas. �6 �7 �8 �9 �10

4.00P + 02
Best 7.07P − 05 0.00P + 00 −4.84P + 000 5.67P − 04 6.26P − 02
Worst 3.28P + 00 0.00P + 00 −2.14P + 000 3.37P − 03 9.55P + 01
Mean 6.98P − 01 0.00P + 00 −3.18P + 000 9.45P − 04 1.45P + 01
StDev 2.62P − 01 0.00P + 00 −3.02P + 000 6.70P − 04 2.20P + 00
Mean 9.46P − 01 0.00P + 00 7.59P − 001 7.50P − 04 2.35P + 01

2.00P + 03
Best 8.13P − 06 0.00P + 00 −6.51P + 000 5.66P − 04 6.18P − 05
Worst 4.49P − 02 0.00P + 00 −3.46P + 000 6.20P − 04 4.33P + 00
Mean 4.75P − 03 0.00P + 00 −4.70P + 000 5.74P − 04 3.52P − 01
StDev 2.18P − 03 0.00P + 00 −4.66P + 000 5.68P − 04 8.12P − 02
Mean 9.10P − 03 0.00P + 00 8.55P − 001 1.32P − 05 8.74P − 01

1.00P + 04
Best 1.01P − 09 0.00P + 00 −7.48P + 000 5.66P − 04 2.31P − 06
Worst 6.85P − 03 0.00P + 00 −3.92P + 000 5.71P − 04 7.67P − 01
Mean 8.92P − 04 0.00P + 00 −5.39P + 000 5.67P − 04 8.35P − 02
StDev 8.47P − 06 0.00P + 00 −5.19P + 000 5.66P − 04 2.79P − 02
Mean 1.76P − 03 0.00P + 00 9.49P − 001 1.29P − 06 1.84P − 01

4.4. Comparative Study. 
e true value of each algorithm
is shown for only when we compared it with the other
algorithms solving the same problems.
erefore, theHSABA
was compared with algorithms such as BA, SABA, FA, DE,
and ABC. All the algorithms were solved using the same
benchmark functions as proposed in Section 3.1 and used the
parameter setting as explained in Section 3.2. 
e results of
this comparative study obtained by optimizing the functions
of dimension � = 30 are illustrated in Table 6. 
e best
results in these tables are presented as bold.

It can be seen fromTable 6 that theHSABAoutperformed
the results of the other algorithms sixfold (i.e., by �1, �2, �3,�5, �9, and �10), DE twice (i.e., by �4 and �7), while the other
algorithms once (i.e., SABA by �6 and ABC by �8). BA and
FA did not outperform any other algorithm in the test.

In order to evaluate the quality of the results statistically,
Friedman tests [29, 30] were conducted to compare the
average ranks of the compared algorithms. 
us, a null
hypothesis is placed that states the following: two algorithms
are equivalent and therefore their ranks should be equal.

When the null hypothesis is rejected, the Bonferroni-Dunn
test [31] is performed. In this test, the critical di�erence is cal-
culated between the average ranks of those two algorithms. If
the statistical di�erence is higher than the critical di�erence,
the algorithms are signi�cantly di�erent.


ree Friedman tests (Figure 2) were performed regard-
ing data obtained by optimizing ten functions of three
di�erent dimensions according to �ve measures. As a result,
each algorithm during the tests (also the classi�er) was
compared with regard to the 10 functions × 5 measures;
this means 50 di�erent variables. 
e tests were con-
ducted at the signi�cance level 0.05. 
e results of the
Friedman nonparametric test can be seen in Figure 1 that
is divided into three diagrams. Each diagram shows the
ranks and con�dence intervals (critical di�erences) for the
algorithms under consideration with regard to the dimen-
sions of the functions. Note that the signi�cant di�erence
between two algorithms is observed if their con�dence
intervals denoted by thickened lines in Figure 1 do not
overlap.
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Table 5: Results according to dimensions.

� Meas. �1 �2 �3 �4 �5

10

Best 4.87P − 07 7.33P − 07 5.51P − 04 1.05P − 03 1.75P − 04
Worst 1.19P − 01 2.22P + 01 8.82P + 00 2.00P + 01 1.65P + 01
Mean 9.35P − 03 5.81P + 00 7.13P − 01 7.14P + 00 2.52P + 00
StDev 1.88P − 04 9.71P + 00 8.03P − 03 6.56P + 00 5.65P − 02
Mean 2.41P − 02 6.07P + 00 2.43P + 00 6.22P + 00 4.88P + 00

30

Best 6.68P − 05 8.48P − 04 1.19P − 03 1.73P − 01 6.94P − 03
Worst 5.58P − 01 2.69P + 02 1.57P + 03 2.00P + 01 3.57P + 03
Mean 7.71P − 02 4.63P + 01 1.02P + 02 9.44P + 00 2.70P + 02
StDev 2.85P − 02 2.99P + 01 1.41P + 01 6.62P + 00 3.06P + 01
Median 1.26P − 01 7.42P + 01 3.18P + 02 6.63P + 00 7.85P + 02

50

Best 7.16P − 05 2.03P − 02 5.77P − 05 1.71P − 03 3.06P − 02
Worst 8.81P − 01 4.48P + 02 8.08P + 02 2.00P + 01 7.47P + 03
Mean 1.70P − 01 9.88P + 01 7.07P + 01 1.11P + 01 9.00P + 02
StDev 8.47P − 02 5.02P + 01 4.45P + 00 1.20P + 01 1.26P + 02
Mean 2.29P − 01 1.27P + 02 1.89P + 02 8.59P + 00 2.12P + 03

Evals. Meas. �6 �7 �8 �9 �10

10

Best 1.01P − 09 0.00P + 00 −7.48P + 00 5.66P − 04 2.31P − 06
Worst 6.85P − 03 0.00P + 00 −3.92P + 00 5.71P − 04 7.67P − 01
Mean 8.92P − 04 0.00P + 00 −5.39P + 00 5.67P − 04 8.35P − 02
StDev 8.47P − 06 0.00P + 00 −5.19P + 00 5.66P − 04 2.79P − 02
Mean 1.76P − 03 0.00P + 00 9.49P − 01 1.29P − 06 1.84P − 01

30

Best 1.96P − 08 0.00P + 00 −1.76P + 01 3.51P − 12 8.10P − 04
Worst 2.17P − 01 0.00P + 00 −7.09P + 00 2.02P − 11 1.22P + 02
Mean 2.63P − 02 0.00P + 00 −1.30P + 01 6.06P − 12 2.72P + 01
StDev 1.29P − 03 0.00P + 00 −1.36P + 01 3.85P − 12 1.37P + 00
Mean 4.82P − 02 0.00P + 00 2.10P + 00 4.16P − 12 3.90P + 01

50

Best 4.72P − 05 0.00P + 00 −2.83P + 01 1.21P − 20 4.57P − 01
Worst 9.88P + 00 0.00P + 00 −1.40P + 01 9.57P − 20 7.43P + 02
Mean 5.59P − 01 0.00P + 00 −1.95P + 01 2.44P − 20 2.34P + 02
StDev 1.24P − 02 0.00P + 00 −1.91P + 01 1.63P − 20 2.35P + 02
Mean 1.97P + 00 0.00P + 00 3.25P + 00 1.99P − 20 2.04P + 02

BA

SABA

HSABA

FA

DE

ABC

1 2 3 41 2 3 41 2 3 4

Average rank (D = 10) Average rank (D = 30) Average rank (D = 50)

Figure 2: Results of the Friedman nonparametric test on the speci�c large-scale graph instances.


e �rst two diagrams in Figure 1 show that the HSABA
signi�cantly outperforms the results of the other algorithms
by solving the benchmark functions with dimensions � =10 and � = 30. Although the other algorithms are not
signi�cantly di�erent between each other the algorithms
DE, SABA, and ABC are substantially better than the BA

and FA. 
e third diagram shows that the HSABA remains
signi�cantly better than the ABC, FA, and BA, while the
critical di�erence between DE and SABA was reduced and
therefore becomes insigni�cant. On the other hand, this
reduction caused the di�erence between DE and the other
algorithms in the test, except SABA, to become signi�cant.
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Table 6: Obtained results of algorithms (� = 30).
! Meas. BA SABA HSABA FA DE ABC

�1 Mean 1.16P + 00 1.03P + 00 7.71E − 02 6.65P − 01 1.05P + 00 1.09P + 00
StDev 1.15P + 00 1.04P + 00 2.85P − 02 6.40P − 01 2.22P − 02 1.23P − 01

�2 Mean 9.28P + 02 7.02P + 02 4.63E + 01 2.44P + 02 2.28P + 02 7.33P + 01
StDev 8.90P + 02 6.80P + 02 2.99P + 01 2.35P + 02 1.33P + 01 2.24P + 01

�3 Mean 2.84P + 06 3.67P + 05 1.02E + 02 1.12P + 02 4.57P + 02 5.18P + 02
StDev 2.95P + 06 2.61P + 05 1.41P + 01 1.01P + 02 2.27P + 02 4.72P + 02

�4 Mean 2.00P + 01 2.00P + 01 9.44P + 00 2.11P + 01 1.77E + 00 7.17P + 00
StDev 2.00P + 01 2.00P + 01 6.62P + 00 2.11P + 01 3.17P − 01 1.03P + 00

�5 Mean 9.45P + 03 9.13P + 03 2.70E + 02 6.78P + 03 7.57P + 03 2.64P + 03
StDev 9.52P + 03 9.14P + 03 3.06P + 01 6.75P + 03 4.40P + 02 3.30P + 02

�6 Mean 5.87P − 02 1.45E − 05 2.63P − 02 5.19P + 00 1.77P + 02 1.63P + 02
StDev 6.53P − 05 1.46P − 05 1.29P − 03 5.14P + 00 7.12P + 01 1.96P + 02

�7 Mean 0.00P + 00 0.00P + 00 0.00P + 00 −3.81P − 30 −2.76E − 175 −1.76P − 136
StDev 0.00P + 00 0.00P + 00 0.00P + 00 −3.73P − 30 0.00P + 00 8.79P − 136

�8 Mean −8.62P + 00 −8.51P + 00 −1.30P + 01 −5.15P + 00 −1.07P + 01 −2.30E + 01

StDev −8.39P + 00 −8.36P + 00 −1.36P + 01 −5.35P + 00 6.70P − 01 6.98P − 01
�9 Mean 1.57P − 11 1.41P − 11 6.06E − 12 1.70P − 04 2.46P − 11 1.10P − 11

StDev 1.03P − 11 1.08P − 11 3.85P − 12 4.72P − 05 1.20P − 12 1.91P − 12
�10 Mean 2.76P + 02 2.04P + 02 2.72E + 01 1.32P + 04 3.78P + 01 2.53P + 02

StDev 2.82P + 02 2.17P + 02 1.37P + 00 1.32P + 04 8.74P + 00 3.15P + 01

5. Conclusion


eoriginal BA algorithm gained better results by optimizing
the lower-dimensional problems. When this algorithm was
tackled with the harder problems of higher dimensions the
results became poorer. In order to improve performance
on high dimensional problems, almost two mechanisms
are proposed in the publications: �rstly, self-adaptation of
control parameters and secondly hybridization of the original
algorithm with problem-speci�c knowledge in the form of
local search.

In this paper, bothmechanisms were incorporated within
the original BA algorithm in order to obtain the hybrid self-
adaptive HSABA. 
us, the self-adaptive mechanism was
borrowed from the self-adaptive jDE, while four di�erent DE
strategies were used as a local search. Finally, the evolution of
the original BA via self-adaptive SABA and �nally to hybrid
HSABA is presented in detail.

On the one hand, the experimental work focuses on
discovering the characteristics of the HSABA, while on the
other hand, it focuses on the comparative study, in which the
HSABA was compared with its predecessors BA and SABA
as well as with other well-known algorithms, like FA, DE,
and ABC. 
e results of this extensive work showed that
the HSABA signi�cantly outperformed the results of all the
other algorithms in the tests.
erefore, the assumption taken
from publications that self-adaptation and hybridization
are appropriate mechanisms for improving the results of
population-based algorithms was con�rmed.

In the future work, this started work will be continued
with experiments on the large-scale global optimization
problems.
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