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Abstract 30 

The H-matrix best linear unbiased prediction (HBLUP) method has been widely used in 31 

livestock breeding programs. It can integrate all information, including pedigree, genotypes, 32 

and phenotypes on both genotyped and non-genotyped individuals into one single evaluation 33 

that can provide reliable predictions of breeding values. The existing HBLUP method (e.g., 34 

that implemented in BLUPf90 software) requires hyper-parameters that should be adequately 35 

optimised as otherwise the genomic prediction accuracy may decrease. In this study, we assess 36 

the performance of HBLUP using various hyper-parameters such as blending, tuning and scale 37 

factor in simulated as well as real data on Hanwoo cattle. In both simulated and cattle data, we 38 

show that blending is not necessary, indicating that the prediction accuracy decreases when 39 

using a blending hyper-parameter < 1. The tuning process (adjusting genomic relationships 40 

accounting for base allele frequencies) improves prediction accuracy in the simulated data, 41 

confirming previous studies, although the improvement is not statistically significant in the 42 

Hanwoo cattle data. We also demonstrate that a scale factor, 𝛼𝛼 , which determines the 43 

relationship between allele frequency and per-allele effect size, can improve the HBLUP 44 

accuracy in both simulated and real data. Our findings suggest that an optimal scale factor 45 

should be considered to increase the prediction accuracy, in addition to blending and tuning 46 

processes, when using HBLUP.  47 

Author Summary 48 

Despite significant advancements in genotyping technologies, the capability to predict the 49 

phenotypes of complex traits is still limited. H-matrix best linear unbiased prediction (HBLUP) 50 

method has been used to tackle this limitation to demonstrate a promising prediction accuracy. 51 

However, the performance of HBLUP depends heavily on the optimisation of hyper-52 
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parameters (e.g. blending and tuning). In this study, we introduce a scale factor (α), as a new 53 

hyper-parameter in HBLUP, which accounts for the relationship between allele frequency and 54 

per-allele effect size. Using simulation and real data analysis, we investigate the impact of the 55 

hyper-parameters (blending, tuning, and scale factor) on the performance of HBLUP. In 56 

general, the blending process may not improve the prediction accuracy for simulation and cattle 57 

data although a marginally improved prediction accuracy is observed with a blending hyper-58 

parameter = 0.86 for one of carcass traits in the cattle data. In contrast, the tuning process can 59 

increase the HBLUP accuracy particularly in simulated data. Furthermore, we observe that an 60 

optimal scale factor plays a significant role in improving the prediction accuracy in both 61 

simulated and real data, and the improvement is relatively large compared with blending and 62 

tuning processes. In this context, we propose considering the scale factor as a hyper-parameter 63 

to increase the predictive performance of HBLUP.  64 

  Introduction 65 

Genomic prediction can achieve a relatively accurate prediction of additive genetic values or 66 

future phenotypes at an early life stage and has been applied in a broad range of disciplines, 67 

including animal breeding [1] and human disease risk prediction [2-4].  68 

Genomic prediction requires genotypic information for both discovery and target samples. 69 

Genome-wide single nucleotide polymorphisms (SNPs) are typically used to estimate the 70 

genomic relationship matrix (GRM) for the genotyped samples so that breeding values (in 71 

livestock) can be estimated for the target samples, given the phenotypic information of 72 

discovery samples [5,6]. In many cases, we may have individuals with useful phenotypic 73 

information that are not genotyped, but they may be linked with genotyped samples through a 74 

pedigree, i.e., missing genotype data. To address this problem, a single-step genomic best linear 75 

unbiased prediction (ssGBLUP) method was introduced, in which phenotypic information on 76 
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both genotyped and non-genotyped individuals in the pedigree can be used simultaneously to 77 

maximise the prediction accuracy of genotyped target individuals [7-9].  78 

SsGBLUP uses an H-matrix that is a harmonised matrix of a pedigree-based numerator 79 

relationship matrix (NRM) and a GRM; therefore, we will use the term H-matrix best linear 80 

unbiased prediction (HBLUP). The H-matrix allows us to use the information of non-81 

genotyped individuals in genomic prediction using a data augmentation technique (see [7, 8] 82 

and [10]). HBLUP has been widely used in the genetic evaluation of livestock and has been 83 

employed in the national genetic evaluation program in many countries [11-19]. There are 84 

numerous studies reporting that HBLUP outperforms traditional GBLUP [20-23].  85 

 86 

In HBLUP, there are several hyper-parameters that can determine its performance. First, 87 

blending is one of the hyper-parameters that can provide a weighted sum of genomic and 88 

numerator relationships, using an arbitrary weight typically ranging from 0.5 to 0.99 [13]. This 89 

process is essential because it ensures GRM being a positive definite matrix to avoid numerical 90 

problems in HBLUP [7, 24]. Second, tuning is another important hyper-parameter that can 91 

adjust GRM, accounting for the allele frequencies in the base population that are inferred from 92 

the information of NRM [7, 8, 25, 26]. Note that GRM is typically based on genotyped samples 93 

in the last few generations, whereas NRM includes the information of founders in the base 94 

population through the pedigree. Third, a scale factor is a novel hyper-parameter for HBLUP, 95 

to be introduced in this study, which can generate different kinds of GRMs, accounting for the 96 

relationship between allele frequency and per-allele effect size, i.e. per-allele effect sizes vary, 97 

depending on a function proportional to [p (1 − p)] α, where p is the allele frequency [27-30]. 98 

Negative 𝛼𝛼  values indicate lager effect sizes for rare variants, and the choice of 𝛼𝛼  may 99 

determine the HBLUP accuracy, i.e., an optimal 𝛼𝛼 can increase the accuracy.  100 
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   101 

In this study, we investigate for the three hyper-parameters, blending, tuning and 𝛼𝛼, to assess 102 

how they affect HBLUP accuracy, using simulated and real data. There are several tuning 103 

methods [7, 13, 25, 26] among which we test two most frequently used approach, i.e. methods 104 

by Chen et al. (2011) [26] and Vitezica et al. (2011) [25], referred to as tune=1 and 2 in this 105 

study. For blending, we investigate a wide range of weighting factor (𝜃𝜃 ), to assess the 106 

performance of HBLUP. In the analyses, we use the direct AI algorithm [31, 32] that is robust 107 

to the numerical problem caused by non-positive definite GRM so that we can assess all kinds 108 

of weighting factors in blending, including 𝜃𝜃 = 1. We also assess HBLUP performance, varying 109 

the scale factor, ranging from 𝛼𝛼 = -1.5 to 1.5, in the estimation of GRM. We consider the three 110 

hyper-parameters simultaneously to obtain optimal values for blending, tuning and 𝛼𝛼, using a 111 

grid search method [33]. Then, the performance of HBLUP with the optimal values is 112 

compared to performances with less optimal values.  113 

 114 

Material and Methods 115 

 116 

Simulated data 117 

QMSim software [34] was used for simulation since it can efficiently generate a large-scale 118 

dataset including genotypic and pedigree information. We simulated three different scenarios 119 

that differed in terms of the effective population size, mating design, and family structure.  120 

I. The historical population consists of 100 generations. For the initial 95 generations, 121 

the effective population size (𝑁𝑁𝑒𝑒 ) keeps fixed at 100 individuals, consisting of 50 122 

females and 50 males. Two offspring are generated with random selection and random 123 
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mating of parents. In the following five generations (95th-100th), the number of 124 

progenies is gradually increased to 1000. In the last generation of the historical 125 

population (the 100th generation), we select randomly 50 males and 500 females as the 126 

founders, and each male is mated with ten females and each female produced two 127 

offspring (i.e., a half-sib design). The current population consists of five generations 128 

with 1000 offspring in each generation (101 – 105th generations), which is used for the 129 

main analyses. The details of applied parameters in the simulation of genotypic and 130 

pedigree data are listed in Table 1. The steps to simulate the historical and current 131 

populations are illustrated in S1 Fig.   132 

II. In the second simulation scenario, 𝑁𝑁𝑒𝑒 = 1000 is used (500 females and 500 males) with 133 

a historical population of 100 generations. The population size for each generation in 134 

the historical population with 100 generations is constant (N=1000). In the subsequent 135 

five generations (101st – 105th), each male is mated with one female and each female 136 

produced two offspring (i.e., a full-sib design) and 1000 offspring were generated in 137 

total. Thus, the founder population size is 1000.  138 

III. In the third scenario, 𝑁𝑁𝑒𝑒 and the number of generations in the historical population are 139 

the same as the first scenario (𝑁𝑁𝑒𝑒=100 with 100 generations). However, In the last 140 

generation of the historical population (100th) and the subsequent five generations 141 

(101st – 105th), the mating design and family structure are the same as the second 142 

scenario, i.e. one male is mated with one female to produce two progeny per mating 143 

(full-sib design), producing 1000 offspring in total in each generation.  144 

 145 

Table 1. Parameters of historical population and genotyping data simulation in the first 146 

scenario using QMSim software. 147 
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   148 

In order to simulate the phenotypes of a complex trait, based on the simulated genotyped data, 149 

we used a model,  150 

𝑦𝑦𝑖𝑖 = 𝐙𝐙𝒊𝒊𝐮𝐮 + 𝑒𝑒𝑖𝑖                                                                                                      (Eq.1) 151 

where 𝑦𝑦𝑖𝑖  is the phenotypic value, 𝐙𝐙𝐢𝐢 is the vector of SNP genotypes and 𝑒𝑒𝑖𝑖  is the residual effect 152 

for the 𝑖𝑖𝑡𝑡ℎ individual, and u is the vector of SNP effects. In this phenotypic simulation, we 153 

randomly selected 1000 SNPs as causal variants, and u was drawn from a normal distribution 154 

such that the mean and variance of the genetic effects are 𝑚𝑚𝑒𝑒𝑚𝑚𝑚𝑚(𝐙𝐙𝒊𝒊𝐮𝐮) = 𝟎𝟎 and 𝑣𝑣𝑚𝑚𝑣𝑣(𝐙𝐙𝒊𝒊𝐮𝐮) = ℎ2. 155 

The residual effects were generated from a normal distribution with mean = 0 and variance =156 

1 − ℎ2 . In the phenotypic simulation, the SNP effects, u, are scaled by [2p (1 − p)]α, 157 

considering a non-negligible relationship between allele frequency and per-allele effect size 158 

[27-30], which is a function of alpha ranging from -1.5 to 1.5 in the simulation.  159 

In the HBLUP analysis, for three simulation scenarios, it is assumed that the pedigree 160 

information is available for the last five generations (101 – 105th generations), and the 161 

genotypic information is available for the individuals from the last two generations (104 – 105th 162 

generations), noting that the sample size in each of the last 5 generations is 1000.   163 

  164 

Real data 165 
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Hanwoo cattle data 166 

In this study, we applied statistical analyses to genotypic and phenotypic data from Hanwoo 167 

beef cattle. The total number of animals with pedigree information was 84,020, and among 168 

them, 13,800 animals were genotyped for 52,791 genome-wide SNPs, and 25,502 animals were 169 

recorded for their phenotypes. The number of animals available for both genotypic and 170 

phenotypic information was 9,072. The following criteria were applied for QC using PLINK: 171 

minor allele frequency below 0.01 (MAF), filtering SNPs with call rate lower than 95% (GENO 172 

= 0.05), individual missingness more than 5% (MIND= 0.05), and Hardy–Weinberg 173 

Equilibrium P-value threshold lower than 1e-04 (HWE). After QC, the number of individuals 174 

did not change, and SNPs number was 42,795. The Hanwoo beef cattle data included five 175 

carcass traits: carcass weight, eye muscle area, back fat thickness, marbling score and adjusted 176 

12 months weight. The total number of animals with non-missing records for each carcass trait 177 

with and without genotypic information can be seen in Table 2.    178 

Table 2. The number of individuals available for phenotypes with and without genotypic 179 

information for five carcass traits in Hanwoo cattle dataset 180 

 181 

In the HBLUP analysis for the Hanwoo cattle data, animals available for phenotypes and 182 

genotypes (𝑁𝑁𝑔𝑔,𝑝𝑝) (see Table 2) are randomly divided into five groups. In a five-fold cross-183 

validation, one of the five groups is selected as the target dataset, and the remaining groups are 184 

used as the discovery dataset, which is repeated for five times and the average prediction 185 

accuracy is achieved. The technical details of training and validating of HBLUP can be seen in 186 

Fig 1.  187 
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 188 

Fig 1. A diagram showing the experimental designs how to select the target and discovery samples 189 

for simulated and Hanwoo cattle datasets. In simulated dataset, the number of founders depends on 190 

the simulation scenarios (𝑓𝑓𝑛𝑛= 550, 1000 and 550 for simulation scenario 1, 2 and 3). The sample size in 191 

each generation (𝐺𝐺𝑖𝑖) is 1000. Therefore, the sample size in the whole population is 𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎= ∑ 𝐺𝐺𝑖𝑖 + 𝑓𝑓𝑛𝑛𝑁𝑁
𝑖𝑖=1 . 192 

The sample sizes of target and discovery samples are denoted as 𝑁𝑁𝑡𝑡 and 𝑁𝑁𝑑𝑑. In Hanwoo cattle data, the 193 

phenotypic and genotypic information is partly missing. The numbers of animals without genotype and 194 

phenotype (𝑁𝑁𝑛𝑛𝑔𝑔,𝑛𝑛𝑝𝑝), animals without genotype but with phenotype (𝑁𝑁𝑛𝑛𝑔𝑔,𝑝𝑝), animals with genotype but 195 

without phenotype (𝑁𝑁𝑔𝑔,𝑛𝑛𝑝𝑝), and animals with both genotype and phenotype (𝑁𝑁𝑔𝑔,𝑝𝑝) are shown in the 196 

diagram. 𝑁𝑁𝑔𝑔 is the total number of genotyped animals. In HBLUP, for the animals with both genotype 197 

and phenotype (𝑁𝑁𝑔𝑔,𝑝𝑝), 5-fold cross validation is applied, and each fold is selected as the target dataset 198 

(𝑁𝑁𝑡𝑡), and the remaining animals with phenotypes are used as the discovery samples (𝑁𝑁𝑑𝑑). The best linear 199 

unbiased predictions for the phenotypes of the target samples are obtained. In order to calculate the 200 

prediction accuracy, we used Pearson’s correlation coefficients between the true and predicted 201 

phenotypes for the target samples. 202 

 203 
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Estimating NRM, GRM and HRM 204 

Numerator relationship matrix  205 

NRM denotes as A that is estimated based on the pedigree, which has been used in Henderson’s 206 

mixed model equation (1975) [35] to obtain estimated breeding values. Following [10], A 207 

matrix can be formulated as follows. 208 

𝑨𝑨 = �𝐀𝐀11 𝐀𝐀12
𝐀𝐀21 𝐀𝐀22

�                                                                                                                  (Eq.2) 209 

Where 𝐀𝐀11 and 𝐀𝐀22 denote the numerator relationships for the groups of non-genotyped and 210 

genotyped individuals, and 𝐀𝐀12  and 𝐀𝐀21 are the numerator relationships between non-211 

genotyped and genotyped individuals.  212 

 213 

Scale factor (𝜶𝜶) and GRM 214 

Following [29], the variance of the 𝑖𝑖𝑡𝑡ℎ genetic variant (vi) can be expressed as a function of the 215 

allele substation effect (𝑢𝑢) and the allele frequency (𝑝𝑝𝑖𝑖), which can be written as    216 

𝑉𝑉𝑚𝑚𝑣𝑣(𝑣𝑣𝑖𝑖) = 2𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑖𝑖)𝛾𝛾𝑖𝑖
2 = [2𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑖𝑖)]1+2𝛼𝛼 × 𝑢𝑢𝑖𝑖2                                                                 (Eq.3) 217 

where 𝛾𝛾𝑖𝑖 = 𝑢𝑢𝑖𝑖 × [2𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑖𝑖)]𝛼𝛼 is the allele effect size (𝑢𝑢𝑖𝑖) that can vary, depending on the 218 

allele frequency and the scale factor, 𝛼𝛼 [27, 28], which can be explained by evolutionary forces 219 

such as selections, mutations, immigrations, and genetic drift. In the classical model [36], 𝛼𝛼 is 220 

assumed to be zero for all traits. Another widely used 𝛼𝛼 value is 𝛼𝛼 = -0.5, assuming that the 221 

genetic variance of the causal variant has a uniform distribution across the minor allele 222 

frequency spectrum. However, there have been reported that optimal 𝛼𝛼 values vary, depending 223 

on traits and populations ([27, 28, and 29]).  224 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 3, 2022. ; https://doi.org/10.1101/2022.07.03.498620doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.03.498620
http://creativecommons.org/licenses/by-nc/4.0/


11 
 

Following [37], the genomic relationship matrix can be formulated as a function of 𝛼𝛼, which 225 

can be written as  226 

𝑮𝑮𝑖𝑖𝑖𝑖 = 1
𝑑𝑑
∑ ��𝑥𝑥𝑖𝑖𝑗𝑗 − 2𝑝𝑝𝑗𝑗�(𝑥𝑥𝑖𝑖𝑗𝑗 − 2𝑝𝑝𝑗𝑗)�[2𝑝𝑝𝑗𝑗(1 − 𝑝𝑝𝑗𝑗)]2𝛼𝛼𝐿𝐿
𝑗𝑗=1                                                (Eq. 4) 227 

where 𝑮𝑮𝑖𝑖𝑖𝑖  is the genomic relationship between the 𝑖𝑖𝑡𝑡ℎ and 𝑗𝑗𝑡𝑡ℎ individuals, and 𝐿𝐿 is the total 228 

number of SNPs, 𝑝𝑝𝑗𝑗 is the allele frequency of the kth SNP, 𝑥𝑥𝑖𝑖𝑗𝑗 is the SNP genotype coefficient 229 

of the jth individual at the kth SNP, and d is the expected diagonals computed as 𝑑𝑑 = 𝐿𝐿 ∙230 

𝔼𝔼[(𝑥𝑥𝑖𝑖𝑗𝑗 − 2𝑝𝑝𝑗𝑗)𝟐𝟐[2𝑝𝑝𝑗𝑗(1 − 𝑝𝑝𝑗𝑗)]2𝛼𝛼]. This Eq. 4 is implemented in LDAK software [27]. 231 

Note that Eq. 4 with 𝛼𝛼 = -0.5 is equivalent to the genomic relationship estimation implemented 232 

in PLINK, GCTA and option 2 in BLUPf90 [24, 38, 39], and Eq. 4 with 𝛼𝛼 = 0 is equivalent to 233 

option 1 in BLUPf90 [24, 38].  234 

In the HBLUP analysis, we will vary 𝛼𝛼 from -1.5 to 1.5, to find an optimal 𝛼𝛼 value that can 235 

improve the prediction accuracy and compare the performance with the conventional HBLUP 236 

(with 𝛼𝛼 = -0.5 or 0). 237 

  238 

H-matrix best linear unbiased prediction  239 

In the HBLUP analysis, GRM (G) is computed based on the genotypic information, and NRM 240 

(A) is estimated using the pedigree information of the population. Following [7], given 241 

estimated G and A (from Eq. 3 and 4), H matrix can be derived as  242 

 243 

𝐇𝐇 = �𝐀𝐀11 + 𝐀𝐀12𝐀𝐀22
−1(𝐆𝐆 − 𝐀𝐀22)𝐀𝐀22

−1𝐀𝐀21 𝐀𝐀12𝐀𝐀22𝐆𝐆
𝐆𝐆𝐀𝐀22

−1𝐀𝐀21 𝐆𝐆
�                                                     (Eq. 5) 244 

 245 
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In the HBLUP analysis, the simulated data was divided into two groups, one group included 246 

the individuals in the first three generations, and the other group included individuals in the 247 

last two generations in the current population (101 – 105th generations). We used the genotypic 248 

information of the last two generations and the full pedigree information across the five 249 

generations to estimate H matrix. In cattle data, animals available for phenotypes and 250 

genotypes were considered (see Table 2) to estimating GRM, and then the HRM was estimated 251 

using a combination of NRM estimated based on whole pedigree (84,020 individuals) and 252 

GRM.  253 

 254 

Blending 255 

GRM is typically a non-positive definite matrix. In the process of HBLUP, it is usually 256 

required to modify GRM to be positive definite so that it can be inverted without any numerical 257 

problem [24]. This modification method is called ‘blending’ that shrinks the genomic 258 

relationships toward the pedigree relationships, using an arbitrary weight, 𝜃𝜃, typically ranging 259 

from 0.5 to 0.99 [13, 24]. The blended GRM can be written as 260 

𝐆𝐆𝑏𝑏𝑎𝑎𝑏𝑏𝑛𝑛𝑑𝑑𝑏𝑏𝑑𝑑 = 𝜃𝜃𝐆𝐆 + (1 − 𝜃𝜃)𝐀𝐀22     ∀  0 ≤  𝜃𝜃 ≤ 1                                                            (Eq. 6) 261 

 262 

Tuning 263 

Tuning process adjusts GRM, accounting for the allele frequencies in the base population, 264 

using the information from NRM that includes the information of founders in the base 265 

population through the pedigree [7, 8, 25, 26]. The tuned GRM (𝐆𝐆𝑡𝑡𝑡𝑡𝑛𝑛𝑏𝑏𝑑𝑑) is computed as  266 

𝐆𝐆𝑡𝑡𝑡𝑡𝑛𝑛𝑏𝑏𝑑𝑑 = 𝛽𝛽𝐆𝐆𝑏𝑏𝑎𝑎𝑏𝑏𝑛𝑛𝑑𝑑𝑏𝑏𝑑𝑑 + 𝜔𝜔𝐉𝐉                                                                                              (Eq. 7) 267 
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where J is a matrix with the same size of GRM, and all elements are equal to one, and 𝜔𝜔 and 268 

𝛽𝛽  are tuning parameters that can be used to adjust GRM, accounting for base allele 269 

frequencies. In this study, we use two most frequently used methods to obtain the tuning 270 

parameters, 𝜔𝜔  and 𝛽𝛽 . Following [26], the first method (referred to as tune=1) computes 271 

𝜔𝜔,𝑎𝑎𝑎𝑎𝑎𝑎 𝛽𝛽 as  272 

𝜔𝜔 =
(𝐼𝐼𝐀𝐀22 𝐼𝐼 − 𝐼𝐼𝐆𝐆𝐼𝐼́ )

𝑎𝑎22
 

𝛽𝛽 =  
� ∑ 𝐀𝐀22𝑖𝑖,𝑖𝑖

𝑛𝑛
𝑖𝑖=1 −𝐼𝐼′𝐀𝐀22𝐼𝐼�

𝑛𝑛2
�∑ 𝑮𝑮𝑖𝑖,𝑖𝑖
𝑛𝑛
𝑖𝑖=1 −𝐼𝐼′𝑮𝑮𝐼𝐼�

𝑛𝑛2

                 (Eq. 8) 

where I is an array with the size of 𝑎𝑎 × 1 and all values equal to one. 273 

Following [25], the second method (referred to as tune=2) can be written as  274 

 275 

𝜔𝜔 =
(𝐼𝐼𝐀𝐀22 𝐼𝐼 − 𝐼𝐼𝐆𝐆𝐼𝐼́ )

𝑎𝑎22
 

𝛽𝛽 = 1                                        (Eq. 9) 

 276 

Please note that Eqs. 8 and 9 have been implemented in BLUPf90 [38] as the second and 277 

fourth tuning option (i.e. TunedG=2 or 4). 278 

  279 

 280 

Linear Mixed Model 281 

In the analyses, we used a linear mixed model that can be written as  282 

𝒚𝒚 = 𝐗𝐗𝒃𝒃 + 𝐙𝐙𝒈𝒈 + 𝒆𝒆                                                                                                       (Eq. 10) 283 

where 𝒚𝒚 denotes a vector of phenotypic value, 𝒃𝒃 is a vector of the (environmental) fixed 284 

effects, 𝒈𝒈 is a vector of random additive genetic effect that is distributed based on 𝑁𝑁(0,𝐇𝐇𝜎𝜎𝑔𝑔2), 285 
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where 𝐇𝐇 can be derived from Eq. 5 and 𝜎𝜎𝑔𝑔2 denotes the genetic variance. Both 𝐗𝐗 and 𝐙𝐙 are the 286 

incidence matrixes. Finally, the residual effect vector is shown by 𝒆𝒆 distributed as 𝑁𝑁(0, 𝐈𝐈𝜎𝜎𝑒𝑒2) 287 

where 𝐈𝐈 is an identity matrix and 𝜎𝜎𝑒𝑒2 is the residual variance. 288 

We employed the restricted maximum likelihood (REML) method, fitting the 𝐇𝐇 matrix, to 289 

estimate genetic variance and heritability, which is referred to as HREML in this study. The 290 

Akaike Information Criterion (AIC) was used to assess the goodness of fitness of the model as 291 

𝐴𝐴𝐼𝐼𝐴𝐴 = 2𝑃𝑃 − 2 × ln(𝐿𝐿) , where ln(𝐿𝐿) is the log likelihood from HREML, and 𝑃𝑃 is the number 292 

of parameters. Given the estimated variances and heritability from HREML, HBLUP was used 293 

to obtain individual genetic values. We used MTG2.22 [44-45] genomic analysis software to 294 

perform HREML and HBLUP methods. 295 

 296 

 Grid Search to find optimal hyper-parameters  297 

One of the well-known methods to find the best configuration of hyper-parameters is the grid 298 

search [40]. In the grid search, all possible combinations of hyper-parameters are considered 299 

to evaluate the performance of prediction models.  300 

 301 

Results 302 

Simulated data 303 

Fig 2a shows that the tuning process significantly improves the prediction accuracy (referred 304 

to as R-value) that is a Pearson correlation coefficient between the observed and predicted 305 

phenotypes in the target dataset, confirming previous studies, when using the simulated data. 306 
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The tuning process with the first option (tune=1; Eq. 8) appears to better perform than the 307 

second option (tune=2; Eq. 9) for this simulated data. However, blending (𝜃𝜃<1) does not 308 

significantly improve the HBLUP accuracy for this simulated data (Fig 2a; S2 Fig). Fig 2b 309 

represents the impact of 𝛼𝛼 value on the HBLUP’s performance, showing that the prediction 310 

accuracy increases when 𝛼𝛼 value used in estimating GRM is close to the true 𝛼𝛼 value used in 311 

the phenotypic simulation. When varying simulation scenarios (e.g., a small or large effective 312 

population size with full-sib designs), a similar result is observed that the prediction accuracy 313 

improves when applying the tunning process or when using optimal 𝛼𝛼 (S3 Fig; S4 Fig;  S5 Fig 314 

;  S6 Fig) .  315 

 316 

(a) (b) 

  

Fig 2. HBLUP accuracy and hyper-parameters.  317 

(a) The HBLUP accuracy (R-value) improves when using tune=1 (Eq. 8) or tune=2 (Eq. 9). However, 318 

blending (𝜃𝜃 < 1) would not increase the accuracy for this simulated dataset.  319 

(b) Optimal 𝛼𝛼 values can increase the accuracy, indicating that the choice of 𝛼𝛼 is important in HBLUP.    320 

We simulated genotypes and phenotypes in 3000 replications in which simulation parameters of 321 

ℎ2 =0.8, 𝑁𝑁𝑒𝑒 = 100 for 100 historical generations and a half-sib design (50 male, 500 females) were 322 

used. The true 𝛼𝛼 values used in the phenotypic simulation were -0.5 or 0. The error bars are 95% CI 323 

over the 3000 replications.  324 
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 325 

Mimicking a real dataset in which multiple replicates are not possible, we used a single 326 

simulation data to assess the HBLUP accuracy, varying hyper-parameters (Fig 3). All possible 327 

configurations of tuning, blending and 𝛼𝛼 values were evaluated using the grid search method 328 

where the prediction accuracy was measured using 5-fold cross validation (see Methods, S7 329 

and S8 Figs). Fig 3 shows the HBLUP accuracy averaged over 5-fold cross validation when 330 

varying hyper-parameters. The highest prediction accuracy was achieved with tune=1, blend=1 331 

and 𝛼𝛼 =0 when using the true 𝛼𝛼 =0, and with tune=1, blend=0.9 and 𝛼𝛼 =-0.5 when using the 332 

true 𝛼𝛼 =-0.5 in the simulations (See Fig 3). This shows that the optimal 𝛼𝛼 values found in the 333 

grid search are approximately agreed with the true simulated values.  334 

   

  
 

Fig 3. HBLUP accuracy averaged over 5-fold cross validation in a grid search with various 335 

configurations of the hyper-parameters, using a single simulation dataset.  336 

The best configuration found in the grid search consists of tune=1, blend=1 and 𝛼𝛼 =0 (in estimating 337 

GRM) when using 𝛼𝛼 =0 in the simulation, and tune=1, blend=0.9, and 𝛼𝛼 =-0.5 when using 𝛼𝛼 =-0.5 in 338 

the simulation. 339 

The population parameters used in the simulation are ℎ2 =0.8, 𝑁𝑁𝑒𝑒 = 100 for 100 historical generations, 340 

NSNPs = 9000, chromosome number = 30 and 𝛼𝛼 = 0 or -0.5. Mimicking livestock population, a half-sib 341 
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design (50 sires, 10 dams per sire and 2 offspring per dam) was applied to the last 5 generations. Full 342 

pedigree across the 5 generations were used in HBLUP. Among 2000 offspring in the last 2 generations, 343 

5 subsets each with a random 400 individuals were used as target datasets in the 5-fold cross validation. 344 

To predict for each target dataset, the remaining 5150 (across the 5 generations) were used as the 345 

discovery dataset.  346 

 347 

Cattle data 348 

We used pedigree, genotype and phenotype data of Korean native cattle (Hanwoo), which is a 349 

unique and important breed in the beef industry [42-43], to assess the HBLUP accuracy with 350 

various hyper-parameters including 𝛼𝛼 . We first estimated optimal hyper-parameters that 351 

provided the lowest Akaike information criteria (AIC) value based on the residual maximum 352 

log-likelihood for each trait, using HREML (Fig 4). We observed that ∆𝐴𝐴𝐼𝐼𝐴𝐴 was not uniformly 353 

distributed across different 𝛼𝛼  values, and optimal 𝛼𝛼  values were largely different across 5 354 

carcass traits (Fig 4a). On the other hand, a blending parameter 𝜃𝜃 = 1 provided the lowest ∆𝐴𝐴𝐼𝐼𝐴𝐴 355 

values for all traits except of EMA (𝜃𝜃 = 0.86), indicating that a blended GRM with 𝜃𝜃 < 1 did 356 

not increase the goodness of fit when using HREML in general (Fig 4b). Finally, Fig 4c shows 357 

that tune=2 could achieve a better goodness of fit, compared with tune=1 or tune=0 (i.e., 358 

without tuning), in most cases. For BFT and MS traits, tune=1 and 0 provided the lowest AIC 359 

(Fig 4c) although the AIC was not significantly lower than tune=2 (difference in AIC less than 360 

1). The best-performed hyper-parameters for five traits can be seen in S1 Table. 361 

 362 

 363 

 364 
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(a) (b) (c) 

   

Fig 4. HREML estimation accuracy depending on 𝜶𝜶 estimated in the genotyped samples and 365 

making HRM. 366 

(a) Evaluating the impact of 𝛼𝛼 values on the ∆𝐴𝐴𝐼𝐼𝐴𝐴 for five different traits of Hanwoo cattle dataset 367 

using HREML in a univariate linear mixed model with different tuning methods and blending 368 

coefficients.  The Akaike Information Criterion (AIC) was used to show the goodness of fitness of the 369 

model as 𝐴𝐴𝐼𝐼𝐴𝐴 = 2𝑃𝑃 − 2 × ln(𝐿𝐿), where 2 × ln(𝐿𝐿) is the HREML log likelihood, and 𝑃𝑃 is the number 370 

of parameters. ∆𝐴𝐴𝐼𝐼𝐴𝐴 = 𝐴𝐴𝐼𝐼𝐴𝐴 − 𝐴𝐴𝐼𝐼𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜, where AIC is obtained with the corresponding 𝛼𝛼 value at 371 

the x-axis and 𝐴𝐴𝐼𝐼𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 is the AIC for the optimal 𝛼𝛼. It is observed that optimal 𝛼𝛼 varies across traits. 372 

Whole individuals with available phenotype were applied in estimating the heritability based on Table 373 

2. 374 

(b) A performance comparison between two different blending coefficients (0.5 to 1) in order to 375 

estimate the HRM using HREML with optimal tuning method and optimal 𝛼𝛼 value.  376 

(c) The performance of tune=1 (Eq. 8) compared with the tune=2 (Eq. 9) and without considering the 377 

tuning in estimating the HRM with the applied optimal blending and 𝛼𝛼 values.   378 

 379 

We also used a grid search to assess the performance of all hyper-parameters (Fig 5) in which 380 

HBLUP accuracies of all possible configurations of tuning, blending and 𝛼𝛼  values were 381 

evaluated in 5-fold cross validation. Fig 5 shows the HBLUP accuracy averaged over 5-fold 382 

cross validation when varying 𝛼𝛼, tuning and blending values for 5 carcass traits. In Fig 5a, we 383 

observed that the accuracy of HBLUP could be considerably increased or decreased, depending 384 
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on the choice of 𝛼𝛼 values. In contrast, Fig 5b shows that the highest HBLUP accuracy was 385 

achieved with a blending parameter 𝜃𝜃 = 1 for all traits except EMA (𝜃𝜃 = 0.86), indicating that 386 

blended GRM would not improve the HBLUP accuracy in most cases. Finally, Fig 5c indicates 387 

that tuning process would not substantially improve the HBLUP accuracy for all carcass traits 388 

in Hanwoo cattle data. The best configuration of the hyper-parameters for each trait is shown 389 

in S1 Table. 390 

 391 

(a) (b) (c) 
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Fig 5. The performance of HBLUP when varying 𝜶𝜶, blending and tuning hyper-parameters for 392 

five carcass traits.  393 

The five carcass traits include carcass weight (cwt), eye muscle area (ema), adjusted 12 months weight 394 

(adj-w12), marbling score (ms) and back fat thickness (bft). The pedigree includes 84,020 animals in 395 

total, among which around 20,490 animals have phenotypic records, and 13,800 animals are genotyped 396 

for 42,686 SNPs across the genome. The number of animals with both genotypes and phenotypes is 397 

9,072 (Table 2) that are randomly divided into 5 groups (5-fold cross validation). Each set of the five 398 

groups is selected as the target samples, and all the phenotyped animals except the target samples were 399 

used as the discovery dataset. This five-fold cross validation was used to validate the performance of 400 

HBLUP. 401 

 402 

Discussion 403 

HBLUP or ssGBLUP has been widely used in livestock breeding programs [5,6]. The HBLUP 404 

method (e.g., BLUPf90) requires hyper-parameters to integrate the information of genomic and 405 

pedigree relationship matrices, which should be optimised to maximise the accuracy of 406 

genomic prediction [7, 13, 25, 26]. In this study, we evaluated the performance of HBLUP with 407 
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various hyper-parameters such as blending, tuning and scale factor, using simulated and real 408 

Hanwoo cattle datasets.  409 

The scale factor, 𝛼𝛼, can determine the relationship between allele frequency and per-allele 410 

effect size. In the simulation, HBLUP accuracy can be the highest when using GRM scaled by 411 

the true 𝛼𝛼 value used in the phenotypic simulation, indicating that the choice of 𝛼𝛼 value is 412 

important although this has never been considered as a hyper-parameter in HBLUP. In fact, the 413 

performance of HBLUP is shown to vary across the carcass traits in the cattle data used in this 414 

study, confirming previous studies reporting that optimal α values vary, depending on traits 415 

and populations [27-29]. Importantly, using less optimal 𝛼𝛼  values may decrease HBLUP 416 

accuracy significantly, which should be carefully checked before conducting genetic 417 

evaluations, emphasising that the scale factor is not less important, compared to other hyper-418 

parameters such as blending and tuning.  419 

In both simulated and cattle data, blending (𝜃𝜃 < 1) would not really improve the prediction 420 

accuracy except of one cattle trait (EMA, 𝜃𝜃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 0.86). On the contrary, the accuracy 421 

would increase more when GRM was blended with higher weights, which is clearly shown in 422 

S2 Fig. This is not totally unexpected because richer information can come from GRM (e.g., 423 

Mendelian sampling variance within sibs), and blended GRM may lose some of such 424 

information. When the mixed model equation is used for HREML or HBLUP [38, 41], a non-425 

positive definite GRM may cause a numerical problem, for which blending process is essential. 426 

This may be one of reasons blending has been an important hyper-parameter in HBLUP. 427 

However, the direct AI algorithm can use a non-positive definite GRM without blending ( 𝜃𝜃 =428 

1) and there is a method that can provide positive definite GRM [29]. In any case, we 429 

recommend optimising the blending hyper-parameter as the optimal blending can vary, 430 

depending on data, in which 𝜃𝜃 = 1 should also be explicitly evaluated.   431 
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The tuning process adjusts GRM, accounting for the allele frequencies in the base population, 432 

assuming that the founders in the base population are not genotyped but are linked through the 433 

pedigree. As expected, the widely use tuning method (tune=1; [26]. implemented in BLUPf90 434 

option 2) could significantly improve the prediction accuracy in the simulated data, indicating 435 

that the base allele frequencies are correctly accounted for. However, the improvement caused 436 

by tune=1 or 2 was not remarkable in the Hanwoo cattle data. This is probably due the fact that 437 

the pedigree information in the real data is not accurate enough to trace the founders, or the 438 

genotypes may capture substantial information about the base allele frequencies.   439 

 In conclusion, existing hyper-parameters such as blending and tuning in HBLUP are important 440 

in general, and their optimal values or options should be properly sought to achieve a reliable 441 

genetic evaluation. Depending on data, optimal values can vary, and unnecessary or over-442 

parametrised blending or tuning can produce adverse effects on the prediction accuracy. The 443 

scale factor, a novel hyper-parameter to be introduced in HBLUP, should be explicitly 444 

optimised to increase the prediction accuracy, given the impact of scale factor is competitive 445 

with other hyper-parameters, blending and tuning. We suggest including the scale factor, 𝛼𝛼, in 446 

HBLUP as a hyper-parameter.  447 
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