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Abstract: Flash floods are widely recognized as one of the most devastating natural hazards in the

world, therefore prediction of flash flood-prone areas is crucial for public safety and emergency

management. This research proposes a new methodology for spatial prediction of flash floods based

on Sentinel-1 SAR imagery and a new hybrid machine learning technique. The SAR imagery

is used to detect flash flood inundation areas, whereas the new machine learning technique,

which is a hybrid of the firefly algorithm (FA), Levenberg–Marquardt (LM) backpropagation, and

an artificial neural network (named as FA-LM-ANN), was used to construct the prediction model.

The Bac Ha Bao Yen (BHBY) area in the northwestern region of Vietnam was used as a case study.

Accordingly, a Geographical Information System (GIS) database was constructed using 12 input

variables (elevation, slope, aspect, curvature, topographic wetness index, stream power index,

toposhade, stream density, rainfall, normalized difference vegetation index, soil type, and lithology)

and subsequently the output of flood inundation areas was mapped. Using the database and

FA-LM-ANN, the flash flood model was trained and verified. The model performance was validated

via various performance metrics including the classification accuracy rate, the area under the curve,

precision, and recall. Then, the flash flood model that produced the highest performance was

compared with benchmarks, indicating that the combination of FA and LM backpropagation is

proven to be very effective and the proposed FA-LM-ANN is a new and useful tool for predicting

flash flood susceptibility.
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1. Introduction

Floods are considered as one of the major natural disasters in the world, in terms of human

casualties and financial losses [1,2]. Among several types of floods, flash floods are typically disastrous

and are distinguished from regular floods by their rapid occurrence on short timescales, i.e., less than six

hours [3]. Flash flood hazards are often triggered by heavy downpours, torrential rainfalls, or tropical

rainstorms. Reports on the destructive effects of flash floods on human lives have been observed

worldwide [4–9]. Human factors also contribute to the occurrence of flash floods i.e., deforestation

and unplanned land use. Deforestation obviously weakens the capability of flood prevention because

forests significantly reduce water surface runoff and transfer the excess water into the groundwater and

aquifers [10], In addition, the population growth leads to the fact that many newly built settlements

are located in areas susceptible to floods.

Due to the devastating economic, environment, and social aspect effects of flash floods, many

studies have been dedicated to spatial modeling of floods and establishing flood susceptibility maps

at a regional scale [11–14]. This is because the determination of flood-prone areas is an essential

step in the prevention and management of future floods [15,16]. Nevertheless, the construction of

flash flood susceptibility maps is a difficult task, especially in large areas, because flash floods are

complicated processes which have region-dependent features and occur nonlinearly across a variety of

spatio-temporal scales [17].

In recent years, the rapid advancement of Geographic Information System (GIS), remote sensing,

and machine learning have given scientists effective tools for dealing with the complexity of spatial

flood modeling [18–20]. The spatial data extracted from GIS greatly enhances the understanding

and the assessment of flood risks for the whole region under analysis. Moreover, these GIS-based

datasets can be combined with modern machine learning approaches to construct powerful tools for

spatial prediction of floods. New remote sensing sensors i.e., Sentinel-1A and B, provide new tools

for flood detection and mapping with high accuracy [21,22]. Machine learning methods with their

capabilities dealing with nonlinear and multivariate data have proven their usefulness in establishing

flood susceptibility maps in various countries around the world [23].

Moreover, recent reports with positive results of machine learning applications in solving the

problem of interest have been observed extensively in the literature. This is because machine

learning has the ability to explore complicated relationships between factors in various real-world

problems [24,25]. For flood modeling, Nandi, et al. [26] constructed a flood hazard map in Jamaica

based on logistic regression and principal component analysis. A GIS-based flood susceptibility

assessment and mapping using frequency ratio and weights-of evidence bivariate statistical models

have been put forward by Khosravi, et al. [27]. Tien Bui, Pradhan, Nampak, Bui, Tran and Nguyen [15]

and Razavi Termeh, et al. [28] proposed novel data-driven methods based on artificial intelligence

optimized by metaheuristic algorithms for flood susceptibility. Lee, et al. [29] investigated the

applicability of boosted-tree and random forest techniques for flood susceptibility prediction in

a metropolitan city. A probabilistic model based on Bayesian framework for spatial prediction of floods

has been proposed by Tien Bui and Hoang [30]. Chapi, et al. [31] combined a bagging algorithm and

a logistic model tree to create a new tool for flood susceptibility mapping. Sachdeva, et al. [32] recently

incorporated GIS, support vector machine and a swarm optimization algorithm to formulate a flood

risk assessment model applied in India. Rahmati and Pourghasemi [33] analyzed the spatial data and

identified critical flood prone areas with the help of various techniques including the evidential belief

function and the classification trees.
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Among machine learning methods, artificial neural networks (ANNs) are perhaps some of

the most extensively used in flood modeling [34,35] as well as spatial predictions of other natural

hazards [36–39]. This method possesses a strong capability in analyzing nonlinear and multivariate

data as well as the ability of universal modeling. Despite these advantages, the application of ANNs

in GIS-based modeling of flash flood susceptibility is still limited. In addition, previous works

applying ANN in spatial modeling of natural hazards often resorted to gradient-based algorithms with

backpropagation as a conventional way for training the models. This conventional approach updates

the weights of an ANN model to minimize the prediction errors during the training phase. Although

gradient-based algorithms with backpropagation are fast, this training method suffers from the risk

of being trapped in local minima, especially in a multi-modal error space [40]. This disadvantage

significantly deteriorates the predictive capability of ANN-based flash flood prediction models.

To counteract the aforementioned limitation of gradient-based algorithms, metaheuristics as

a global searching method have been employed to improve the ANN training phase. Various

metaheuristic algorithms, such as cuckoo search optimization [41], bat optimization [42], monarch

butterfly optimization [43], shuffled frog leap algorithm [44], kidney-inspired algorithm [45],

and an improved particle swarm optimization [46], have been recently proposed and investigated.

Previous studies show improved performances of metaheuristic-assisted models compared to the

traditional models. A review by Ojha, et al. [47] pointed out an increasing trend of applying

metaheuristics as a tool for ANN models’ construction phase.

The construction of an ANN model involves the optimization of connecting weights; in addition,

the landscape of the error function can be highly complicated with numerous local minima. These facts

entail that the stochastic search of metaheuristic must involve the cooperation of a considerable

number of searching agents (also called population members). The search space exploration of such

searching agents typically represents a huge computational burden and has a slow convergence rate.

Metaheuristic algorithms often require a large amount of function during the optimization of the

ANN models ‘weights. Therefore, it is necessary to combine the advantages of both metaheuristic and

gradient-based algorithms to come up with an effective method for ANN model training.

This study puts forward a novel method, which employs gradient-based algorithm of

Levenberg-Marquardt backpropagation and the metaheuristic firefly algorithm algorithm. In this

integrated framework, the firefly algorithm acts as a global search engine and the backpropagation

algorithm plays the role of a local search with the aim of accelerating the optimization process. To train

and verify the new ANN model used for flash flood susceptibility mapping, the Bac Ha Bao Yen

(BHBY) area in the northwestern region of Vietnam was selected as a case study. This area belongs

to a region which is highly susceptible to flash flooding occurrences due to its relief characteristics,

i.e., rough and steep terrains [10]. Reports on the losses of human lives after the occurrences of flash

floods in this area are regular news in the mass media. For instance, in August 2017, flash floods

isolated many towns in this region and killed 18 people [48].

2. Background of the Methods Used

2.1. Flash-Flood Detection from Multitemporal Sentinel-1A SAR Imagery

Spatial prediction of areas prone to flash flooding using machine learning requires understanding

and learning from events occurred in the past and present [30,49]; therefore, establishment of

flash-flood inventory map is a key issue and mandatory task. A literature review points out that

mapping of flash flood inventories is still the most critical task in the literature because flash floods

are usually characterized both by short temporal and spatial scales that are difficult to observe and

detect [49]. Optical images are not suitable because they are sensitive to illumination and bad weather

conditions [22]. Most of published works collected flash-flood event data using handheld GPS devices

and field surveys, which consume both time and cost, i.e., in [16,20].
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In this research, Sentinel-1A SAR imagery is used for deriving flood inventories. Sentinel-1A

is a satellite launched on 3 April 2014 by the Europe Space Agency (ESA) in the Copernicus

Programme [50]. The mission has a repeat cycle of 12 days providing C-band SAR data (wavelength

3.75–7.5 cm, frequency 4–8 GHz) in four acquisition modes, interferometric wide-swath (IW),

extra wide-swath (EW), wave mode (WV), and strip map (SM). Although Sentine-1A provides two

dual-polarized data sources, co-polarized vertical transmit/vertical receive (VV) and cross-polarized

vertical transmit/vertical receive (VH); however, the VV data provides better results [51,52], therefore

it was selected for flash flood detection in this study. Accordingly, four images (Table 1) were acquired

in IW mode (250 km swath width and 10-m resolution), Level-1 ground range detected (GRD) format,

and ascending direction.

Table 1. Sentinel-1A SAR images used for flash flood detection.

Date of Acquisition Mode Polarization Used Relative Orbit Pass Direction Note

23 July 2017 IW VV 26 Ascending Pre-event
04 August 2017 IW VV 26 Ascending Post-event

30 July 2017 IW VV 128 Ascending Pre-event
10 October 2017 IW VV 128 Ascending Post-event

The proposed methodological approach to obtain flash-flood inventories for the study area

using Sentinel-1A SAR imagery is shown in Figure 1. This approach uses the concept of change

detection that requires image pairs captured pre- and post-flash flood events and the same satellite

track. The processing of the Sentinel-1 GRD imagery consists of the following main tasks: (1) updated

satellite position and velocity information using the precise orbit files, and then, the Lee filter [53]

and multi-looking were applied to remove the speckle in these images; (2) Radiometric calibration was

used to remove radiometric bias and ensure values at pixels are the real backscatter of the reflecting

surface; (3) Range-Doppler terrain correction was applied using shuttle radar topography mission

digital elevation model (SRTM DEM) to remove images distortions and re-projected the resulting

images to the UTM 48N projection of the study area.

Once the processing phase of these images were completed, co-registration between the pre-flash

flood and post-flash flood images were performed, and subsequently, flash flood areas were detected.

These flood areas were manually digitalized using ArcGIS. Finally, these flash flood results were

randomly checked in the fieldwork phase using handhold GPS. Figure 2 shows flash flood areas

detected by the above Sentinel-1A SAR imagery.

 

Figure 1. Methodological flow chart for flash-flood detection using the multi-temporal Sentinel-1

SAR images.
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Figure 2. Flash flood areas detected from the Sentinel-1 SAR images.

2.2. Artificial Neural Network for Flash Flood Modeling

A multilayer artificial neural network (ANN) is a supervised machine learning algorithm which

imitates the characteristics of actual biological neural networks [54]. An ANN can be trained with

input data (flash flood conditioning factors) with ground truth labels (flash-flood and non-flash-flood);

the trained ANN model is then used to predict the output class labels of flash flood occurrences.

Generally, the structure of an ANN is arranged into three connected layers: input, hidden, and output

(see Figure 3). The first layer contains neurons, which are flash flood conditioning factors. The second

layer, including individual neurons, perform the task of information processing to yield the class labels

of flood susceptibility in the output layer.
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Figure 3. The structure of an ANN model used for spatial prediction of flash flood.
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The aim of training flash flood prediction model is to determine a mapping function

f : X ∈ RD → YC f : X ∈ RD → T ∈ RC where D denotes the number of input flash flood factors and

C = 2 is the two output classes, no flood (C1 = −1) and flood (C2 = +1). The mapping function f can be

briefly described in the following form [55]:

Y1 = f1(X) = b21 + W2 × ( fA(b1 + W1 × X))

Y2 = f2(X) = b22 + W2 × ( fA(b1 + W1 × X))
(1)

where W1 and W2 are two weight matrices (see Figure 3). b1 = [b11 b12 . . . b1N] and b2 = [b21 b22] are

bias vectors; fA denotes the log-sigmoid activation function given as follows:

fA(nj) =
1

1 + exp(−nj)
, (2)

where j = 1, 2, . . . , N.

In the ANN learning phase, the weight matrices and the bias vectors are adapted via the

framework of error backpropagation [56]. The Mean Square Error (MSE) is used as objective function

as follows:

MSE = min
W1,W2,b1,b2

1

M

M

∑
i=1

er2
i , (3)

where M is the total number of the samples in the training set; eri is output error; eri = Yi,P − Yi,A;

Yi,P and Yi,A are predicted and actual values, respectively.

Notably, for not large data sets, the Levenberg–Marquardt algorithm (LM) [57,58] is a suitable

method for training ANN structures. The advantage of the LM method is recognizable through its

fast and stable convergence [59]. In this approach, the weights of an ANN model can be adapted

by Equation (4) [57]:

w(i+1) = wi −
(

JT
i Ji + λI

)−1
JT
i eri, (4)

where J denotes the Jacobian matrix; I represents the identity matrix; λ is the learning rate parameter.

2.3. Firefly Algorithm (FA) for Optimizatizing Flash Flood Model

FA is a swarm-based algorithm proposed by Yang [60], which was inspired by the flashing

communication of fireflies. The pattern of firefly flashes is unique where each firefly in the swarm is

attracted to brighter ones, and meanwhile, it explores and searches for prey randomly. FA is considered

as a global optimization method, in which, an advanced swarm intelligence is used to search and

find the best solution, effectively [61]. Thus, FA has proven as a highly suitable tool for dealing

with complex optimization problems in continuous space, including the problem of neural network

training [62,63]. Recent studies have shown excellent performances of FA when applied in various

domains [64–67]. In general, the FA method utilizes the following rules [68]:

• All fireflies of a swarm are unisex; therefore, a firefly will be attracted to other fireflies without

paying attention to their sex.

• The attractiveness degree of a firefly is directly related to its brightness. The attractiveness will

be decreased when the distance is increased. If no bright signal is received from other fireflies,

the firefly will move randomly.

• The brightness of a firefly is determined intern of cost function.

The FA pseudo code is illustrated in Figure 4 below:



Sensors 2018, 18, 3704 7 of 26

Begin FA 

Establish the cost function f(x) 

Create an initial swarm with n fireflies 

Relate the light intensity I to f(x) and determine the absorption coefficient γL 

While (iteration < Maximum Iteration)  

For i = 1 to n  

For j = 1 to n (all n fireflies)  

If (Ij > Ii), moving firefly i to firefly j 

End if  

Assess the fitness of new solutions; update the light intensity  

End For 

End For 

Sort the fireflies according to the fitness and find the best position 

End while 

Finalize the global optimization result 

End FA 

 

γ

β

 






 

γ β 


— —

, between longitudes of 104°10′ –105°37′ E and latitudes of 22°5′ –22°40′

Figure 4. The FA used for global optimization.

The light intensity I(r) is computed using Equation (5) as follows:

I(r) = Io exp(−γLr2), (5)

where Io represents the light intensity of the firefly source; γL is the light absorption coefficient;

and r denotes the distance from the firefly source.

The attractiveness degree β of a firefly in the swarm is estimated using Equation (6):

β = βo exp(−γLr2), (6)

Distance of any two fireflies xi and xj in the swarm in dimensional space (D) is defined using

Equation (7) as follows:

rij = ‖xi − xj‖ =

√

√

√

√

D

∑
k=1

(xi,k − xj,k)
2, (7)

When a specific firefly xi gets bright signal from firefly xj, it will move to the ith firefly using

Equation (8) below:

xi = xi + βo exp(−γLr2
ij)(xi − xj) + α(ω − 0.5), (8)

where γL is the light absorption coefficient; β0 is the attractiveness at rij = 0; α denotes a trade-off

constant; and ω is a random number deriving from the Gaussian distribution.

3. The Study Site and the GIS Database

3.1. Study Area

The study area (see Figure 5) covers two districts—Bac Ha and Bao Yen (BHBY)—which belong to

Lao Cai Province in the northwestern area of Vietnam. BHBY occupies an area of about 1510.4 km2,

between longitudes of 104◦10′ E–105◦37′ E and latitudes of 22◦5′ N–22◦40′ N. The altitude ranges

between 38.9 m at the river valleys to 1878.69 m above sea level at the mountain range of Bac Ha.

This is typically a mountainous region with a complex network of rivers. Two main rivers flow in

the study area, the Hong River and Chay River. The first one, which bisects the province and flows

through the study area with a length of approximately 28.7 km is the biggest river. The second one is

the major river flowing from north to south, with an estimated length of 91.6 km.



Sensors 2018, 18, 3704 8 of 26

 

–

–

Figure 5. Location of the study area and flood locations.

Since the BHBY is a typical mountainous area, it has a cold-dry climate, which often lasts

from October to March. The other months from April to September correspond to the rainy season.

According to the Lao Cai statistical yearbook from 2010–2016 (measured at the Bac Ha station) [69],

monthly rainfall varied from 9.0 mm (March 2010) to 540 mm (August 2016) and the total rainfall per

year was from 1280.2 mm (2015) to 1844.9 mm (2016). More than 80% of the total rainfall per year was

received in the rainy season. The rainfall is concentrated especially in three months (June to August),

with the total rainfall of these three months accounting for more than 50% of the yearly rainfall [69].

For the period of 2010–2016, the annual average temperature varied from 19.27 ◦C and 23.77 ◦C with

the lowest monthly temperature being 10.6 ◦C in January 2014 (measured at the Bac Ha station) and

the highest monthly temperature was 29.5 ◦C in June 2015 (measured at the Bao Yen station) [69].

Total population of the study area is 145,208 people in 2017 [69] and they mainly belong to

ethnic minority groups that are highly vulnerable to natural hazards, especially flash floods, due to

population growth and deforestation [70]. For instance, recent severe and torrential rainstorms caused

by a tropical depression occurred on October 2017 in northern Vietnam (including the study area)

created widespread flash floods and destroyed more than 16,000 houses.

3.2. Flood Inventory Map and Conditioning Factors

Prediction of flash-flood prone areas in this research is based on a statistical assumption that

future-flash flooding areas are governed by the same conditions which generated flash-flooded zones in

the present and the past [30]. Therefore, flash-flood inventories and their geo-environmental conditions
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(i.e., topological, climatic, and hydrological characteristics) in the past and present must be extensively

studied and collected [20,28].

In this research, the flash-flood inventory map with 654 flash flood polygons was used

(see Figure 5). The map was constructed based on the change detection of the Sentinel-1A SAR imagery

as mentioned in Section 2.1. Although the data for this study is from 2017, however, flash floods are

recurrent events; therefore, severe flash flood locations in the BHBY area were revealed.

The next step is to determine flash-flood influencing factors, a crucial task. Literature review

shows that it is still no consensus on which factors must be used, and in general, factors should

be selected based on flash-flood characteristics and the availability of geospatial data in the study

areas [28,71]. Accordingly, a total of 12 conditioning factors were considered in this study: elevation

(IF1), slope (IF2), aspect (IF3), curvature (IF4), topographic wetness index (TWI) (IF5), stream power

index (SPI) (IF6), toposhade (IF7), stream density (IF8), rainfall (IF9), normalized difference vegetation

index (IF10), soil type (IF11), and lithology (IF12).

To prepare data for flash-flood modeling, a GIS database (see Figure 6) was established,

which contains historical flash-flood events in 2017, topographic maps and their features, Landsat

8 imagery (30 m resolution, acquired on 20 December 2017 [72]), geology, and total rainfall in

October 2017 at measure stations in and around the study area are acquired. The schematic maps

of the 12 factors are shown in Figure 7. These factors were processed using ArcGIS 10.4 and IDRISI

Selva 17.01.

 

compiled inventory database includes two class outputs: “flood” and “non d”. As stated above, 
flood locations have been recorded; therefore, 654 data samples of the “flood” label 

–

Figure 6. The established GIS database for the flash-flood modeling.

Next, a Python tool was programed by the authors to generate the flash-flood susceptibility map

in the form of the indices produced by the flash-flood model in the ArcGIS environment. The compiled

inventory database includes two class outputs: “flood” and “non-flood”. As stated above, in this study,

654 flood locations have been recorded; therefore, 654 data samples of the “flood” label are extracted

from the flood inventory map. Because flash-flood modeling in this research is based on machine

learning classification, which is different to that of traditional flood modeling approaches; therefore,

654 data samples of non-flood areas are randomly generated from not-yet flood areas [73]. Herein,

equal proportion of the samples is suggested to use for avoiding bias [73–75]. Consequently, a total of

1308 data samples are derived.
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Figure 7. Flash flood conditioning factors: (a) elevation; (b) slope; (c) aspect; (d) curvature;

(e) Topographic Wetness Index; (f) Stream Power Index. Flash flood conditioning factors: (g) toposhade,

(h) stream density; (i) rainfall; (j) Normalized Difference Vegetation Index; (k) soil type; and (l) lithology.
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4. The Proposed Metaheuristic-Optimized Neural Network Model for Flash Flood
Susceptibility Prediction

This section provides description of the proposed flash flood prediction model that

integrates the ANN machine-learning model and the FA metaheuristic approach improved by the

Levenberg–Marquardt (LM) algorithm. The hybrid method of FA and LM, denoted as FA-LM,

is proposed as the method for training the ANN model. After being trained, the FA-LM trained

ANN, denoted as FA-LM-ANN, can assign class labels (either non-flash flood or flash flood) to each

input information containing the aforementioned 12 conditioning factors.

The overall structure of the proposed model is depicted in Figure 8.

–

 

Figure 8. The proposed metaheuristic-optimized neural network model for flash flood

susceptibility prediction.

4.1. Encoding the ANN Structure for Flash Flood Modeling

The structure of an ANN model is generally determined by its weight matrices W1 and W2.

The size of the matrix W1 is NR × NI + 1 where NR and NI denote hidden neurons and input neurons,

respectively. It is noted that the number of column of W1 is NI + 1 to include a vector of bias. In this

analysis, NI = 12 which is the number of flash flood conditioning factors. The number of neurons in

the hidden layer should be large enough to facilitate the learning and inferring complex mapping

functions. However, the value of NR should not be too large since the resulting ANN model can be

difficult to train and exceedingly complex model is highly susceptible to overfitting.

According to the recommendation of Heaton [76], NR is roughly set to be NR = 2NI/3 + NO,

where NI = 12 (flash flood conditioning factors) and NO = 2 (output or flood susceptibility). Moreover,

a value of NR that exceeds 1.5 × NI often results in longer training time without significant

improvements in predictive accuracy. Based on such suggestions and several trial-and-error runs,

NR for the ANN trained with the collected data set is chosen to be 9. Moreover, the size of the matrix
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W2 is NO × NR + 1. Notably, it is required that a solution of the FA-LM algorithm is coded in forms

of a vector. Hence, the two matrices W1 and W2 are vectorized and then concatenated to construct

a solution. Accordingly, the total number of decision variables optimized by the FA-LM optimization

is estimated as NR × (NI + 1) + NO × (NR + 1) and equal to 137.

4.2. Proposed Cost Function for Flash-Flood Modeling

During the searching process of the FA-LM optimization, to exhibit the appropriateness of each

solution, a cost function must be defined. The cost function (CF) of the FA-LM algorithm is given

as follows:

CF =
MSETR + MSEVA

2
, (9)

where MSETR and MSEVA denote the mean squared error (MSE) for the training dataset (80% of the

total model construction samples) and the validating dataset (20% of the total model construction

samples), respectively. The rationale of the cost function described in Equation (9) is to guide the FA-LM

searching process to minimize the prediction error for both the training dataset and the validating

dataset. The reason for the inclusion of validating data sample in the calculation of the cost function is

to alleviate overfitting. It is noted that overfitting happens when the constructed model has a very

good performance on the training set; however, its performance when predicting novel input data is

very poor. Thus, it is important that the ANN model have good prediction accuracy in both training

set and validating set.

4.3. The FA-LM Algorithm: A Hybridization of Metaheuristic Optimization and LM Backpropagation

The FA-LM optimization algorithm is employed in this study as the training algorithm. FA-LM is

a combination of FA and LM backpropagation algorithms. The FA metaheuristic algorithm plays the

role as the main optimization method. Based on the initially created population, this algorithm guides

the population of ANN model structures to better solutions. Since the problem of constructing an

ANN model from a data set is highly complex and features many local minima [53], the application of

FA as metaheuristic approach can help the training process to avoid local convergence and reduce the

possibility of local traps. It is noted that the LM algorithm has been implemented via the help of the

MATLAB’s Statistics and Machine Learning Toolbox [77]. In addition, the FA and the hybrid FA-LM

algorithms have been programmed in MATLAB by the authors.

In addition, the LM backpropagation is used as a local search method at certain generations during

the FA optimization process. Aiming at accelerating the optimization process as well as preventing

the stagnation of the FA’s population, the backpropagation with LM algorithm is performed with

a randomly selected solution once in 10 generations. This integrated algorithm of FA-LM is illustrated

via the pseudo code given in Figure 9. It is noted that the population size of the FA is 100 and the search

domain of [−10, 10]. The population is then optimized by the FA-LM algorithm with the maximum

number of generation (GMAX) = 1000. The LM backpropagation is performed with a randomly selected

member of the current population. For reducing the computational expense, the LM backpropagation

is activated one times in 10 generations. The number of backpropagation training epochs is 1000 and

the learning rate used is 0.01, respectively. After being the FA-LM optimization process is accomplished,

the trained ANN model is ready for the task of spatial prediction of flash flood occurrences.



Sensors 2018, 18, 3704 14 of 26

Set the range of solution RX = [−10, +10], population size PS = 100 

Generate an initial population X within RX 

Define the cost function CF, locate the best-found solution Xbest 

Set the current generation iter = 1 and switching probability p = 0.8 

Set the LM training interval: ILM = 10; set the LM training epoch EP = 1000 

Set the maximum number of generations IterMAX = 1000 

While iter < IterMAX 

 iter = iter + 1 

 For each member Xi in X 

  Update locations of fireflies 

  Update the best-found solution Xbest 

 End For 

 If Perform LMBP is true 

  Randomly select a solution Xj in X 

  Convert Xj into matrices of ANN weights 

  ep = 0 

  While ep < EP 

   ep = ep + 0 

   Update ANN weight matrices using LM algorithm 

  End While 

  Vectorize ANN model to obtained Xj_LMBP 

  If CF(Xj_LMBP) < CF(Xj) 

   Xj = Xj_LMBP 

  End If 

  Update the best-found solution Xbest 

 End If 

End While 

Return Xbest 

Figure 9. The prosed hybrid FA-LM algorithm for training the ANN model.

5. Results and Discussion

5.1. Training Results and Performance Assessment

As mentioned earlier, the dataset consisting of 1308 samples is used to construct and verify

the ANN based flash flood susceptibility prediction model. This data set is randomly divided into

two separated groups: data for model construction (70%) and data for testing (30%) [16,20,31,78,79].

The first group is further partition into two subsets of the training set (80% of the model construction

samples) and the validating set (20% of the model construction samples), respectively. Moreover,

it is noted that the 12 flood influencing factors have been converted from categorical classes (shown in

Figure 7) into continuous values within the range of 0.01 and 0.99 using the approaches described in

Tien Bui, et al. [80]. The process of this data conversion process is to fend off the situation where large

values of flash-flood conditioning factors dominate other with small values. Accordingly, the statistical

description of the flash flood influencing factors is provided in Table 2.

It is also worth noticing that to further facilitate the training phase of ANN, the data set is then

normalized by the Z-score transformation [81]. The formula of the Z-score transformation is described

in the following equation:

IFN =
IFO − mIF

sIF
, (10)

where IFN and IFO denotes the normalized and the original influencing factor (IF), respectively. mIF and

sIF are the mean value and the standard deviation of the IF, respectively.
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Table 2. Statistical description of the collected data.

Influencing Factor Min Mean Median Standard Deviation Skewness Max

IF1 0.010 0.165 0.010 0.257 1.747 0.990
IF2 0.010 0.248 0.120 0.286 0.806 0.990
IF3 0.100 0.594 0.620 0.262 0.118 0.990
IF4 0.010 0.479 0.500 0.180 0.606 0.990
IF5 0.010 0.601 0.660 0.308 0.329 0.990
IF6 0.010 0.200 0.170 0.228 1.074 0.990
IF7 0.010 0.213 0.010 0.256 0.842 0.990
IF8 0.010 0.416 0.340 0.282 0.240 0.990
IF9 0.010 0.428 0.400 0.301 0.063 0.990

IF10 0.010 0.553 0.570 0.264 0.491 0.990
IF11 0.010 0.273 0.170 0.208 1.660 0.990
IF12 0.010 0.294 0.160 0.285 0.847 0.990

Additionally, to compute the predictive performance of the flash-flood model, the classification

accuracy rate (CAR) for class i is calculated using Equation (11):

CARi =
Ri

C

Ri
A

× 100(%) (11)

where Ri
C and Ri

A are the number of samples in class i-th being categorized correctly and the total

number of samples in class i-th, respectively. It is worth reminding that there are two class labels,

flash flood and non-flash flood.

Performance of the flash-flood models, beside CAR, other statistical metrics can be used

i.e., true positive rate (TPR), false positive rate (FPR), false negative rate (FNR), and true negative

rate (TNR) [82,83]:

TPR =
TP

TP + FN
; FPR =

FP

FP + TN
; FNR =

FN

TP + FN
; TNR =

TN

TN + FP
, (12)

where TP is true positive; TN is true negative; FP is false positive, and FN is false negative.

In addition, the precision and recall, which are computed using Equations (13) and (14) below,

can be used:

Precision =
TP

TP + FP
, (13)

Recall =
TP

TP + FN
, (14)

In addition to the above performance measurement indices, the Receiver Operating Characteristic

(ROC) curve [84] is also used to summary the overall performance of the flash-flood model and a better

model is characterized by a high value of AUC.

The optimization process of the hybrid algorithm of FA and LM is illustrated in Figure 10.

It can be seen from the figure that the proposed training algorithm can help the ANN model to

converge quickly within the allowable number of optimization iteration. The predictive performance

of the proposed FA-LM-ANN model is reported in Table 3. It can be seen that the FA-LM-ANN model

has obtained good performances in both training (CAR = 92.188% and AUC = 0.985) and testing phase

(CAR = 93.750% and AUC = 0.970). The model also achieves desiring values of Precision (0.938) and

Recall (0.968) in the testing phase. The ROCs of the FA-LM-ANN are illustrated in Figure 11.
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Figure 10. Optimization process of the proposed hybridization of FA and LM.

Table 3. Prediction performance of the FA-LM ANN model.

Phases
Performance Measurement Indices

CAR (%) AUC TPR FPR FNR TNR Precision Recall

Training phase 92.188 0.985 0.976 0.177 0.024 0.824 0.910 0.976

Testing phase 93.750 0.970 0.968 0.118 0.032 0.882 0.938 0.968

Figure 11. ROCs of the proposed FA-LM-ANN model: (a) training phase; (b) testing phase.

The final trained FA-LM-ANN model in this research is shown in Figure 12, where the total

of 137 weight parameters have been searched and optimized using the proposed FA-LM algorithm.

In addition, details of the predicted and actual output data in both the training and testing sets are

illustrated in Figure 13. To simplify the presentation of the figure, the class labels of non-flood and flood

have been encoded as 0 and 1, respectively. The mean and the standard deviation of the prediction

deviation of the data in the training set are 0.039 and 0.320, respectively. For the data in the testing set,

the mean and the standard deviation of the prediction deviation are 0.050 and 0.324, respectively.
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Figure 12. The final trained FA-LM-ANN model for flash-flood susceptibility mapping in this study.

 

(a) 

Figure 13. Cont.
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(b) 

–

ANN’s training algorithm.

Figure 13. Details of the predicted and actual output data: (a) Prediction deviation and (b) Prediction

Error Distribution.

5.2. Model Comparison

For the purpose of result comparison, the performance of the proposed FA-LM ANN is

benchmarked against those of the LM-ANN, FA-ANN, support vector machine (SVM) and classification

tree (CT). The reason for selecting these models is that both SVM and CT have been successfully

employed in flood susceptibility assessment [16,20,38,39,84] and other natural hazards such as

landslides [36,38,85–87]. These benchmark models are implemented in MATLAB environment via the

Statistics and Machine Learning Toolbox [77]. The methods of ANN trained with the conventional

backpropagation algorithm are employed in spatial prediction of natural hazards [37,39,88]. In addition,

by comparing the performances of the ANN trained with the metaheuristic approach of FA

and the proposed FA-LM ANN can help to point out the advantage of the new hybrid ANN’s

training algorithm.

To employ the LM-ANN, FA-ANN, SVM, and CT models, it is necessary to select their tuning

parameters. In this section, the tuning parameters that lead to the best testing performance of models

are selected. For the DT model, the minimal number of observations per tree leaf is selected to 1 as

per default settings in MATLAB toolbox [77]. The crucial parameter of LM-ANN and FA-ANN is Nr

(the number of hidden neurons). In the experiment, as suggested by Heaton [76], this parameter of

these two ANN models is set to be 9 which is equal to Nr of the proposed FA-LM-ANN. In addition,

the maximum number of training epochs = 5000 is used to train the LM-ANN model and the FA-ANN

is optimized with a maximum number of iteration = 1000. For the SVM model, the regularization

parameter and the RBF kernel parameter are selected based on the grid search as explained in Hoang

and Bui [89].

The prediction results of the prediction models are summarized in Table 4. Considering the model

performances in the testing phase, the proposed FA-LM-ANN model has achieved the highest values

of CAR (93.750%), AUC (0.970), Precision (0.938), and Recall (0.968). The second-best model is SVM

with CAR = 91.667%, AUC = 0.960, Precision = 0.909, and Recall = 0.968, followed by FA-ANN, CT,

and LM-ANN. It can be noticed that there is an improvement in CAR when the ANN model is trained

by the FA algorithm (91.667%) instead of the LM backpropagation (88.931%); however, the AUC value

of the first approach (0.917) is worse than that of the second approach (0.937). In addition, Figure 14
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provides the comparison of the convergence rates between the two ANN training approaches of

FA-LM and LM. It can be observed from this figure that the convergence of the model training phase

performed by FA-LM is faster than that performed by LM.

Table 4. Result comparison.

Performances
Prediction Models

FA-LM ANN LM-ANN FA-ANN SVM CT

Training Phase

CAR (%) 93.750 92.639 94.792 92.708 98.958
AUC 0.986 0.957 0.972 0.984 0.999
TPR 0.984 0.973 0.960 0.992 1.000
FPR 0.147 0.121 0.074 0.191 0.029
FNR 0.016 0.027 0.040 0.008 0.000
TNR 0.853 0.880 0.927 0.809 0.971

Precision 0.924 0.890 0.960 0.904 0.984
Recall 0.984 0.973 0.960 0.992 1.000

Testing Phase

CAR (%) 93.750 88.931 91.667 91.667 89.583
AUC 0.970 0.937 0.917 0.960 0.904
TPR 0.968 0.924 0.936 0.968 0.936
FPR 0.118 0.145 0.118 0.177 0.177
FNR 0.032 0.076 0.065 0.032 0.065
TNR 0.882 0.855 0.882 0.824 0.824

Precision 0.938 0.864 0.936 0.909 0.906
Recall 0.968 0.924 0.936 0.968 0.936

 

Figure 14. Comparison of convergence rates between FA-LM ANN and LM-ANN.

To further confirm the predictive capability of the proposed model, a ten-fold cross validation

process is also performed in this section. Using the cross validation process, the training and testing

phase of the prediction models are carried out 10 times. In each time, 90% of the data set is employed

for model construction; 10% of the data set is reserved for model testing. The experimental outcomes

are reported in Table 5 which shows the mean and the standard deviation (Std.) of the flash flood

susceptibility classification results. It can be observed that the proposed FA-LM ANN has achieved the

highest average predictive performance in terms of CAR = 90.137% and AUC = 0.970. This outcome is

clearly better than those of LM-ANN (CAR = 88.154% and AUC = 0.926), FA-ANN (CAR = 89.308%
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and AUC = 0.919), SVM (CAR = 87.923% and AUC = 0.929), and CT (CAR = 87.077% and AUC = 0.908).

Overall, comparing with FA-ANN and LM-ANN, there are significant enhancements in terms of both

CAR and AUC when the ANN is constructed by means of the hybrid FA-LM approach.

Table 5. Result of the 10-fold cross validation process.

Performance
Prediction Models

FA-LM ANN LM-ANN FA-ANN SVM CT

Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.

CAR (%) 90.137 2.614 88.154 2.383 89.308 2.034 87.923 1.851 87.077 2.372
AUC 0.970 0.016 0.926 0.022 0.919 0.029 0.929 0.016 0.908 0.032
TPR 0.945 0.033 0.962 0.032 0.959 0.018 0.926 0.028 0.902 0.023
FPR 0.165 0.065 0.199 0.052 0.172 0.050 0.168 0.037 0.160 0.048
FNR 0.056 0.015 0.039 0.011 0.042 0.009 0.074 0.001 0.099 0.006
TNR 0.835 0.065 0.802 0.052 0.828 0.050 0.832 0.037 0.840 0.048

Precision 0.914 0.030 0.831 0.035 0.849 0.036 0.848 0.027 0.851 0.036
Recall 0.945 0.033 0.962 0.032 0.959 0.018 0.926 0.028 0.902 0.023

5.3. Establishment of the Flash Flood Susceptibility Map

Because both the training and testing results have pointed out that FA-LM-ANN is the best model

for the dataset collected in the BHBY area, the model is then employed to compute the flash-flood

susceptibility for each of all the pixels in the study area.

The predictive results of flash flood susceptibility are transformed to a grid format using the

python tool (mentioned in Section 3.2) and open in ArcGIS 10.4 software (ESRI Inc., Redlands,

CA, USA). Based on these computed indices, the flash-flood susceptibility map (see Figure 15)

was obtained and visualized by mean of five classes: very high, high, low, very low, and no.

The thresholds for dividing these computed indices into the five classes were determined by using the

natural break classification method [90].

 

Figure 15. Flash flood susceptibility map for the study area.
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Interpretation of the flash-flood susceptibility map shows that all flash flood locations are located

in the two classes, very high and high, indicating that that the proposed FA-LM-ANN model has

successfully determined flash flood prone areas.

6. Conclusions

This research proposes a new methodology using Sentinel-1 SAR imagery and machine learning

techniques for spatial prediction of flash flood hazards. The SAR imagery was used to detect flash

flood locations, whereas the proposed FA-LM-ANN was used to establish the flash flood prediction

model. The methodology was applied for the Bac Ha Bao Yen (BHBY) area, a most flood-prone area

in Vietnam. Accordingly, the GIS database was established containing the information regarding

historical cases of flash flood events and 12 flood-conditioning factors.

The advantage of the Sentinel-1 SAR imagery with the change detection method is the ability to

capture and detect flash flood areas with high accuracy. However, flash floods often occur in a short

time; therefore, this method is feasible for flash flood mapping if the Sentinel sensor captures the images

at the time of flash flood occurrence. Regarding the proposed FA-LM-ANN, this artificial intelligence

model is capable to meliorate the model performance. This is because FA is employed as a swarm

intelligence method to optimize the parameter of ANN so that a decision boundary for classification

of non-flood and flood locations can be identified accurately, whereas LM backpropagation serves as

a local search method to increase the convergence of the swarm intelligence-based training algorithm.

Because the proposed FA-LM-ANN is constructed with 12 input neurons, nine hidden neurons,

and one output neuron, which results in 119 weights, therefore, the search space of the FA has

119 dimensions. In other words, the coordination of each firefly consists of 119 parameters. The swarm

of 100 fireflies was used with 1000 running iterations have resulted in 100,000 searches for possible

combinations the weighs of the FA-LM-ANN model. Consequently, the high prediction capability of

the proposed flash-flood model indicates that the hybridization of FA—a metaheuristic algorithm and

the LM backpropagation has trained the model successfully.

Compared to benchmarks like LM-ANN, FA-ANN, SVM, and DT, the prediction result of the

proposed model is better; therefore, it can be concluded that the proposed FA-LM ANN is a very

promising tool to assist decision makers, especially local authorities, in developing effective flash flood

countermeasures and land-use planning. Future extensions of the current study may include applying

the newly constructed model for predicting flood risks in other study areas and enhancing the learning

capability of the proposed model with other metaheuristic optimization algorithms.
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